
Revista EIA, ISSN 1794-1237 / Año XVI / Volumen 16 / Edición N.31 / Enero-Junio 2019 / pp. 65-76
Publicación semestral de carácter técnico-científico / Universidad EIA, Envigado (Colombia)

 DOI: https://doi.org/10.24050/reia.v16i31.1230

 ¹ Universidad del Valle, Cali, Colombia.

Autor de correspondencia: Machuca Villegas, L.E. (Liliana
Esther): Avenida 2N 45N-13, Cali, Colombia. Teléfono:
3212100 - Ext: 2795.
Correo electrónico: liana.machuca@correounivalle.edu.co

Historia del artículo:
Artículo recibido: 1-III-2018 / Aprobado: 25-VII-2018
Disponible online: 3 de febrero de 2019
Discusión abierta hasta octubre de 2020

 Fostering Motivation and Improving Student
Performance in an Introductory Programming Course:

An Integrated Teaching Approach

Oswaldo Solarte Pabón1

 Liliana Esther Machuca Villegas1

Abstract
This paper expands a teaching proposal presented at the Innovation and Technology in Computer Science Education

Conference, in 2016. The proposal provides an integrated teaching approach for improving students’ performance in
a first programming course. The approach is based on four main components: the use of Python as first programming
language, project-oriented and problem-based learning, multimedia resources, and assessment rubrics. Material and
learning resources for the course development are available on virtual platforms. Our findings suggest that the approach
enhanced students’ academic performance, as can be seen in their grades, as well as a decrease in dropout rates.

Keywords: Introductory programming course, Teaching approach, Python, Project-oriented and problem-based
learning.

Fortaleciendo la motivación y mejorando el
rendimiento de estudiantes de un curso introductorio
de programación: Un enfoque de enseñanza integrado

Resumen
Este artículo es una extensión de una propuesta de enseñanza presentada en Innovation and Technology in Com-

puter Science Education Conference, en el año 2016. La propuesta representa un enfoque de enseñanza integrado para
mejorar el rendimiento de los estudiantes en un primer curso de programación. El enfoque se basa en cuatro componen-
tes principales: el uso de Python como primer lenguaje de programación, aprendizaje orientado a proyectos y basado en

A
rtículo en prensa / A

rticle in press

66

 Fostering Motivation and Improving Student Performance in an Introductory Programming Course:
An Integrated Teaching Approach

Rev.EIA / Universidad EIA

problemas, recursos multimedia y rúbricas de evaluación. Para el desarrollo del curso estuvieron disponibles materiales
y recursos de aprendizaje en plataformas virtuales. Los hallazgos sugieren que el enfoque mejoró el rendimiento acadé-
mico de los estudiantes, evidenciado en sus calificaciones, así como en una disminución en las tasas de deserción.

Palabras clave: Curso introductorio de programación, Enfoque de enseñanza, Python, Aprendizaje orientado por
proyectos y basado en problemas.

Fomentar a motivação e melhorar o desempenho dos
alunos em um curso de programação introdutória: uma

abordagem de ensino integrado

Resumo
Este artigo expande uma proposta de ensino apresentada na Conferência de Inovação e Tecnologia em Ciência da

Computação, em 2016. A proposta explica uma abordagem de ensino integrado para melhorar o desempenho dos alunos
em um primeiro curso de programação. A abordagem baseia-se em quatro componentes principais: o uso de Python
como primeira linguagem de programação, aprendizagem orientada a projetos e baseada em problemas, recursos mul-
timídia e rubricas de avaliação. Materiais e recursos de aprendizagem para o desenvolvimento do curso estavam dispo-
níveis o tempo todo em plataformas virtuais. Os achados sugerem que a abordagem melhorou o desempenho acadêmico
dos alunos, evidenciado em suas notas, bem como em uma redução nas taxas de abandono escolar.

Palavras-chave: Curso de programação introdutória, Abordagem de ensino, Python, Aprendizado orientado para
projetos e com base em problemas.

1. Introduction

Attending a computer programming course for
the first time might be a challenging task for many
students. In fact, programming courses often have
considerable amounts of students who either fail or
dropout (Bennedsen and Caspersen, 2007), (Mason,
Cooper and Raadt, 2012). Moreover, this problem is
not restricted to computer science students, since
students in other engineering majors must also take
programming courses. Students generally consider
introductory programming courses are difficult and
low motivating subjects, as stated by (Chan Mow,
2008), (Ali and Smith, 2014), (Koulouri et al, Lauria
and Macredie, 2014), (Alturki R. A., 2016).

