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ABSTRACT

The school bus routing problem (SBRP) seeks to plan an efficient schedule of a fleet of school buses that 
must pick up students from various bus stops and deliver them by satisfying various constraints: maximum capacity 
of the bus, maximum riding time of students, time window to arrive to school. In this paper, we consider a case 
study of SBRP for a school in Bogotá, Colombia. The problem is solved using ant colony optimization (ACO). 
Computational experiments are performed using real data. Results lead to increased bus utilization and reduction 
in transportation times with on-time delivery to the school. The proposed decision-aid tool has shown its usefulness 
for actual decision-making at the school: it outperforms current routing by reducing the total distance traveled by 
8.3 % and 21.4 % respectively in the morning and in the afternoon.
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RESOLUCIÓN DEL PROBLEMA DE RUTEO DE BUSES ESCOLARES CON 
OPTIMIZACIÓN POR COLONIA DE HORMIGAS

RESUMEN 

El problema de ruteo de buses escolares (SBRP) busca encontrar el programa más eficiente para una flota 
de buses escolares que deben recoger y despachar estudiantes en varias paradas de bus satisfaciendo varias res-
tricciones: capacidad máxima del bus, máximo tiempo de recorrido de los estudiantes, ventanas de tiempo para 
la llegada al colegio. En este artículo se considera un caso de estudio de un problema SBRP para un colegio en 
Bogotá, Colombia. El problema se resuelve usando la metaheurística de colonia de hormigas (ACO). Los experi-
mentos computacionales se realizan empleando datos reales. Los resultados muestran el incremento en el nivel 
de utilización de los buses y una reducción en los tiempos de transporte con despacho a tiempo en el colegio. La 
herramienta ha mostrado su utilidad para la planeación regular de buses en el colegio: se redujo la distancia total 
recorrida en 8,3 % en la mañana y en 21,4 % en la tarde.

PALABRAS CLAVE: buses escolares; ruteo; colonia de hormigas; estudio de caso.

RESOLUÇÃO DO PROBLEMA DE RUTEO DE ÔNIBUS ESCOLARES COM 
OTIMIZAÇÃO POR COLÔNIA DE FORMIGAS

RESUMO 

O problema de roteamento de ônibus escolares (SBRP) busca encontrar o programa mais eficiente para 
uma frota de ônibus escolares que devem recolher e despachar estudantes em várias paradas de ônibus satisfa-
zendo várias restrições: capacidade máxima do ônibus, máximo tempo de percurso dos estudantes, janelas de 
tempo para a chegada ao colégio. Em este artigo considera-se um caso de estudo de um problema SBRP para um 
colégio em Bogotá, Colômbia. O problema resolve-se usando a meta-heurística de colônia de formigas (ACO). 
Os experimentos computacionais realizam-se empregando dados reais. Os resultados mostram o incremento no 
nível de utilização dos ônibus e uma redução nos tempos de transporte com despacho a tempo no colégio. A 
ferramenta tem mostrado sua utilidade para o planejamento regular de ônibus no colégio: reduziu-se a distância 
total percorrida em 8,3 % na manhã e em 21,4 % na tarde.

PALAVRAS-CÓDIGO: ônibus escolares; roteamento; colônia de formigas; estudo de caso.

1. INTRODUCTION

The school bus routing problem (SBRP) has 
been widely studied since it was proposed in litera-
ture by Newton and Thomas (1969). As presented 
by Park and Kim (2010), the general SBRP seeks to 
plan an efficient schedule for a fleet of school buses 
where each bus picks up students from various bus 
stops and then delivers them to the school. Various 
constraints must be satisfied: maximum capacity of 

buses, maximum riding time of a student in a bus, 
and delivery time or time window to the school. Ac-
cording to the classification proposed by Desrosier et 
al. (1981), the SBRP consists of smaller sub-problems: 
data preparation, bus stop selection (student assign-
ment to stops), bus route generation, school bell time 
adjustment, and route scheduling. As described in 
Park and Kim (2010), in the data preparation step, 
the road network consisting of home, school, bus 
depot, and the origin-destination (OD) matrix among 
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them are specified. For a given network, the bus stop 
selection step determines the location of stops, and 
the students are assigned to them. Thereafter, the 
bus routes for a single school are generated in the 
bus route generation step. The school bell time adjust-
ment and route scheduling steps are necessary for 
the multi-school configuration when the school bus 
system is operated by the regional board of education 
and not by individual schools. The reader can refer 
to the survey of Park and Kim (2010) for a detailed 
study of solution approaches for each of these SBRP 
steps. In most existing approaches in literature, those 
steps are considered separately and sequentially, 
although they are highly interrelated. Note that best 
solutions require an integrated approach. Due to the 
problem size and complexity, single sub-problems 
or a combination of them are solved as variants of 
existing combinatorial optimization problems. For 
example, the bus route generation sub-problem is 
very similar to the vehicle routing problem (VRP) for 
the general case of various vehicles (if each vehicle 
is considered separately, the problem becomes the 
well-known traveling salesman problem (TSP)), while 
the combined problem of bus stop selection and bus 
route generation falls into the class of location-routing 
problems (LRP) in which the vehicle routing problem 
(VRP) is a class of problems that fits here.

