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A b s t r A c t

The performance of the CA-CFAR processor is affected by certain clutter variations. Although problems caused by sudden clutter changes 
have already been corrected in multiple CFAR proposals, the influence of slow statistical variations in the background signal is often ignored. 
To solve this problem, the authors estimated the optimal CA-CFAR threshold multiplier values necessary to adapt the processor to the 
clutter slow statistical changes. The application of the results guarantees that the operational false alarm probability of the processor will 
only exhibit a small deviation from the value conceived in the design. The clutter was simulated with a Pareto distribution with a known 
fluctuating shape parameter, according to recent papers that strongly suggest the use of this distribution. The current research completes 
an important step in the design of an adaptive detector that operates without a priori knowledge of the shape parameter. In addition, the 
authors provide mathematical expressions that allow the direct application of the results in the design of radar detectors.
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Estimación del Multiplicador Óptimo del Umbral CA-CFAR en Clutter Pareto 
de Parámetros Conocidos

r e s u m e n

El desempeño del procesador CA-CFAR es afectado por ciertas variaciones del clutter. Mientras que los problemas causados por los 
cambios repentinos del clutter han sido corregidos por múltiples propuestas CFAR, se ignora frecuentemente la influencia de las variaciones 
estadísticas lentas de la señal de fondo. Para resolver este problema, los autores estimaron los valores óptimos del multiplicador del umbral 
CA-CFAR necesarios para adaptar el procesador a los cambios estadísticos lentos, garantizando por tanto que la probabilidad de falsa 
alarma del detector exhibirá solamente una ligera desviación con respecto al valor concebido en el diseño. El clutter fue simulado con 
una distribución Pareto con parámetro de forma conocido de antemano, de acuerdo a publicaciones recientes que sugieren fuertemente 
el uso de esta distribución. La investigación actual completa un paso importante en el diseño de detectores adaptativos que operan sin 
el conocimiento a priori del parámetro de forma. Adicionalmente, los autores proporcionan expresiones matemáticas que permiten la 
aplicación directa de los resultados en el diseño de detectores de radar.

PA l A b r A s c l Av e

Detectores de razón de falsas alarmas constante, distribución Pareto, clutter de radar, probabilidad de falsa alarma, selección adaptativa del umbral de 
detección, procesadores CFAR
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Optimal Estimation Threshold Multiplicador CA-CFAR em Pareto Clutter
parâmetros conhecidos

r e s u m o

O desempenho do processador CA-CFAR está afectada por certas variações da desordem. Enquanto os problemas causados   por mudanças 
bruscas de lixo foram corrigidos para múltiplas propostas CFAR, é muitas vezes ignorado a influ-ência de variações estatísticas lento do sinal 
de fundo. Para resolver esse problema, os autores estimaram os valores ideais do limiar necessário multiplicador CA-CFAR para adaptar o 
processador para retardar alterações estatísticas, garanti-Zando, portanto, a probabilidade de falsa detector de alarme apenas um ligeiro desvio 
da valor concebido no design. A desordem foi simulado com um parâmetro de distribuição de Pareto conhecidos na maneira previamente, de 
acordo com publicações recentes que sugerem fortemente a utilização desta distribuição. A investigação actual complete um passo importante 
na concepção de detectores adaptativas que operam sem conhecimento a priori do parâmetro de forma. Addi-cionalmente, os autores 
fornecem expressões matemáticas que permitem a aplicação direta dos resultados do projeto de detectores de radar.

PA l Av r A s-c h Av e

Detectores razão para constantes alarmes falsos, distribuição de Pareto, a desordem radar, probabilidade de falso alarme, a seleção se encaixa-tiva 
detecção do limiar, os processadores CFAR.

Introduction

A radar is a device that radiates electromagnetic waves 
and gathers the echo produced by them on nearby objects 
(Richards, Scheer, & Holm, 2010). The mission of the radar 
is to detect targets of interest and to discard those that 
do not concern a particular application. Some objects (like 
clouds) can be considered as targets for certain applications 
(meteorology) and as interfering signal for others (aerial 
exploration).

When operating in coastal or offshore environments, the 
echo received from the sea surface is interpreted as an 
interference and called sea clutter (Ward, Tough, & Watts, 
2013). The clutter is a random signal whose contribution 
cannot be deduced by purely deterministic mechanisms. 
Consequently, its modeling is accomplished through statisti-
cal distributions.