These students’ perceptions influence their
performance, since they enroll on the courses
with false preconceptions. This may derive from a

lack of motivation to learn programming, low final
marks, and high dropout rates. Other factors that
feed such perceptions are related to a shortage
of successful methodologies for programming
teaching (Salcedo and Idrobo, 2011), (Gomes and
Mendes, 2015), (Alturki R. A., 2016). Another
reason, is the complexity of some programming
languages that are chosen for introductory
courses (Koulouri, Lauria and Macredie, 2014).
For these reasons, students find that introductory
programming courses are neither interesting nor
relevant for their academic needs.

Nevertheless, learning to program is a required
essential skill in all fields of knowledge, as it may be
applied to solve a vast array of problems through
the use of computers and algorithms. For instance,
algorithms and programming have been reported to
be a great help in the fields of biomedical science

67

Oswaldo Solarte Pabón, Liliana Esther Machuca Villegas

ISSN 1794-1237 / Volumen 16 / Número 31 / Enero-Junio 2019 / pp. 65-76

subject and their motivation towards it is very
low. For this reason, several proposals have been
developed (Yadin, 2011), (Chien-An et al., 2015), all
of which aim at improving students’ performance
in introductory programming courses. In this
article the proposals are divided into two groups:
The first group takes into account the importance
of programming language (Van Roy et al, 2003),
(Enbody & Punch, 2009), (Zelle, 1999). The second
group contains proposals, that in addition to the
programming language, consider other aspects of
the teaching process such as pedagogical strategies
or teaching aids (Yadin, 2011), (Koulouri, Lauria
and Macredie, 2014), (Salcedo and Idrobo, 2011).

The proposal reported by Van Roy et al.
(2003), describes the role of different programming
paradigms and languages in teaching programming.
There are many programming paradigms: imperative
programming, object-oriented programming, logic
programming, and functional programming. They all
have their advantages and disadvantages. Choosing
an appropriate programming paradigm is a hard
decision. One way to solve it is to focus programming
courses on concepts, and the design process: how
problem statements lead to well-organized solutions.
According to Vujošević-Janičić, M. and Tošić, D.
(2008), tools such as C language (Imperative) or Java
language (Object-oriented) are very difficult to learn
on a first programming course because they have
complex syntax for novice programmer students.
Therefore, students spend most of their time trying
to learn the syntax of the programming language
instead of the most important concepts.

Zelle (1999) states that high-level scripting
languages such as Python, Perl, Tcl, and Rexx are
better candidates for a first programming course
than traditional systems programming languages
such as C, C++, and Java. Scripting languages
are simpler, safer and more flexible than system
languages. A first programming course should be
designed to provide an introduction to the field of
computer science and focus on problem solving.
Considering these facts, scripting languages may

(Chapman et al., 2015), Civil, Electrical engineering
(Hoffbeck et al, 2016) and Mechanical engineering
(Furman B & Wertz E, 2010). Moreover, according
to Van Roy et al, (2003), everyone should learn
programming. Programming is not just a specialised
discipline limited to computer science majors, it is a
form of thinking that is useful to everyone.

The Universidad del Valle, Cali, Colombia,
offers a course in Algorithms and Programming
that is part of the curriculum for all Engineering
majors, and has to be attended by all first-year
students. During the last 8 years, the professors
from this specific faculty have constantly observed
low academic performance from these students, as
well as high dropout rates, not just from the course
but also from the majors themselves.

Considering this problem, this paper proposes
a promising integrated teaching approach for
introductory programming courses. This initiative
seeks, on the one hand, to reduce students’ failure
and dropout rates, and on the other hand, to improve
students’ motivation towards programming. This
will help them to perceive the courses’ contents
as meaningful and providing them with useful
knowledge that may be applied in their daily life.
This approach is based on four main components:
the use of Python as first programming language,
project-oriented and problem-based learning,
multimedia resources, and assessment rubrics. The
initial implementation of this approach has yielded
partial results, suggesting a positive impact on the
academic performance of engineering students.

The rest of this article is structured as follows:
Section 2 presents related works. Section 3 describes
the proposed teaching approach. Section 4, shows
preliminary results. Finally, the paper ends with
some conclusions and further research issues.