In the literature, transportation problems 
involving transportation of students to schools have 
already been studied. As the first papers published 
on school bus routing we can cite the works pro-
posed by Newton and Thomas (1969), Angel et al. 
(1972), Bennett and Gazis (1972), Bodin and Berman 
(1979). More recent works on school bus routing 
are due to Li and Fu (2002), Spada, Bierlaire and 
Liebling (2005), Fügenschuh (2009), Martínez and 
Viegas (2011), Riera-Ledesma and Salazar-González 
(2012), among others. The reader is referred to the 
work of Park and Kim (2010) which is an updated 
state- of- the- art survey on different approaches to 
solve the school bus routing and scheduling problem.  
According to Braca et al. (1997), the school bus rout-
ing problem is a special case of the vehicle routing 

problem (VRP). In a VRP, a set of n clients (the stu-
dents) has to be serviced by a fleet of vehicles (the 
buses). Since the buses have limited capacity, the 
problem becomes the capacitated vehicle routing 
problem (CVRP), which is known to be NP-hard. 

In this paper, we consider a case study of 
school bus routing problem for a well-recognized 
school located in Bogotá, Colombia. Because of 
the NP-hardness of the school bus routing problem 
(Fügenschuh, 2009), the problem is solved using 
ant colony optimization (ACO) algorithm and the 
computational implementation is performed using 
real data from the school. The aim is to increase bus 
utilization and to reduce transportation times for stu-
dents, while maintaining on-time delivery of students 
to the school. The reader must note that ant colony 
optimization has not yet been used, to the best of our 
knowledge, to solve the school bus routing problem. 
We have chosen the use of ACO algorithm because 
it has been shown in literature that it is one of the 
most studied meta-heuristic algorithms for VRP, see 
for example the works of Tan et al. (2005), Doerner 
et al. (2006), Favaretto, Moretti and Pellegrini (2007), 
Gajpal and Abad (2009), De la Cruz et al. (2011), 
among others. Hence, we use the good results ob-
tained by the application of ACO for other vehicle 
routing problems and adapt the approach to solve 
the problem under study in this paper.

The remainder of this paper is organized as 
follows. Section 2 presents in detail the problem 
under study, while section 3 presents the proposed 
ACO-based algorithm to solve it. Section 4 is devoted 
to the computation implementation. Finally, section 
5 presents some concluding remarks.

2. PROBLEM DESCRIPTION: 
PRESENTATION OF THE CASE 
STUDY AND MATHEMATICAL 
FORMULATION

The bus scheduling problem studied here is 
taken from a real-life application. The school under 
study is a private school located in city of Bogotá, the 
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capital of Colombia, and founded in 1934. Accord-
ing to the Colombian educational system, it offers 
instruction at preschool, primary, secondary and 
medium educational levels to about 1540 students. 
The transportation service to students at both the 
beginning and the end of the school day is carried 
out by the school’s own fleet of 11 buses. From the 
total of students in the school, only about 540 re-
quire transportation. Every day, buses perform two 
journeys. In the morning, they pick up the students 
at their homes, while in the afternoon the buses 
transport the students from the school to their houses. 
The reader must note that the number of students to 
be transported in the morning and in the afternoon 
is not necessary the same since some students may 
be either driven by their parents in the morning or 
picked up in the afternoon by them. Also note that 
several students might also be picked up or delivered 
at the same point (building) and hence the number 
of stops may be different from the number of students 
for a given bus. Since buses belong to the school, it 
is necessary that the administration office performs 
efficient processes for solving both the problem of stu-
dent assignment to buses and then the corresponding 
bus routing problem to student pickup.

Bogotá is a very big city with about 8 millions 
of inhabitants. The traffic is very dense in the morn-
ing and in the afternoon corresponding to the times 
in which students enter and exit the school: classes 
start at 6:45 a.m. and finish at 3:00 p.m. Hence, one 
of the criteria to take into account when solving the 
school bus routing problem is that the time spent by 
students on the bus must be as lower as possible. 
Under these conditions, the objective of the route 
planner might be to minimize the total travel time of 
each bus. Additional constraints to this problem are 
the total capacity of buses (maximum of 54 students) 
and the limited number of buses available to perform 
the service. The travel speed within the city that is 
limited to 40 km/h for school buses is also a condi-
tion for the particular case study. Table 1 presents the 
details of the current manual solution for each bus 
for the morning route: length of routes, number of 
stops, and the number of students picked up.