Several probability distributions with heavy tails have been 
used to fit sea clutter data. The Weibull (Ping, 2011), Log-
Normal (Ishii, Sayama, & Mizutani, 2011), K (Chen, Liu, Wu, 
& Wang, 2013), KK (Watts & Rosenberg, 2013) and WW 
(Dong, 2006) distributions are among the most popular 
choices. Developments based on these distributions have 
been presented by the Radars Research Team from the 
Havana Technological University (González Padilla, Bravo 
Quintana, Machado Fernández, & Bueno González, 2013; 
Machado Fernández, 2015; Machado Fernández & Bacallao 
Vidal, 2016a; Machado Fernández & Bacallao Vidal, 2016b; 
Machado Fernández & Bacallao Vidal, 2016b; Machado 
Fernández, Bacallao Vidal, & Chávez Ferry, 2015).

Nevertheless, after reviewing the literature, the authors 
noted that the Pareto distribution has been gradually gain-
ing acceptance in the modeling of sea clutter (Chakravarthi 
& Ozturk, 1991; Farshchian & Posner, 2010; Gelb, Heath, & 
Tipple, 2010; Piotrkowski, 2008; Watts & Rosenberg, 2013; 
G. V. Weinberg, 2013a). Actually, it has been suggested that 
this distribution provides better fits that the ones exhib-
ited by the most popular alternatives (Farshchian & Posner, 
2010). As a result, numerous recent investigations have ap-
plied the Pareto distribution in radar related applications 
(Mezache, Chalabi, Soltani, & Sahed, 2016; Rosenberg & 
Bocquet, 2015; Wang & Xu, 2014; Graham Victor Weinberg, 
2013). The CUJAE’s Radar Research Team has a great inter-
est in developing Pareto based solutions, because this new 
model has a simpler PDF (Probability Density Function) 
compared to its counterparts K and KK, which will simplify 
the design and implementation of radar detectors.

Regardless of the distribution assumed as hypothesis, radar 
detectors always seek to ensure the CFAR (Constant False 
Alarm Rate) property and are designed, therefore, accord-
ing to the Neyman-Pearson criterion (Barkat, 2005). The 
most commonly used are the CA-CFAR (Cell Averaging), 
the GO-CFAR (Greatest-Of), the OS-CFAR (Smallest-Of) 
and OS-CFAR (Ordered Statistics). These detectors have 
been addressed in the literature by several authors (Farina 
& Studer, 1986; Rohling, 1983; G.V. Weinberg, 2004) and 
are often used as reference in current projects (Caso & 
De Nardis, 2013; de Figueiredo, Bianco, Lenzi, & Figueredo, 
2013; Qin & Gong, 2013; Takahashi, 2010).

In addition, each year new alternatives appear in different 
international journals. Some seek to introduce new pro-
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cessing methods (Qin & Gong, 2013; Van Cao, 2012), while 
others concentrate on improving existing ones (Magaz, Be-
louchrani, & Hamadouche, 2011; Yadav & Kant, 2013).

Most implementations propose the use of different mecha-
nisms for estimating the clutter average, which improves 
the response of the system against sudden changes in the 
background signal. However, the effect of the clutter statis-
tical slow variation on the performance of the detector is 
often ignored.

Slow statistical changes are mathematically translated as a 
fluctuation of the shape parameter of the clutter distribu-
tion assumed as hypothesis. Several publications have veri-
fied that the shape parameter may vary in a wide range 
of values for different environmental conditions and radar 
features (Chen et al., 2013; Dong, 2006; Greco, Bordoni, & 
Gini, 2004; Ishii et al., 2011; Nohara & Haykin, 1991; Palama, 
Maria, Stinco, & Gini, 2013). 

Moreover, in (Machado Fernández & Bacallao Vidal, 2014) 
it was verified that the fluctuation of the shape parame-
ter causes significant problems in the performance of the 
CA-CFAR scheme. If the threshold multiplier factor (T), 
included in most implementations, is not modified accord-
ing to the shape parameter variation, the detector will lose 
the CFAR property, experiencing serious deviations from 
the design false alarm probability (Machado Fernández & 
Bacallao Vidal, 2014). Unfortunately, the classical CA-CFAR 
detector is intended to operate with a fixed  factor, which 
makes the system unstable.

Taking into account the previously presented ideas, the au-
thors aimed to obtain estimates of the optimal threshold 
multiplier factor (T) for each possible value of the Pareto 
shape parameter, for a CA-CFAR detector with 64 cells in 
the reference window. The estimation was carried out for 
the false alarm probabilities of Pf = 10-2, Pf = 10-3 and Pf = 
10-4. Therefore, the objective was to create an adaptive CA-
CFAR that will use the found values for constantly correct-
ing the threshold multiplier.

It was assumed as hypothesis that the clutter was Pareto 
distributed with known shape parameters. The CA-CFAR 
scheme was used as the base of the design because it is the 
more widely used alternative.

