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ABSTRACT

A new promoter prediction program called CNN-Promoter is presented. CNN-Promoter allows DNA 
sequences to be submitted and predicts them as promoter or non-promoter. Several methods have been 
developed to predict the promoter regions of genomes in eukaryotic organisms including algorithms based 
on Markov’s models, decision trees, and statistical methods. Although there are plenty of programs proposed, 
there is still a need to improve the sensitivity and specificity values. In this paper, a new program is proposed; 
it is based on the consensus strategy of using experts to make a better prediction. The consensus strategy is 
developed by using neural networks. During the training process, the sensitivity and specificity were 100 % 
and during the test process the model reaches a sensitivity of 74.5 % and a specificity of 82.7 %.  

KEY WORDS: promoter prediction; neural networks; consensus strategy.

CNN-PROMOTER, NUEVO PROGRAMA PARA LA PREDICCIÓN DE 
PROMOTORES BASADO EN REDES NEURONALES

RESUMEN

En este artículo se presenta un programa nuevo para la predicción de promotores llamado CNN- 
-Promoter, que toma como entrada secuencias de ADN y las clasifica como promotor o no promotor. Se 
han desarrollado diversos métodos para predecir las regiones promotoras en organismos eucariotas, mu-
chos de los cuales se basan en modelos de Markov, árboles de decisión y métodos estadísticos. A pesar de 
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la variedad de programas existentes para la predicción de promotores, se necesita aún mejorar los valores 
de sensibilidad y especificidad. Se propone un nuevo programa que se basa en la estrategia de mezcla de 
expertos usando redes neuronales. Los resultados obtenidos en las pruebas alcanzan valores de sensibilidad 
y especificidad de 100 % en el entrenamiento y de 74,5 % de sensibilidad y 82,7 % de especificidad en los 
conjuntos de validación y prueba.  

PALABRAS CLAVE: predicción de promotores; redes neuronales; estrategia de consenso.

CNN-PROMOTER, NOVO PROGRAMA PARA A PREDIÇÃO DE PROMOTORES 
BASEADO EM REDES NEURONAIS

RESUMO

Neste artigo a presenta-se um novo programa para a predição de promotores chamado CNN-Promoter, 
que toma como entrada sequências de DNA e as classifica como promotor ou não promotor. Desenvolveram-
se diversos métodos para predizer as regiões promotoras em organismos eucariotas, muitos dos quais se 
baseiam em modelos de Markov, árvores de decisão e métodos estatísticos. Apesar da variedade de pro-
gramas existentes para a predição de promotores, precisa-se ainda melhorar os valores de sensibilidade e 
especificidade. Propõe-se um novo programa que se baseia na estratégia de mistura de experientes usando 
redes neuronais. Os resultados obtidos nas provas atingem valores de sensibilidade e especificidade de 100 % 
no treinamento e de 74,5 % de sensibilidade e 82,7 % de especificidade nos conjuntos de validação e prova.  

PALAVRAS-CÓDIGO: predição de promotores; redes neuronais; estratégia de consenso.

1.  INTRODUCTION

1.1 Promoter prediction

Gene prediction is a major task in bioinformat-
ics and it can be defined as the problem that takes 
an uncharacterized DNA sequence as input and 
identifies the signals frequently observed in genes. 
Although the structure of a gene is already known, 
most of the solutions to the problem are supported 
in determining the elements usually presented in a 
gene, which are promoter, exons, introns, poly A tail, 
and transcription start site (TSS). Most of the efforts 
are focused on trying to design particular models for 
each of those elements of a gene. The promoter is 
biologically one of the most important elements of the 
gene. It is the region upstream of a gene that contains 
the necessary information for the activation of the 
gene that it controls (Smale and Kadonaga, 2003).