Formally, the problem can be represented by 
a graph G=(V,E) where V is the set of nodes and E 
is the set of arcs in the graph. Each node represents 
a point in which students (customers in the classical 
VRP) have to be serviced, while an arc corresponds 

Table 1. Summary of the current manual routes

Bus Total of stops
(nodes in the graph)

Number of
students

Total route
distance (meters)

Bus 1 39 43 12319.0

Bus 2 35 44 22124.1

Bus 3 35 41 20236.0

Bus 4 32 41 33087.5

Bus 5 40 46 24099.4

Bus 6 31 42 20336.2

Bus 7 23 36 11934.4

Bus 8 33 35 22190.4

Bus 9 32 45 31884.5

Bus 10 42 54 14324.4

Bus 11 25 39 11028.0
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to the route to go from node i to node j. The weight 
cij of each arc represents the distance, cost or time 
of the route. The total number of nodes in the graph 
represents the total number of stops that a bus has 
to service, while the demand, noted as pi, of each 
node corresponds to the number of students to be 
picked up (or dropped off in the afternoon route) by 
the bus. The capacity of each vehicle k={1,2,..,M} 
is noted as Kk. It is to note that each bus starts and 
finishes the route at the school, which represents the 
depot of the routing problem. A mathematical model 
of the classical VRP, taken from Laporte (1992), is 
presented next. Let the Xij (i ≠ j) be a binary vari-
able equal to 1 if and only if arc (i, j) appears in the 
optimal solution and 0 otherwise. The parameter Cij 

is the associated distance (or sometimes associated 
cost) incurred if the arc (i, j) is used. The VRP can 
be formulated as a modified assignment problem; it 
is formulated as follows:

minimize              (1)

subject to   

                                 

(2)

   

                                  

(3)

           (4)

                   (5)

In this formulation, equations (1), (2), (3) 
and (5) define a modified assignment problem (i.e. 
assignments on the main diagonal are prohibited). 
Constraints (4) allows the solution not to have un-
connected cycles. As already mentioned, because 
the problem is known to be NP-hard, we present the 
use of ant colony optimization (ACO) meta-heuristic 
to solve it. We have chosen this meta-heuristic since 

it has shown to be one of the most efficient for solv-
ing complex vehicle routing problems (De la Cruz 
et al., 2011).

3. PROPOSED ANT COLONY 
ALGORITHM

Among the meta-heuristics for solving net-
work-based routing problems, procedures based 
on artificial ants have been employed with a great 
success. Ant-based methods were inspired by the 
observation of real ants, particularly, the way ants can 
find shortest paths between food sources and their 
nest through a simple system of indirect low-level 
communication system, namely pheromone trails. 
This characteristic may be easily extended to artificial 
ants (agents) to solve hard combinatorial optimiza-
tion problems, such as that of vehicle routing. Ant 
algorithms are seen as multiple agent procedures for 
solving difficult combinatorial optimization problems.

The ant colony system (ACS) algorithm (Dori-
go and Gambardella, 1997) was developed to find 
good solutions within a reasonable computational 
time for routing problems. Generally, ACS proce-
dures place a number of artificial ants (or agents) that 
are positioned on a set of customers (demand points) 
chosen according to some initialization rule. Each ant 
(agent) builds a feasible solution to the problem by 
iteratively applying a state transition rule that inte-
grates information on what decisions are better in the 
short term (through a heuristic or greedy rule) and 
which ones are better in the long term (given by the 
knowledge stored in the pheromone trail). To build a 
solution, each agent updates a pheromone trail lead-
ing other ants to build their own solutions. Thus, the 
ACS algorithm guides the ants to find good solutions 
in a relatively short time. The reader interested in an 
updated taxonomy of ACO algorithms can refer to 
the work of Pedemonte et al. (2011).