2. Related works

Teaching an introductory programming course
is a considerable challenge for any teacher, especially
as many students regard this course as a difficult

68

 Fostering Motivation and Improving Student Performance in an Introductory Programming Course:
An Integrated Teaching Approach

Rev.EIA / Universidad EIA

improve these goals because these languages
offer simple syntax and semantics. Moreover, in a
first programming course students tackle simple
problems which should be solved simply.

Under this perspective, Stajano, F. (2000)
explains how Python is an excellent choice for
introducing fundamental ideas about programming.
Python has a high level of abstraction, simplicity,
conciseness, and versatility. It is widely recognised
as being easy to learn and to use for beginners.
Another Python strength is its community around
the world, which has encouraged the development
of large number of modules and packages for a wide
variety of applications. For instance, a great tool
for educators is Jupyter Notebook. This is a web-
based programming environment for Python and
facilitates code writing and execution.

According to Chien-An et al. (2015), Python
should be taught as the first programming language
because it has simpler syntax and high-level data
structures that facilitate writing code for learners.
Although languages such as Java or C++ are effective
for designing real applications and therefore are
popular in industry, these tools are not the ideal
as a first programming language. This is because
some concepts, such as; classes, methods, types,
and complex syntax can be a challenge for novice
programmers and can make the learning process
difficult. In order to reduce learning difficulties and
failures, the criteria for choosing a first programming
language should include: simple input/output
statements, readable and consistent code, and clear
syntax. Bearing these criteria in mind, Python could
be a good option for novice programmers.

Enbody & Punch (2009) describe the experience
and the impact of replacing C++ language with
Python in the first programing course at Michigan
State University. The impact of this change was
measured in two ways: First, they assessed students’
performance in the first programming course using
Python. Second, they assessed students’ performance
in the second programming course which is taught in
C++. Their conclusions show that Python has useful

features, such as, readability and practicality which
facilitate the learning process. It is also considered as
a viable alternative for a first programming course,
even for curriculums whose subsequent courses are
based on a different language, such as, C++ or Java.

The previously mentioned proposals are very
important because they analyze the importance of
the programming language in a first programming
course. However, in the teaching process other
aspects such as pedagogical strategies that support
the learning process must be considered. That is to
say, choosing an appropriate programming language
is not the only thing that can improve programming
learning. For instance, Yadin (2011), proposes a
teaching strategy based on three elements: the
use of Python as programming language, the use
of visualization microworlds, and the assignment
of individual tasks. This strategy was applied over
four semesters and students’ performance was
monitored in order to help them to face issues related
to introductory programming courses. This strategy
allowed them to reduce their failure rates by 77.4%.

Salcedo and Idrobo (2011) propose tools
and methodologies for programming languages
learning using the Scribbler Robot and Alice. Using
these tools, the students have a friendly interface
that allows them to learn programming concepts
in a more friendly and didactic way. The authors
express the need to create new alternatives for
improving pedagogical methods in the teaching of
programming. The goal is to motivate and encourage
students’ performance using visual tools. This
proposal has been implemented at ICESI University,
Colombia. The results show a strengthening in
the learning of programming concepts and the
development of algorithmic thinking.

Aris (2015) explores four approaches for
improving students’ performance in an introductory
programming course: attendance monitoring,
personalised attention during lab session,
restructuring of the content, and quantifiable
distribution of examination questions. These changes
have been implemented over four semesters,

69

Oswaldo Solarte Pabón, Liliana Esther Machuca Villegas

ISSN 1794-1237 / Volumen 16 / Número 31 / Enero-Junio 2019 / pp. 65-76

obtaining positive results, which show that students
marks have improved. In the case of attendance
monitoring, the author considers that this strategy
is viable if it is recorded. The personalized attention
has allowed teachers to discover that some students
cannot perform the exercises proposed and if they
are not guided by a teacher, they will not ask for help
either. Following modifications to the content of the
course, it was possible to organize some topics at the
end of the subject, since they are considered more
difficult for the students, specifically those related
to modular programming. Lastly, the final exam
questions were assigned a percentage according to
the topics, for example, 40% for fundamental topics.