The promoter region is typically divided into 
three parts: (1) the core promoter, which is the re-
gion typically located ~35 bp upstream of the TSS; 
(2) the proximal promoter, which is a region con-
taining several regulatory elements and is located a 
few hundred base pairs upstream of the TSS; and (3) 
the distal promoter, a region that contains additional 
regulatory elements called enhancers and silencers. 
The distal promoter is usually located thousands of 
base pairs upstream of the TSS. The current availa-
ble algorithms for promoter prediction do not satisfy 
the sensitivity and specificity values that biologists 
would like to obtain. Most of these methods are 
based on search ing motifs in a DNA sequence to de-
cide whether it is a promoter or not (Gordon et al., 
2006). The search is usually made by using position 
weightmatrices and Markov models (Pedersen et al., 
1998; Ohler et al., 1999; Liu and States, 2002; Luo, 
Yang and Liu, 2006; Premalatha, Aravindan and  
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Kannan, 2009; Rymczak and Unold, 2009). Besides 
statistical strategies, artificial intelligence has also 
been applied. Particularly, artificial neural net-
works have shown acceptable sensitive values, but 
specificity has been affected because of the high 
false positives rate (Knudsen, 1999; Burden, Lin 
and Zhang, 2005; Abeel et al., 2008; Zhang, 2009). 
Neural network has been applied in some other 
problems in bioinformatics. The motivation behind 
selecting this technique is related to its capability 
of identifying hidden patterns in a huge amount of 
sequences in biological databases. DNA sequences 
of promoter regions from the same organism present 
several variations that might be identified using 
neural networks.

Promoter prediction is particularly difficult in 
the case of eukaryotic organisms because regulatory 
regions, such as core promoters and transcription 
start site, represent just a small percentage of the 
DNA sequence. Prediction and characterization 
of regulatory regions is still a challenging problem. 
There is another issue related to promoter prediction: 
the existing methods might not coincide with the 
output for the same uncharacterized DNA sequence 
as input, which means there is no consensus decision 
in current predictors. 

In this work, a new promoter prediction pro-
gram is proposed. The program is based on neuronal 
networks to raise the specificity values maintaining 
the high sensitivity of the existing models. The strate-
gy used in the proposed program consists of making 
decisions based on the mixture of three experts. 
Each expert is a neural network built for well-known 
consensus sequences such as TATA-box, GC-box, and 
CAAT-box. Each of these neural networks goes over 
the sequence identifying a specific box and leaving 
a mark of “1” indicating the box was found, and 
“0” otherwise. Then, a major neural network takes 
the marks left by those experts and tries to make a 
global prediction. 

1.2  Consensus strategy to classify   
 biological sequences 

A novel strategy that arises as a hopeful solu-
tion to the problem of lack of consensus on classifica-
tion is the mixture of experts. The strategy has been 
applied in some other fields of bioinformatics, such 
as gene prediction (Allen, Pertea and Salzberg, 2004) 
and secondary structure prediction (Barlow, 1995; 
De Haan and Leunissen, 2005; Mazo and Bedoya, 
2010). The mixture of experts allows running some 
of the best algorithms for a specific problem and 
tries to make a decision that integrates the output of 
the individual methods. The strategy is based on the 
hypothesis that the consensus decision, the one taken 
integrating a given number of algorithms, should be 
better than the individual methods. The consensus 
decision can be as easy as the majority wins criteria; 
the decision taken by most of the n given experts is the 
consensus decision. However, a consensus decision 
can be taken based on a more complex model, e.g. 
a decision tree or a neural network.

A decision tree follows a tree structure to make 
the representation of a given training set. At each 
node of the tree there is a question that includes one 
or more attributes in the training data. Each node has 
one or more branches, each one corresponding to a 
possible outcome of the question in the node. At the 
bottom of the tree there are leaf nodes, which assign 
the classification labels. Decision trees can be used 
as a mixture of expert strategy in which the question 
in each node combines the prediction programs. In 
Allen, Pertea and Salzberg (2004) a decision tree is 
constructed to predict genes combining the output 
of three gene predictors: Gene Mark (Lukashin and 
Bordovsky, 1998), GlimmerM (Pertea and Salzberg, 
2002), and Gen Scan (Burge and Karlin, 1997). The 
consensus model outperforms even the best individ-
ual method.