In order to solve the problem, we implement-
ed a strategy based on “cluster-first route-second”, 
which has been employed in several works to solve 
routing problems, e.g., Dulac, Ferland and Forgues, 
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1980; Chapleau, Ferland and Rousseau, 1985; Bow-
erman, Hall and Calamai, 1995. Generally speaking, 
the approach consists in grouping the students into 
clusters so that each cluster can be served as a route 
satisfying the constraints that exist. In fact, for the case 
under study here, the problem is decomposed into 
two sub-problems. In the first instance, nodes of the 
graph (bus stops) are grouped and assigned to the 
buses (clustering phase). Then, each cluster is solved 
as a traveling salesman problem (TSP). During the 
assignment phase, clusters must satisfy buses capac-
ity constraints, as well as fleet size (e.g. the number of 
clusters cannot exceed the number of available buses). 
During the second phase, each pickup (or delivery) 
point cannot be visited more than once. The key 
feature of this two-phase procedure is to define the 
clusters in such a way that the distance to be traveled 
by each bus between pickup (or delivery) points is the 
shorter as possible. Hence, the probabilistic nature of 
ACO method will very quickly find good routing. Fol-
lowing is the description of both phases of the solution 
procedure: node assignment (clustering) and routing.

3.1 Assignment

This sub-problem was solved using a heuristic 
method. The method starts by ordering the pickup 
(morning routes) and delivery (afternoon routes) 
points according to their geographical location in the 
city: from north to south and then from west to east. 
The assignment was hence done by consecutively 
selecting the stops and respecting the constraints of 
bus capacity and that each node can be visited by 
only one bus. An additional constraint was added to 
this procedure: to the best of the possibilities, buses 
are not allowed to ride on principal avenues since 
they are highly susceptible to traffic jams and can only 

be passed by specific points in the city, which will lead 
to a long travel distance between two points. The 
reader may notice that predefining the clusters might 
leave the optimal solution out of reach. However, 
the approach presented here makes sense because 
of the size of the problem.

3.2 Routing with the ACO algorithm

The routing phase of the procedure was solved 
using ant colony algorithm. This method emulates 
the behavior of real ants and the characteristics of 
their pheromone trail (update and evaporation) to 
find the best sequence in which buses must visit all 
pickup and delivery points of students. The solution 
must guarantee that all stops are visited only once 
by a bus. Figure 1 presents the flow diagram of the 
algorithm. For the given set of nodes V= {v1, …, vn} 
defined as the subset of N stops assigned to a bus 
and E = {(i, j): i, j ∈V} the set of arcs between each 
pair of nodes. Let dij be the distance associated to 
each arc (i, j). Let K be the number of ants of each 
cycle and I be the number of cycles executed by the 
algorithm. We need the heuristic matrix of size N×N 
where each ij=1/dij corresponds to the desirability 
level of going from node i to node j. The pheromone 
matrix of size N×N with each ij corresponds to the 
level of pheromone trace present in arc (i, j). The 
values of the heuristic matrix are constants while 
those of the pheromone matrix are updated during 
the solution construction process. Their initial value 
ij = 0 is given.

Each ant starts at the school and must travel 
all the stops in V to finally return to school at the end 
of the route. The ant builds the route using a proba-
bilistic decision function, step by step, according to 
equations (6) and (7):

(6)
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Where q is a random value taken from a uni-
form distribution between 0 and 1, and q0 (0≤q0≤1) 
is a given parameter. The term “diversification” refers 
to the choice of the ant to explore routes that have 
not yet been considered or explored, while the term 
“intensification” refers to the fact that the ant intensi-
fies the search of a solution on routes that have high 
levels of pheromone. Jk(i) refers to the set of stops 
where ant k can go when it is at stop i (e.g. the stops 
that have not yet been visited). The parameter  

determines the relative importance of the heuristic 
function related to the pheromone trail at the in-
stance of decision making. The value of S is defined 
by the probabilistic function given by equation (7):

(7) 

Figure 1. Flow diagram of the proposed algorithm
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At each stop, the ant chooses its next move 
by computing the previous equations. Once the 
ant arrives to the last node, it returns to the school, 
computes the total travel distance and locally update 
the pheromones using equation (8):

                   (8)

When all the ants of the cycle have finished the 
routing, the shortest one is selected and the global 
pheromone trail is updated using equation (9):

        (9)

where Lmc corresponds to the best route of the cycle 
(iteration).

Equations (8) and (9) update the trace of the 
pheromone matrix by both adding pheromone to 
traveled routes and evaporating pheromone to other 
routes. The value of   corresponds to the pheromone 
evaporation coefficient. This process is repeated on 
every cycle (iteration) of the algorithm. At the end of 
the last iteration, the shortest route is selected among 
the set of  Lmc routes of each iteration (cycle). This will 
be the final solution given by the algorithm. 