Echeverría et al. (2017) describe an approach
to teach programming to non-Computer Science
majors based on collaborative method. This
approach is supported by the TASystem platform
through which the different joint-working scenarios
can be configured. A collaborative scenario is a
learning scenario that has collaborative learning
activities and evaluation strategies. The Instructors
can design collaborative learning and assessment
tasks. In the case of students, they can submit tasks,
write comments on classmates’ tasks, and rate other
classmates’ tasks. The results of the implementation
of the approach show that students’ performance
has improved and that social interactions also had a
positive effect on the process.

Additionally, a survey of literature on teaching
in introductory programming courses is presented
by (Pears et al., 2007). This survey focuses on
searching for literature about curriculum, pedagogy,
choice of language and tools for teaching in this field.
It presents a wide range of research and works to
be used as approaches to support the teaching of a
first course of program. (Gomes and Mendes, 2015)
describe a study related with the educational and
motivational strategies used to teach programming.
In order to achieve this aim, interviews were
conducted with different teachers to collect their
experiences in teaching programming.

In the same way, (Koulouri, Lauria and Macredie,
2014) describe a quantitative evaluation of different
approaches which studied the effects of three factors
related with teaching introductory programming.
It suggests the combinations of different elements:
choice of programming language, problem-solving
training and the use of formative assessment.
Their findings suggest that by using Python,
teaching problem-solving and formative feedback
may facilitate students’ learning of; programming
concepts, improving students’ performance and
developing programming skills.

3. Teaching Approach

In this section, an integrated teaching approach
for a first programming course is presented. It seeks
to improve students motivation and performance.
This approach was structured on the basis of four
main components covering different perspectives:
the use of Python as first programming language
(technological perspective), project-oriented and
problem-based learning (didactic perspective),
multimedia resources (technology enhanced learning
perspective), and assessment rubrics (evaluation
perspective). According to our experience, teaching
programming for the first time, can be considered as
a complex process that involves the aforementioned
perspectives, which can help to improve the learning
process of the students further.

3.1. Python as a first programming
language

Choosing an appropriate programming
language for an introductory programming course
is a challenging task. A simple syntax and a friendly
programming environment are desirable pre-
requisites in order for students to understand
basic concepts and develop problem solving skills
(Guo, 2014). At Universidad del Valle, however, the
use of Java for more than ten years in introductory
course showed that students perceived this
programming language as difficult. This translated

70

 Fostering Motivation and Improving Student Performance in an Introductory Programming Course:
An Integrated Teaching Approach

Rev.EIA / Universidad EIA

into low motivation towards learning, low academic
performance, high rates of failure and dropouts.
With this in mind, Java was replaced by Python,
which complies with the desired characteristics.
For example, Figure 1, shows a simple algorithm to
calculate the area of a triangle given its base and
its height. Python code is easier and more legible
than Java code. Moreover, Java code has complex
syntax that demotivated students because they do
not understand many terms that Java is using to
solve a simple problem. Some Java terms such as
“public class”, “public static void”, can turn a simple
problem into a complex problem and programming
is perceived as difficult task.

On the contrary, Python is more appropriate
than Java for learning how to program. It offers a high
level of abstraction of programming concepts. This
makes learning easier and reduces students’ anxiety
towards other aspects that may not be relevant in this
level, such as, memory management and data types.
In other words, the main advantage of Python as a
programming language is its high level of abstraction,
which is appropriate to introduce the fundamental
concepts of algorithms. According to Figure 1, Python
only uses two simple functions (input, print), in order
to solve this problem. Python code allow students to
concentrate on problem-solving, instead of worrying
about understanding the syntax, as happened when
the course was taught with Java.

Figure 1. A simple algorithm in Java and Python code

Figure 2. A problem-solving methodology

71

Oswaldo Solarte Pabón, Liliana Esther Machuca Villegas

ISSN 1794-1237 / Volumen 16 / Número 31 / Enero-Junio 2019 / pp. 65-76

 In addition to using Python, students follow
a methodology (Figure 2), which facilitates the
understanding of the problem they need to solve.
This methodology consists of a set of steps to gui-
de the development of the class: problem analysis,
pseudocode design, coding, and testing. Through
this methodology, the professor can guide the work
of the students to develop proposed programming
exercises in class. In the same way, student can use
this methodology in their lab sessions and class pro-
ject. Using this methodology is very important, be-
cause it helps students to understand the problem
and facilitates solution implementation step by step.