A neural network can also be used as a mixture 
of expert strategy. In De Haan and Leunissen (2005) a 
neural network is constructed as a mixture of expert 
model. The neural network proposed integrates ten 
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secondary structure prediction programs. The mo-
del obtained also allows comparing the individual 
methods by analyzing the weights assigned in the 
neural network.

In this paper, a new program for promoter 
prediction is proposed. The program is called 
CNN-Promoter (CNN stands for Consensus Neural 
Network) and focuses on combining experts to 
improve the prediction accuracy. The three experts 
to be mixed by the neural network are well-known 
consensus sequences such as TATA-box, GC-box, 
and CAAT-box.

1.3 Promoter prediction using   
 neural networks

In Kalate, Tambe and Kulkarni (2003) artificial 
neural networks are used as a tool for predicting 
mycobacterial promoter sequences and determining 
structurally/functionally important sub-regions there- 
in. A multi-layered feed-forward neural network of 
284 input neurons, one hidden neuron, and one out-
put unit was trained using the error-back-propagation 
(EBP) algorithm. The network was tested on myco-
bacterial promoter sequences. According to Kalate, 
Tambe and Kulkarni (2003), the strategy detects  
97 % of the promoters in a test set with mycobacterial 
promoters and random sequences.

In Zhang, Kuo and Brunkhors (2006) a feed 
forward neural network is trained to learn E. coli 
promoters. Coding areas of genes were taken as 
negative samples. According to Zhang, Kuo and 
Brunkhors (2006), the network can extract more 
effectively the statistical characteristics of promoters. 
Another result demonstrated was that the number 
of hidden layers seems to have no significant effect 
on E. coli promoter prediction precision. A CODE-4 
orthogonal codification was used as inputs in the 
neural network. In this codification, each nucleotide 
in the input layer is represented as four values, i.e., 
A=1000, C=0100, G=0010, T=0001. The neural 
network presents 120 units in the input layer, 80 
neurons in the hidden layer, and one node in the 

output layer. The neural network identified at least 
50 % of the promoters in test sets. 

Another work that uses neural networks for 
promoter recognition is Frias, Vidal and Cascardo 
(2004). It focuses in the genome of the fungus Crini-
pellis perniciosa. Besides, a new approach for feature 
extraction, based on local compositional measures, 
is presented. A feed-forward neural network with 
just two neurons in the hidden layer was needed. 
According to Frias, Vidal and Cascardo (2004),  
95 % accuracy was obtained. 

PromPredictor (Chen and Li, 2005) is a 
program for recognizing promoter regions. It uses 
a hybrid neural network approach for predicting 
promoter regions in large genomic sequences. Prom 
Predictor is a combination of a novel promoter 
recognition model, coding theory, feature selection 
and dimensionality reduction with machine learning 
algorithm. The method is based on the statistical con-
cept of pentamer distributions in specific functional 
regions of DNA and selected the most significant 
pentamer vocabularies from training sequences by 
an unsupervised learning technique. It is based on a 
new promoter model with statistical-compositional 
features and CpG information. According to Chen 
and Li (2005), sensitivity of 66 % and specificity of  
48 % were obtained during testing phase.

Dragon Promoter Finder (DPF) (Bajic et al., 
2002) is a program for recognition of vertebrate RNA 
polymerase II promoters. DPF algorithm identifies 
TSS positions using five independent promoter re-
cognition models. Each model uses a data window 
that slides along the DNA sequence. Based on the 
competition of the models, DPF predicts TSS pres-
ence for each data window. According to Bajic et 
al. (2002), sensitivity of 70 % and specificity of 50 % 
was obtained.