4. COMPUTATIONAL 
IMPLEMENTATION

4.1 Input data and parameters

Computational experiments were carried out 
in order to validate the proposed solution procedure 
of the school bus routing problem. Real data provid-
ed by the school was employed in our experiments. 
The classes at the school start at 6:45 a.m. and finish 
at 3:00 p.m. The capacity of each bus was fixed to 
be a maximum of 54 students. A fleet of 11 buses is 
available every day to perform students pick up in 
the morning and delivery in the afternoon. Location 
of pickup points (delivery points in the afternoon) 
is provided by the routing planner at the school. A 
total of 466 students located in 367 points have to 
be serviced in the morning, while in the afternoon 

521 students have to be delivered at 398 points in 
the city. Shortest travel time/distance between each 
pair of points in the network was computed using 
the “Manhattan distance” method, which leads to an 
asymmetric matrix of distances (e.g. the distance to 
go from point i to point j is different from the distance 
to go from point j to point i).

In order to define the parameters of the ACO 
algorithm, we first tested those proposed by Dorigo 
and Gambardella (1996) for asymmetric traveling 
salesman problems (TSP). Preliminary runs were 
carried out to validate those values. As proposed by 
those authors, the values of parameters are: number 
of cycles=50×(number of stops), number of ants is 
200, q0=0.9, β=5 and =0.1.

4.2 Results

In order to define the proposed routes (for 
the morning and for the afternoon), the algorithm 
was run 10 times for each one the 11 groups of each 
bus. The best route was selected. Table 2 presents 
a summary of the proposed solutions regarding the 
number of stops visited by each bus, the number 
of students to pickup (in the morning) and to drop 
off (in the afternoon), as well as the total distance 
of the journey of each bus. In comparison with the 
current routing (presented previously in table 1), the 
proposed solution outperforms the current routing by 
reducing the total distance traveled by 8.3 % and 21.4 
% respectively in the morning and in the afternoon. 
The average distance reduction is 15.2 %. This means 
an average reduction of a total of 5.59 hours in the 
morning and 5.19 hours in the afternoon for all the 
buses: that is the total route is being reduced by near 
to 30 minutes in average for each bus.

Concerning computational times, table 3 
presents the values obtained for maximum, aver-
age, and minimum computation time. In addition, 
the execution time of the first run of the algorithm 
is also presented for each group. We can note that 
computational time is more than 5 hours per route. 
This is not a problem since the bus routing is not 
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run on a daily bases (operational decision-making 
process); it is defined only once during the academic 
year, with possible adjustments each time a student 
is added or removed from the database.

4.3 Sensitivity analysis

In order to better understand the behavior 
of the ACO procedure, we carried out a sensitivity 
analysis on the values of the algorithm parameters. 

Table 2. Summary of results

Morning route Afternoon route

Bus Number
of stops

Number
of students

Total
distance (m)

Number
of stops

Number of
students

Total
distance (m)

Bus 1 44 52 16403.17 41 46 19576.22

Bus 2 31 43 13557.25 36 53 12426.65

Bus 3 36 45 10105.15 40 51 8847.18

Bus 4 38 45 14884.60 43 51 14861.57

Bus 5 41 53 8065.33 33 52 5737.45

Bus 6 32 47 14041.21 36 52 11876.79

Bus 7 42 51 18401.71 40 52 15808.70

Bus 8 16 22 26139.55 41 53 28768.20

Bus 9 24 28 27303.30 28 41 29271.54

Bus 10 32 47 30585.27 34 38 22142.08

Bus 11 31 33 25606.10 26 32 27708.88

Total 367 466 205092.64 398 521 197025.26

Table 3. Overview of computational times (sec)

Morning route Afternoon route
Bus Maximum Average Mínimum Maximum Average Mínimum

Bus 1 17772.98 17301.27 16402.76 19774.30 19657.11 19576.08

Bus 2 13665.58 13593.05 13557.48 12500.37 12460.34 12426.82

Bus 3 10245.71 10163.17 10105.15 9954.33 9137.11 8846.89

Bus 4 15197.21 15034.14 14884.56 15186.30 15008.67 14861.94

Bus 5 8203.93 8147.82 8065.37 6394.84 6256.60 5737.23

Bus 6 14585.71 14215.41 14041.45 12002.48 11949.01 11876.97

Bus 7 18818.65 18576.80 18401.71 18026.02 17165.83 15809.05

Bus 8 26139.65 26139.65 26139.65 29059.08 28894.32 28767.73

Bus 9 27303.27 27303.27 27303.27 29294.57 29273.89 29271.55

Bus 10 30703.39 30650.80 30585.09 23272.09 22639.02 22141.81

Bus 11 25720.84 25663.24 25606.02 27917.56 27768.27 27708.90

Total 208.356.92 206.788.62 205.092.51 203.381.94 200.210.17 197.024.97
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From the total of 22 routes (morning plus afternoon), 
we selected 3 routes: the first one, noted as M1 (route 
of Bus 1 in the morning), is chosen because it has 
the higher number of stops (44 stops); route noted as 
T2 (route of Bus 2 in the afternoon) is chosen since 
it has 36 stops corresponding the median value; 
and finally route noted M11 which corresponds to 
route of Bus 11 in the morning since it has the lower 
number of stops (31 stops). The reader may note 
that the morning route of Bus 8 has only 16 stops, 
we have not selected it since it already converges for 
the values of parameters and hence the impact on 
their variations will not have a significant effect for 
the purpose of this sensitivity analysis.