3.2. Project-oriented and problem-
based learning

The approach is grounded on a constructivist
theory of learning, specifically project-based and
problem-based learning (Konecki and Petrlic, 2014),
(Soares, 2011). Through these approaches, students
can achieve meaningful learning and critical thinking
while developing computational skills. The learning
activities are designed in order for students to build
a collaborative project, on one hand, and solve real-

life problems related to students’ academic needs
on the other. Through the design of the collaborative
project, students enhance research abilities related
to the process of suggesting an idea and structuring
a relevant proposal in their academic field.

Similarly, some lab sessions have been integrated
throughout the course as a strategy to provide
students with opportunities to develop problem-
solving skills. The goal of the project is for students
to achieve more motivation towards algorithms, so
that they become acquainted with their applicability
in their Engineering majors. The lab sessions consist
of a set of exercises that directly relate to the course
content that is being taught at that moment. For each
algorithm exercise, students are expected to submit
the analysis, design, implementation and algorithm
test. Figure 3 illustrates some of the project and lab
session activities.

3.3. Multimedia Resources

In order to provide a high-quality teaching
process, some strategies of technology-enhanced-
learning were promoted through didactic multimedia
resources. These multimedia resources support

Figure 3. Final Project Examples

72

 Fostering Motivation and Improving Student Performance in an Introductory Programming Course:
An Integrated Teaching Approach

Rev.EIA / Universidad EIA

learning activities on our courses. They comprise of
pictures, slideshows, videos, animation and tutorials, all
of which were utilised to further strengthen concepts
and experiences in the learning of programming skills.

In addition, multimedia resources are very
useful for students to understand abstract concepts
or ideas in a much easier way. Accordingly, the School
of Computer Sciences and Systems, at Universidad

del Valle, is currently designing new material that
consists of recording the introductory programming
course classes, which will be shown on virtual
platforms. Using these resources, the material will
be available all the time, and students will be able
to take different classes in a virtually. Some of these
videos, animation and multimedia resources are
illustrated in Figures 4 to 6.

Figure 4. Virtual Campus for First Programming Course at Univalle

Figure 5. YouTube Channel for First Programming Course

https://www.youtube.com/channel/UCgok2gslPgwNzWBcnMMEblA

73

Oswaldo Solarte Pabón, Liliana Esther Machuca Villegas

ISSN 1794-1237 / Volumen 16 / Número 31 / Enero-Junio 2019 / pp. 65-76

3.4. Rubrics for assessment

Assessment also is an important part of a
teaching programming course because it helps
students and professors to review the process to
enhance students’ learning. Rubric is a scoring tool
that lists the criteria for a specific assignment and it
describes the levels of quality for each criterion. Using
rubrics with detailed explanations of an assignment

and its assessment, can assist students in improving
their performance. Rubrics provide students with
a much clearer picture of the kind of performance
that is expected from them and the requirements
under which they will be assessed. Therefore, in our
approach, assessment rubrics for each activity were
presented and explained to the students in advance.
An example is shown in Table 1.

Figure 6. Screenshot of an animation

TABLE 1. RUBRIC EXAMPLE

 ASSESSMENT LEVEL

Class Goals Relevance Level 3 (4.0- 5.0) Level 2 (3. 0- 3.9) Level 1 (0.0 – 2.9)

Makes use of Python
functions to solve
specific problems

30%

The student correctly
calls the functions
defined in libraries

(string, math, etc) and
stores the result in a
variable if necessary.

The student makes the
call to functions defined

in libraries correctly, but it
does not store the result
in a variable if necessary.

The student does
not correctly call the
functions defined in

libraries.

Uses functions to
solve problems using

the algorithmic
approach

70%

The student creates and
uses functions to solve

problems using the
algorithmic approach.

The student sometimes
creates and uses functions

to solve problems using
the algorithmic approach.

The student cannot
create and cannot

use his own functions.

74

 Fostering Motivation and Improving Student Performance in an Introductory Programming Course:
An Integrated Teaching Approach

Rev.EIA / Universidad EIA

This rubric portrays three main parts: class
goals, relevance and assessment levels. Class goals
show students the skills that they are expected to
develop in a given activity. Relevance indicates the
percentage for each goal in the final mark. Finally,
there are three assessment levels (Level 1, Level
2, Level 3) that indicate the progress made by the
student in the development of a given activity. In this
teaching approach, students know previously the
rubric for an assignment, therefore they know how
it will be scored. This represents a positive learning
factor because it motivates students to achieve the
best grade because rubric describes how to reach it.