A consensus strategy is presented in Reese 
(2001). Two single networks were designed to de-
tect the TATA box and the initiator region. Each 
neural network was trained independently using 
TATA-boxes and initiator regions. Combining the two 
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neural networks that were made, time-delay neural 
networks (TDNN) was used. TDNNs are appropriate 
for recognizing promoter elements because they can 
combine multiple features that appear at different 
relative positions in different sequences. The final 
input to the TDNN consists of 51 bp, spanning the 
transcription start site from position -40 to +11, 
including the TATA-box and the initiator. In this 
strategy, the outputs of the TATA-box and initiator 
neural networks are put into a single vector that ac-
cumulates the results of the networks. According to 
Reese (2001), the strategy was able to predict up to 
70 % of all promoters in test sets. The organism used 
in the test set was Drosophila melanogaster.

Most of the works related to design neural 
networks for promoter prediction have a specific 
organism used in training, being E. coli, fungus Cri-
nipellis perniciosa, Drosophila melanogaster and my-
cobacterial promoter sequences the most used. Just 
a few works can be found to be related to recognize 
human promoters using neural networks. Another 
issue related to promoter prediction using neural 
network is that most of the works are based on de-
sign networks for specific elements of the promoter, 
such as TATA-box, initiator region, and transcription 
start site. There is no neural network method that 
integrates elements such as CAAT-box, GC-box, and 
TATA-box in the same consensus model. There is 
an obvious need for trying a new consensus neural 
network that combines those elements.  

2.  MATERIALS AND METHODS

2.1  Selecting and preparing the   
 datasets

Neural networks are based on the idea of 
training them to learn about the information in-
cluded in the patterns. The selection of the patterns 
in the training set is a major decision to make be-
cause the generalization capability of the model can 
be affected. Besides, a test set is also needed, which 
is a dataset with data not included in the training 
set that will be used to measure the accuracy of the 
predicting model.

The datasets used in this work were extracted 
from the EPD (Eukaryotic Promoter Database).  
There are a total of 840 promoter sequences of 
rat and mouse partitioned into 3 datasets which 
are summarized in table 1. As the non-promoter 
sequences, a set of short exons and introns were 
extracted from TIGR (http://www.tigr.org/). The  
datasets are only composed from promoter se-
quences DNA type-b, so the results of this paper 
apply for those kinds of organisms. A total of 80 % of 
each dataset was used as the training set and 20 % 
as the test set. In the training set, the training error 
will be calculated and it indicates the capability of 
the neural network to learn a set of patterns. Also, 
when the test set is used, the generalization error will 
be calculated; it indicates the capability to classify 
unknown promot ers correctly. 

Table 1. Datasets

Dataset reference Amount of Promoters Amount of non-promoters

Dataset1 (Rattus norvegicus) 160 325

Dataset2 (Mus musculus) 260 325

Dataset3 (Rattus norvegicus and Mus musculus) 420 325
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In this work, the orthogonal codification 
CODE-4 is used as the input of the neural networks 
for the consensus sequences, which is a codification 
for each nucleotide, C=0001, G=0010, A=0100, and 
T=1000. As part of the preparation process, every 
single nucleotide of the datasets was converted to 
the CODE-4 codification.

2.2  Building neural networks for   
 consensus sequences

As in this paper a mixture of expert strategy is 
used, it is necessary to build the neural networks for 
the experts in the consensus sequences. Those are 
the TATA-box neural network, the GC-box neural 
network, and the CAAT-box neural network. The to-
pology and some other parameters of those networks 
are presented as follows:

•	 TATA-box neural network. This neural network 
presents 28 nodes in the input layer, one neuron 
in the hidden layer, and one node in the output 
layer (figure 1). The 28 nodes in the input layer 
correspond to the codification of the seven nu-
cleotides that usually form the TATA-box. The 
output of the network will be “1” in case of a 
7-nucleotide size subsequence is classified as a 
positive TATA-box, and “0” otherwise. The neu-
ral network uses the logistic function for all of 
its neurons, and the back-propagation as the 
learning algorithm. The number of neurons in 
the hidden layer was modified several times. 

As it was found in Zhang, Kuo and Brunkhors 
(2006), one neuron was sufficient to let the net-
work learn the patterns in training set.