For the analysis carried out here, the six pa-
rameters of the ACO algorithms were considered: 
number of cycles (I), number of ants (K), q0, b, r, 
t0. If one parameter is changed, the others remain 
constant and their value is the one defined previ-
ously in table 2.

Concerning the number of cycles (I), the value 
defined previously was I=50×N, where N is the 
number of stops defined for a given bus. For this 
sensitivity analysis, we tested with 30×N and 70×N. 
Figure 2 presents the variations obtained for each 

bus route. It seems that generating more solutions 
will drive the algorithm to increase its probabilities 
of obtaining the optimum. However, we observe a 
convergence of the objective function value and 
no more improvement is done. Such is the case of 
routes T2 and M11 for which the solution values with 
30×N, 5×N or 70×N cycles is the same. We observe, 
however, that changing this parameter does have 
an impact for the case of route M1. No significant 
difference is observed for the cases with 30×N and 
5×N, while the case with 70×N cycles gives a good 
improvement of the objective value. This is explained 
by the fact that route M1 is the route with higher 
number of stops, which may allow the algorithm to 
propose a higher number of possible solutions and 
then select the better one among those. At the end, 
it will be necessary to perform a higher number of 
cycles to find convergence.

The basic value for the number of ants was 
defined to be 200 per cycle. For the sensitivity analy-
sis, we also used 100 and 300 ants. Figure 3 pres-
ents the comparison between the results obtained. 
Together with the number of cycles, the number 
of ants determines the extension of the number of 
solution that will be evaluated for convergence and 

Figure 2. Sensitivity analysis for the number of cycles (parameter I)
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from where the best solution will be selected. As 
in the previous analysis, we observe that solutions 
for routes T2 and M11 do not present considerable 
changes when changing the number of ants. In this 
case, we observe that route M1 does not present a 
significant difference when changing the number of 
ants. So, an interesting question would be to know 
why the number of cycles gives better solutions 
for route M1 while the number of ants does not. 
According to Dorigo and Stützle (2004) when the 
pheromone trace is updated based on the quality 
of the solution, the algorithm converges faster than 
when the trace is updated with a constant value. In 
our model, local updating is performed based on 
a constant value 0, once an ant finishes the route, 
while global updating is executed at the end of a 
cycle based on the distance traveled by the best ant 
(Lmc). This verifies the statement of those authors. In 
addition, we can conclude that, for the particular 
algorithm designed here, it is a better choice to 
increase the number of cycles than the number of 
ants when executing the procedure.

For parameter q0, the original value for the 
experiments was 0.9. We also tested the values of 0.8 

and 0.95. Figure 4 presents the variations obtained by 
changing only this parameter. We can observe that, 
even if the variations of the objective function values 
are not significant, the best value for the three routes 
is obtained when q0=0.9. This means that in our 
algorithm an intensification strategy of the current 
solution is preferred than a diversification strategy.

Looking at parameter β, figure 5 presents the 
results of two sensitivity experiments. The first (figure 
5a) corresponds to a preliminary analysis performed 
only with routes with the highest number of stops: M1 
is Bus 1 morning route, M7 is Bus 7 morning route, 
and T4 is Bus 4 afternoon route. We can observe a big 
variation of the objective function value when chang-
ing this parameter from 1/3 to 3. However, between 
β=4 and β=6 the variation is not such significant. 
We have to recall that β=5 was the value chosen for 
the experimental analysis. Note that the case of M1 
(morning route of Bus 1) when β=6 shows again that 
the search procedure might fall into local optima. The 
reduction of 1420.48 m between β=5 y β=6 shows 
that the higher the number of stops, the higher the 
impact of the pheromone trace in comparison with 
the heuristic function.