4. Results

The proposed approach has been implemented
by all the majors in the Engineering Faculty at
Universidad del Valle since 2015. Some initial
results are reported in (Machuca and Solarte Pabón,
2016) showing an analysis of the final grades in
programming courses from 2011 to 2015. In the
last couple of years (2016 and 2017) the percentage
of students passing the first programming course
has increased in around 13% (Figure 7). These
findings suggest a considerable improvement in
student performance. For instance, while in 2011 the

Figure 7. Final programming course marks

Figure 8. Python vs Java

75

Oswaldo Solarte Pabón, Liliana Esther Machuca Villegas

ISSN 1794-1237 / Volumen 16 / Número 31 / Enero-Junio 2019 / pp. 65-76

percentage of students who passed the course was
70% and those who failed was around 30%, in 2017
the percentage was 90% and 10% respectively. This
is an important achievement since it was possible to
reduce the rate of failure in the course.

Additionally, we carried out a survey, which
was given to 100 students from different engineering
majors. Some students had previously failed the
course and some had previously studied Java or
other programming languages. With this in mind,
the use of Java was compared with Python. Figure 8
describes the perception towards the use of Python
in comparison to Java, in terms of level of difficulty.
The results show that most students considered
Python as an easier programming language than Java.

5. Conclusions and Future Works

This article presented a teaching proposal for
an introductory programming course. The proposal
design aimed at improving students’ academic
performance and motivating them in the use and
application of algorithms in different branches
of engineering. The structure of the approach
facilitates the integration of different perspectives
from the pedagogical, technological, assessment
and didactic points of view.

Teaching programming during the first year
of a major can be a difficult and challenging task
because most of the students generally find it
difficult to learn the subject, which results in low
academic performance and high dropout rates.
The teaching approach proposed in this article
was applied at Universidad del Valle, Colombia,
obtaining positive results in recent years. After
applying this approach, we succeeded in reducing
dropout rates and increased student motivation.
This was reflected in an improvement in students’
grades and their perceptions of the course.

The teaching of computer programming
depends not only on the programming language but
also on other strategies that support the learning
process, such as, the use of multimedia resources,

project-oriented and problem-based learning,
and assessment rubrics. Making use of these four
perspectives can help students and professors to
improve the learning process.

The results obtained suggest that Python is a
more suitable programming language to teach an
introductory programming course. This is due to its
simple syntax, simplicity in code debugging, as well
as its easy integration with other teaching tools.

Future work is planned to extend this teaching
approach to other universities and academic centers
in Colombia through the creation of a free-access
platform in which all the material produced for this
project will be available. We also propos to carry
out an experiment with a first programming course
using a blended learning methodology.

References

Ali, A. and Smith, D. (2014) Teaching an Introductory Pro-
gramming Language in a General Education Course,
Proceedings of the 2008 International Conference
on Frontiers in Education: Computer Science and
Computer Engineering, FECS 2008, 13, pp. 236–240.
Available at: http://www.scopus.com/inward/re-
cord.url?eid=2-s2.0-62649122836&partnerID=40
&md5=ed1302320017b959ae9f4c7e10972080.

Alturki, R. (2016). Measuring and improving student per-
formance in an introductory programming course.
Informatics in Education, 15(2), 183.

Aris, H. (2015, July). Improving students performance in
introductory programming subject: A case study. In
Computer Science & Education (ICCSE), 2015 10th In-
ternational Conference on (pp. 657-662). IEEE.

Bennedsen, J. and Caspersen, M. E. (2007). Failure rates
in introductory programming, AcM SIGcSE Bulletin.
ACM, 39(2), pp. 32–36.

Chan Mow, I. T. (2008). Issues and difficulties in tea-
ching novice computer programming, Innovative
Techniques in Instruction Technology, E-Learning,
E-Assessment, and Education, pp. 199–204. doi:
10.1007/978-1-4020-8739-4-36.

Chapman, B. E. et al. (2015). Python as a First Program-
ming Language for Biomedical Scientists, (Scipy),
pp. 12–17.

76

 Fostering Motivation and Improving Student Performance in an Introductory Programming Course:
An Integrated Teaching Approach

Rev.EIA / Universidad EIA

Chien-An L. YU-Tzu L., and Cheng-Chih Wu (2015). ¿Which
programming language should students learn first?.
International Conference on Learning and Teaching
in Computing Engineering, Taiwan.