•	 GC-box neural network. This neural network 
presents 24 nodes in the input layer, one neuron 
in the hidden layer, and one node in the output 
layer (figure 2). The 24 nodes in the input layer 
correspond to the codification of the six nucleo-
tides that usually form the GC-box. The output 
of the network will be “1” in case of a 6-nucleo-
tide size subsequence is classified as a positive 
GC-box and “0” otherwise. The neural network 
uses the logistic function for all of its neurons, 
and the back-propagation as the learning algo-
rithm. 

•	 CAAT-box neural network. This neural network is 
similar to the TATA-box neural network. It also 
presents 28 nodes in the input layer that corre-
spond to the codification of the seven nucleoti-
des that usually form the CAAT-box.

2.3  Preparing the CNN-Promoter   
 neural network input

The major difference in this work compared 
to existing methods is related to how the experts 
are used. The input for the CNN-Promoter neural 
network is the marks left by the individual experts, 
those are, the 1’s and 0’s left as the outputs of the 
individual neural networks. Given a DNA sequence, 
as shown in table 2, there are three rows formed 
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Figure 1. The TATA-box neural network
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by the outputs of the consensus neural networks. 
Each row of values or marks is calculated by passing 
through each consensus neural network over the 
whole DNA sequence.

The basic idea of the CNN-Promoter neural 
network is shown in figure 3. The outputs of the three 
individual experts are calculated from the DNA se-
quence and taken as the input of the CNN-Promoter. 

As in the training set the correct output for 
each sequence is known, a neural network can be 
trained to learn how to classify promoter and non-
promoter sequences, taking the marks left by the 
experts as input. Besides, the relative location of the 
TATA, GC, and CAAT boxes is included in the model 
because the positions of the neurons are considered 
during the classification process.

Figure 2. The GC-box neural network

Nucleo�de 1 

Nucleo�de 2 

Nucleo�de 3 

Nucleo�de 4 

Nucleo�de 5 
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Table 2. Input for the CNN-Promoter

T A T A A C A C C A A T A A G G G C G G 

1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

 

TATA-box NN output 

CAAT-box NN output 

GC-box NN output  

Figure 3. Input for the CNN-Promoter
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2.4  Obtaining the CNN-Promoter   
 neural network

A neural network was built for the CNN-
Promoter program. The network was composed of 
three layers (input, hidden, and output). The input 
layer has 732 units. Three input units are necessary 
for each nucleotide; those three values correspond 
to the output of the individual experts. The TATA-box, 
GC-box, and CAAT-box are located from -219 bp to 
10 bp from the transcription start site (TSS), which 
is a total of 230 nucleotides. The window size for 
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the neural network analysis will be 244 nucleotides 
which is a sufficient length to find the consensus 
boxes. The 732 units in the layer correspond to the 
size of the window, which is 244 nucleotides, having 
three values for each nucleotide. The hidden layer 
is composed of one unit and the output layer has 
one neuron; being “1” a promoter and “0” a non-
promoter. Figure 4 shows the configuration of the 
neural network.

The number of iterations in the learning 
process was optimized to 200 to save time without 
losing the learning performance of the network. A 
logistic function was used as the activation function. 
In the training process, the whole promoters and 
non-promoters in the training set were presented to 
the neural network. 

The CNN-Promoter neural network can be 
used as a classifier of promoters just by feeding the 
inputs with the uncharacterized DNA sequence. 
Although, currently there are many promoter pre-
dictors, none of them uses the mixture of experts as 
in this paper. The analysis of marks left by experts is 
a novel strategy to the promoter prediction problem.

2.5  The CNN-Promoter program

Once the neural network is constructed, a 
new strategy to classify promoters is obtained. The 
CNN-Promoter neural network was implemented 
as a program that allows users to submit DNA se-
quences and classify them by using the consensus 
strategy proposed in this paper. The source code of 
the program is available for academic purposes from 
the authors upon request.