Figure 3. Sensitivity analysis for the number of ants (parameter K)
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Figure 4. Sensitivity analysis for parameter q0

Figure 5. Sensitivity analysis for parameter β
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Table 4. Financial comparison between current and proposed routing

Current manual routing Proposed routing Savings

Daily consumption COP$670000 COP$568172 COP$101.828

Annual consumption COP$114570000 COP$97157393 COP$17.412.607

Figure 6. Sensitivity analysis for parameter ρ

Figure 7. Sensitivity analysis for parameter 0
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The next analysis was carried out for param-
eter ρ. We recall that the value employed for the 
experiments was 0.1. For this analysis, we choose 
the values of 0.01 and 0.2. Variations on the values 
of the objective function are presented in figure 6. 
The value of ρ determines the evaporation speed of 
the pheromone trace. The higher the value, the faster 
the pheromone will evaporate and hence the faster 
the algorithm converges. Since the figure does not 
show significant differences between values 0.01 and 
0.2, it can be stated that the model has a consistent 
behavior for a broad range of values of ρ.

Finally, the last analysis was carried for param-
eter τ0. The value selected for the numerical experi-
ments was 0.0001. Figure 7 also presents the variation 
of the objective function value for values of 0=0.001 
and 0=0.0001. As for the case of parameter ρ, the 
higher the value of 0, the faster the algorithm con-
verges. This is because the level of pheromone on 
the arcs visited by the ants will increase drastically.

In summary, the sensitivity analysis shows 
that some parameters have higher impact on the 
objective function value than others. It has been 
observed that increasing the values of I and K may 
lead to decreasing the total length of routes but this 
increases the computational time. When the number 
of solutions is limited, parameter β becomes relevant 
since it will affect the final value of the objective 
function in the solution. Parameter q0 showed that 
intensification is more important than diversification, 
for the problem under study.

4.4 Financial evaluation

In order to measure the financial impact 
of the proposed route, we have performed a 
comparison between the consumption of fuel 
for the initial current manual routing with that 
of the proposed solution. We hence collected 
information about the cost of fuel consumption 
for the fleet of buses. We observed that the total 
cost of fuel consumption of the current routing 
was COP$670.000, and that the average theoreti-

cal yield of buses is 4798.48 meters per gallon or 
1267.62 m/L. This average yield allows us to com-
pute the daily cost of fuel for the proposed routing.  
We noted that the total daily cost of the proposed 
routing was COP$568172. When comparing this 
value with the current one of the current manual 
routing, it is possible to compute the total saving 
for an academic year (table 4). Considering, for 
instance, the academic year 2010 with a total of 171 
class days the annual saving by implementing the 
proposed ACO routing algorithms would have been 
COP$17412607, which corresponds to a reduction 
of 17.9 % on fuel consumption costs. To this we have 
to add the fact that routes for each bus are shorter, 
which positively impacts on the total working time 
of bus drivers, as well as in both the time students 
have to wake up in the morning and the time stu-
dents arrive at home in the afternoon.

5. CONCLUDING REMARKS

This paper studied a real-life school bus routing 
problem. The problem was modeled as a classical 
capacitated vehicle routing problem. It was solved 
using a two-phase resolution approach. The first 
phase consisted in define the assignment of student 
pickup (or student delivery) points to buses, while 
the second phase consisted in the actual routing of 
buses using an ant colony optimization (ACO) based 
algorithm. This last part was solved as an asymmetric 
traveling salesman problem. During the resolution, 
a sensitivity analysis was also carried out to validate 
the parameters chosen to run the algorithm. The 
proposed approach found a reduction of 15.2 % of the 
total cost of student pickup to go to school and then 
delivery to their home. In addition to cost reductions, 
the proposed bus routing allows also a reduction on 
students travel and hence improving their quality of 
life, since they can arrive at home early in the after-
noon. The challenge now is to continue improving the 
decision-aid tool to allow speeding up the algorithm, 
as well as additional reductions on travel time and 
costs in order to positively reduce the impact on the 
environment (e.g. to reduce CO2 emissions).



207Escuela de Ingeniería de Antioquia

REFERENCES

Angel, R. D.; Caudle, W. L.; Noonan, R. and Whinston, 
A. (1972). “Computer-assisted school bus schedul-
ing”. Management Science, vol. 18, No. 6 (February), 
pp. 279-288.

Bennett, B. T. and Gazis, D. C. (1972). “School bus routing 
by computer”. Transportation Research, vol. 6, No. 4 
(December), pp. 317-325.

Bodin, L. D. and Berman, L. (1979). “Routing and sched-
uling of school buses by computer”. Transportation 
Science, vol. 13, No. 2, pp. 113-129.

Bowerman, R.; Hall, B. and Calamai, P. (1995). “A multi-
objective optimization approach to urban school bus 
routing: Formulation and solution method”. Transporta-
tion Research Part A, 29, pp. 693-702.