Echeverría, L., Cobos, R., Machuca, L., and Claros, I. (2017).
Using collaborative learning scenarios to teach pro-
gramming to non-CS majors, Computer Applications
in Engineering Education, (November 2016), pp.
719–731. doi: 10.1002/cae.21832.

Enbody R.J., Punch W. (2009) Python CS1 as prepara-
tion for C++ CS2. Conference Paper in ACM SIGCSE
Bulletin·Chattanooga, Tennessee, USA

Furman B., Wertz E., (2010). A First Course in Computer
Programming for Mechanical Engineers. Proceed-
ings of 2010 IEEE/ASME International Conference
on Mechatronic and Embedded Systems and Appli-
cations Pages 70-75.

Gomes, A. and Mendes, A. (2015). A teacher’s view
about introductory programming teaching and
learning: Difficulties, strategies and motivations,
Proceedings - Frontiers in Education Conference,
FIE, 2015–February(February). doi: 10.1109/
FIE.2014.7044086.

Guo, P. (2014). Python is now the most popular intro-
ductory teaching language at top us universities,
BLOG@ CACM, July, p. 47.

Hoffbeck P., Dilon H., Albright., Lu W., Doughty T. (2016)
Teaching programming in the context of solving en-
gineering problems. Frontiers in Education Confer-
ence (FIE), IEEE. Pennsilvania, USA.

Konecki, M. and Petrlic, M. (2014). Main problems of pro-
gramming novices and the right course of action, in
Central European Conference on Information and In-
telligent Systems, p. 116.

Koulouri, T., Lauria, S. and Macredie, R. D. (2014). Teach-
ing Introductory Programming: A Quantitative
Evaluation of Different Approaches, Trans. Comput.
Educ., 14(4), p. 26:1–26:28. doi: 10.1145/2662412.

Machuca, L. and Solarte Pabón, O. (2016). Improving Stu-
dent Performance in a First Programming Course, in
Proceedings of the 2016 ACM Conference on Innova-
tion and Technology in Computer Science Education,
p. 367.

Mason, R., Cooper, G. and Raadt, M. De (2012). Trends in
Introductory Programming Courses in Australian
Universities – Languages, Environments and Peda-

gogy, 14th Australasian Computing Education Con-
ference, pp. 33–42.

Pears, a et al. (2007). A survey of literature on the teaching
of introductory programming, SIGCSE Bulletin, 39(4),
pp. 204–223. doi: 10.1080/08993400500150747.

Salcedo, S. L. and Idrobo, A. M. O. (2011). New tools and
methodologies for programming languages learn-
ing using the scribbler robot and Alice, Proceedings
- Frontiers in Education Conference, FIE, pp. 1–6. doi:
10.1109/FIE.2011.6142923.

Soares, A. (2011). Problem based learning in introduc-
tion to programming courses, Journal of Computing
Sciences in Colleges. Consortium for Computing Sci-
ences in Colleges, 27(1), p. 36.

Stajano, F. (2000). Python in Education: Raising a Genera-
tion of Native Speakers, in ‘Proceedings of the 8th
International Python Conference’

Van Roy P., Armstrong J., Flatt M., and Magnusson (2003).
The role of Language Paradigms in Teaching pro-
gramming. SIGCSE February 19-23, 2003, Reno, Ne-
vada, USA. ACM 1-58113-648-X/03/0002.

Vujošević-Janičić, M. and Tošić, D. (2008). The role of
programming paradigms in the first programming
courses, The Teaching of Mathematics. Društvo
matematičara Srbije, (21), pp. 63–83.

Yadin, A. (2011). Reducing the dropout rate in an intro-
ductory programming course, ACM inroads. ACM,
2(4), pp. 71–76.

Zelle, J. M. (1999). Python as a First Programming
Language, J. Comput. Sci. Coll., 29(6), pp. 153–
154. Available at: http://dl.acm.org/citation.
cfm?id=2602724.2602754.

PARA CITAR ESTE ARTÍCULO /
TO REFERENCE THIS ARTICLE /

PARA CITAR ESTE ARTIGO /

Solarte Pabón, O.; Machuca Villegas, L.E. (2019). Fostering
Motivation and Improving Student Performance in an
Introductory Programming Course: An Integrated Teaching
Approach. Revista EIA, 16(31), enero-junio, pp. 65-76.
[Online]. Disponible en: https://doi.org/10.24050/reia.
v16i31.1230