2.6  Evaluating predictions 

The measures used in this paper to evaluate 
the networks and compare them with some existing 
strategies are sensitivity (Sn) and specificity (Sp). 
Sensitivity is the proportion of TP (true positives) 
predictions out of the total number of actual positives 
and specificity is the proportion of TN (true nega-
tives) which is correctly identified. Those measures 
are formally defined as follows:

Sensitivity, Sn=TP/(TP+FN)

Specificity, Sp=TN/(TN+FP)

Figure 4. CNN-Promoter neural network
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where TP corresponds to the true positives, FN stands 
for false negatives and FP corresponds to the false 
positives. Besides sensitivity and specificity, some 
other precision measures are incorporated in this 
study to make a more exhaustive evaluation of the 
models. The other measures considered are: accu-
racy, precision, F-measure, and root-mean-square 
error (RMSE). They are defined as follows:

Accuracy = (TP + TN)/(TP+FP+FN+TN)

Precision = TP/(TP+FP)

F-measure = (2 •Precision •Sensit ivity)/
(Precision+Sensitivity)

RMSE , where x1 is an n-size 

vector of actual classes and x2 is the vector of pre-

dicted classes.

3.  RESULTS

A first experiment was related to calculate the 
capability of the CNN-promoter neural network to 
learn the Rattus norvegicus (rat) dataset 1. A total of 
128 promoters and 260 non-promoters were used as 
the training set. Sensitivity, specificity, accuracy, preci-
sion, F-measure, and RMSE values are shown in table 

2. Sensitivity of 100 % and specificity of 100 % were 
obtained as the training accuracy, which means the 
topology used is appropriate for promoter prediction. 
By using the weights in the network calculated pre-
viously, a test set was presented to the network. The 
precision measures were calculated during the test 
and are also shown in table 3. As can be observed, 
unseen sequences reduce the accuracy of the model, 
but they are still acceptable values compared with 
some of the existing promoter predictors; Promoter 
Inspector (Scherf, Klingenhoff and Werner, 2000) 
reports a sensitivity of 48.3 % and a specificity of 43.1 
% and First EF (Davuluri, Grosse and Zhang, 2001) 
reports a sensitivity of 79.3 % and a specificity of 53.5 %.

A second experiment was related to calculate 
the capability of the CNN-promoter neural network 
to learn the Mus musculus (mouse) dataset 2. In this 
case, a set of 208 promoters and 260 non-promoters 
were used as the training set. Sensitivity, specificity, 
accuracy, precision, F-measure, and RMSE values are 
shown in table 4. Sensitivity of 100 % and specificity 
of 100 % were obtained as the training accuracy. By 
using the weights calculated previously, a test set was 
presented to the network. The precision measures 
were calculated during the test and are also shown 
in table 4.

Table 3. Results of a training session using 128 promoters from the Rattus norvegicus and 260 
non-promoter sequences 

Dataset 1
(Rattus norvegicus) Sensitivity Specificity Accuracy Precision F-measure RMSE

Training set 100 % 100 % 100 % 100 % 100 % 0 %

Test set 67.5 % 75.0 % 71.2 % 72.9 % 72.1 % 28.7 %

Table 4. Results of a training session using 208 promoters from the Mus musculus and 260 
non-promoter sequences 

Dataset 2
(Mus musculus) Sensitivity Specificity Accuracy Precision F-measure RMSE

Training set 100 % 100 % 100 % 100 % 100 % 0 %

Test set 40.0 % 88.6 % 64.3 % 77.8 % 70.4 % 35.7 %
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Another experiment was related to increase 
the dataset complexity. In this case, both Rattus nor-
vegicus (rat) and Mus musculus (mouse) were used 
as the positive dataset. A total of 336 promoters and 
260 non-promoters were used in the training set. 
Sensitivity, specificity, accuracy, precision, F-measure, 
and RMSE values are shown in table 5. Sensitivity 
of 100 % and specificity of 100 % were obtained as 
the training accuracy again. By using the weights 
calculated previously, a test set was presented to the 
network. The precision measures were calculated 
during the test and are also shown in table 5.