Braca, J.; Bramel, J.; Posner, B. and Simchi-Levi, D. (1997). 
“A computerized approach to the New York City school 
bus routing problem”. IIE Transactions, vol. 29, No. 8, 
pp. 693-702.

Chapleau, L.; Ferland, J. A. and Rousseau, J. M. (1985). 
“Clustering for routing in densely populated areas”. 
European Journal of Operational Research, vol. 20, 
No. 1, pp. 48-57.

De la Cruz, J. J.; Paternina-Arboleda, C. D.; Cantillo, V. 
and Montoya-Torres, J. R. (2011). “A two-pheromone 
trail ant colony system-tabu search approach for the 
heterogeneous vehicle routing problem with time 
windows and multiple products”. Journal of Heuristics, 
Available online. DOI: 10.1007/s10732-011-9184-0.

Desrosier, J.; Ferland, J. A.; Rousseau, J. M.; Lapalme, G. 
and Chapleau, L. An overview of a school busing system. 
In: Scientific management of transportation systems. 
Jaiswal, N. K. (ed.). Amsterdam: North-Holland, 1981. 
Pp. 235-243.

Doerner, K. F.; Hartl, R. F.; Benker, S. and Lucka, M. (2006). 
“Ant colony system for a VRP with multiple time win-
dows and multiple visits”. Parallel Processing Letters, 
vol. 16, No. 3, pp. 351-369.

Dorigo, M. and Gambardella, L. M.  (1996). Solving sym-
metric and asymmetric TSPs by ant colonies. Proceedings 
of the IEEE Conference on Evolutionary Computation 
(ICEC’96), Nagoya, Japan (20-22 May), pp. 622-627. 

Dorigo, M. and Gambardella, L. (1997). “Ant colonies for 
the traveling salesman problem”. BioSystems, vol. 43, 
No. 2 (July), pp. 73-81.

Dorigo, M. and Stützle, T. Ant colony optimization. Cam-
bridge, MA: MIT Press, 2004.

Dulac, G.; Ferland, J. A. and Forgues, P. A. (1980). “School 
bus routes generator in urban surroundings”. Comput-
ers & Operations Research, vol. 7, No. 3, pp. 199-213.

Favaretto, D.; Moretti, E. and Pellegrini, P. (2007). “Ant 
colony system for a VRP with multiple time windows 
and multiple visits”. Journal of Interdisciplinary Math-
ematics, vol. 10, No. 2, pp. 263-284.

Fügenschuh, A. (2009). “Solving a school bus scheduling 
problem with integer programming”. European Jour-
nal of Operational Research, vol. 193, No. 3 (March), 
pp. 867-884.

Gajpal, Y. and Abad, P. (2009). “An ant colony system (ACS) 
for vehicle routing problem with simultaneous delivery 
and pickup”. Computers & Operations Research, vol. 36, 
No. 12, pp. 3215-3223.

Laporte, G. (1992). “The vehicle routing problem: An 
overview of exact and approximate algorithms”. Eu-
ropean Journal of Operational Research, vol. 59, No. 3 
(June), pp. 345-358.

Li, L. and Fu, Z. (2002). “The school bus routing problem: A 
case study”. Journal of the Operational Research Society, 
vol. 53, pp. 552-558.

Martínez, L. M. and Viegas, J. M. (2011). “Design and 
deployment of an innovative school bus service in 
Lisbon”. Procedia - Social and Behavioral Sciences, 
vol. 20, pp. 120-130.

Newton, R. M. and Thomas W. H. (1969). “Design of school 
bus routes by computer”. Socio Economic Planning 
Sciences, vol. 3, No. 1, pp. 75-85.

Park, J. and Kim, B.-I. (2010). “The school bus routing 
problem: A review”. European Journal of Operational 
Research, vol. 202, No. 2 (April), pp. 311-319.

Riera-Ledesma, J. and Salazar-González, J. J. (2012). 
“Solving school bus routing using the multiple ve-
hicle traveling purchaser problem: A branch-and-cut  
approach”. Computers & Operations Research, vol. 39, 
No. 2, pp. 391-404.

Spada, M.; Bierlaire, M. and Liebling, T. M. (2005). 
“Decision-aiding methodology for the school bus rout-
ing and scheduling problem”. Transportation Science, 
vol. 39, No. 4 (November), pp. 477-490.

Tan, X.; Luo, X.; Chen, W. N. and Zhang, J. (2005). “Ant 
colony system for optimizing vehicle routing problem 
with time windows”. Proceedings of the International 
Conference on Intelligent Agents, Web Technolo-
gies and Internet Commerce, Vienna, Austria (28-30  
November), vol. 2, pp. 209-214. 