In order to compare the accuracy of CNN-
Promoter with three of the most representative pro-
moter prediction programs another test was done. 
The prediction programs used for comparison were 
Promoter Inspector (Scherf, Klingenhoff and Werner, 
2000), Dragon Promoter Finder (DPF) (Bajic et al., 
2002), and PromPredictor (Chen and Li, 2005). Table 
6 shows the sensitivity and specificity values obtained 
for the predictors using dataset 3. 

4.  DISCUSSION

The objective of this project was to obtain a 
neural network capable of classifying promoters and 
non-promoters. The CNN-Promoter program uses the 
strategy of making decisions based on the mixture of 
three experts. Each expert is also a neural network 
built for well-known consensus sequences such as 
TATA-box, GC-box, and CAAT-box. Each of these 
neural networks goes over the sequence identifying 
a specific box and leaving a mark of “1” indicating 
that box was found, and “0” otherwise. Then, a major 
neural network takes the marks left by those experts 
and tries to make a global prediction. The analysis of 
marks left by experts is a novel strategy for the promot-
er prediction problem and it had never been used.

The network showed perfect accuracy val-
ues during the training process which means that 
topology used was appropriate for the problem of 
classifying promoters. This accuracy was maintained 
even when the training set increased its complexity by 

Table 5. Results of a training session using 336 promoters from both the Rattus norvegicus 
and the Mus musculus and 260 non-promoter sequences 

Dataset 3
(Rattus and Mus) Sensitivity Specificity Accuracy Precision F-measure RMSE

Training set 100 % 100 % 100 % 100 % 100 % 0 %

Test set 74.5 % 82.7 % 78.6 % 81.2 % 79.8 % 21.4 %

Table 6. Comparison of CNN-Promoter, Promoter Inspector, DPF, and Prom Predictor

Sensitivity Specificity Accuracy Precision F-measure RMSE

Promoter Inspector 55.9 % 46.8 % 55.3 % 59.7 % 57.4 % 44.7 %

Dragon Promoter Finder 64.1 % 54.9 % 59.5 % 63.4 % 61.4 % 40.5 %

Prom Predictor 67.7 % 72.7 % 70.2 % 74.5 % 72.3 % 29.8 %

CNN-Promoter 74.5 % 82.7 % 78.6 % 81.2 % 79.8 % 21.4 %
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containing promoters from two different organisms. 
Table 5 shows sensitivity and specificity values for 
this particular case. In the test sets, specificity values 
were at least 75 %, which is a high threshold for the 
problem of classifying promoters. According to these 
values, the neural network is capable of identifying 
a high portion of TP (true positives) out of the total 
number of promoters predicted, which means that 
model is just a few times wrong when it classifies a 
sequence as promoter. Sensitivity values reach the 
average accuracy of the existing methods; these 
values indicate that there were promoters in the test 
set that the model did not identify.

The dataset 3 was the most complex set, but 
also the more accurate for the neural network. The 
difference in the training set improves the prediction 
values. In datasets 1 and 2, sensitivity values are 
lower than in the dataset 3. This can be explained 
because the model did have not enough information 
to generalize using a single organism. When a more 
complex dataset is used, the model tends to improve 
the generalization rate, because it has seen more 
different sequences during the training. 

There is a major achievement in this project; 
the CNN-Promoter is capable of learning guaran-
teeing 100 % accuracy. It means that biologists 
could train the network with a particular dataset of 
their interest and use it, being absolutely sure that 
the classification of the program is correct. Besides, 
by comparing the neural network proposed in this 
work with some of the most remarkable programs 
for promoter prediction, the CNN-Promoter reaches 
high values of specificity. As it is shown in table 6, 
comparing CNN-Promoter with Promoter Inspector, 
DPF, and Prom Predictor, gives CNN-Promoter the 
highest accuracy values for the particular dataset 
used in that test.

The sensitivity, as shown in the experiments, 
can be improved by selecting a more complex dataset 
for the training process. The CNN-Promoter could 
also be improved by integrating additional experts 
such as the initiation codon and some other signals 
related to the promoter composition.
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