The main contribution of the paper is the finding of mathe-
matical expressions that allow the estimation of  for any Pa-
reto shape parameter in the range of possible values. It was 
verified through simulations, that the offered expressions 
ensure keeping the false alarm probability with a reduced 
deviation from the design value when processing clutter 
with slow statistical variations.

The paper proceeds as follows. The next section, under the 
name of “Materials and Methods” makes a brief presenta-
tion of the Pareto distribution and the CA-CFAR detector, 
describing also the performed experiments. Then, in “Re-
sults and Discussion”, the authors reveal the relationship 
found between the CA-CFAR  and the Pareto shape pa-
rameter. Afterwards, mathematical expressions are derived 
as a generalization of the performed simulations. Finally, in 
“Conclusions and Future Research”, the fundamental con-
tributions of the paper are summarized and the future re-
search lines are discussed.

1. Materials and methods

This section starts by introducing the fundamentals of the 
Pareto distribution. In a second sub-section, the CA-CFAR 
detector is briefly described. Finally, the details of the ex-
ecuted experiments are presented to facilitate the replica-
tion of the research by third parties.

Pareto Distribution

The Pareto distribution has been used in modeling the in-
come of a population (Asimit, Furman, & R. Vernic, 2010) 
and in a variety of engineering fields (Aban, Meerschaert, & 
Panorska, 2006; Chlebus & Ohri, 2005; Rytgaard, 1990), also 
including sonar (Gelb et al., 2010) and radar (Chakravar-
thi & Ozturk, 1991; Farshchian & Posner, 2010; Piotrkowski, 
2008) applications. Particularly in (Farshchian & Posner, 
2010), the distribution was examined for the representa-
tion of high-resolution X-band sea clutter observed at low 
razing angles. This investigation showed that the distribution 
provides an accurate fit to polarized clutter returns, out-
performing other classical models such as the Log-Normal, 
Weibull, K, KK and WW.

It was also reported that the closest competitor to Pareto 
was the KK model. As the Pareto distribution is character-
ized by a simple PDF, the results are promising. It´s sug-
gested that the Pareto distribution will become a natural 
replacement of the KK which uses between 4 and 5 param-
eters with a complicated PDF including Bessel functions.

The PDF and the CDF (Cumulative Distribution Function) 
of the Pareto distribution are given below:
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Where a is the shape parameter and b is the scale pa-
rameter (G. V. Weinberg, 2011), also referred to as location 
parameter or x - minimun value (O’Connor, 2011). The b 
parameter specifies the region where the distribution ex-
ists, which always covers the interval [b, ∞] . Meanwhile, the 
shape parameter controls how fast the tail of the distribu-
tion falls. Figure 1 shows the effect of the variation of the 
parameters on the Pareto PDF.

Multiple fits made in Graham V. Weinberg, (2014) resulted 
in the following combinations of the Pareto parameters: 
(a = 15,9; b = 0,1812), (11,393; 0,3440), (4,4525; 0,0147) 
and (4,7245; 0,0446). In addition, simulations performed 
in Metcalf, Blunt, & Himed, (2015) applied the following 
reference interval for the shape parameter: 3,2<a 40; 
whereas in G. V. Weinberg, (2013b) the next values were 
used: 2,29 < a < 56,5215.

Taking into consideration the above information, the authors 
decided to use the following range of values to execute the 

experiments: 2 ≤ a ≤ 10. The a > 10 interval was excluded 
after noticing that the selection of T remained virtually 
constant in this region.

Initially, ten equally spaced values were used within the 
selected range to perform the experiments. As a response 
to the observed behavior, it was decided to add more a 
values in the regions that proved to have a greater influence 
in the selection of the T factor. The 38 T values that were 
finally used in the simulations are included in Table 1, 
ordered from left to right and from top to bottom.

CA-CFAR Processor 

The internal structure of the classical CA-CFAR processor 
is shown in Figure 2 (Rohling, 1983). It consists of a sliding 
window that moves throughout the radar coverage area, 
giving each resolution cell an opportunity to occupy the slot 
under evaluation (Y ). The detection threshold is calculated 
by averaging the Xn cells and multiplying the result by T.  The 
detector indicates the presence of a target in the slot under 
evaluation if the magnitude of Y exceeds the calculated 
threshold (Machado Fernández & Sánchez Rams, 2016).

The selection of the T value to be used is influenced by 
the clutter statistics, the false alarm probability and the 
number of cells (n) in the reference window. Usually, 

Table 1.
Values of the Pareto Shape Parameter employed in the simulations.

1,9291 2,00145 2,0738 2,1515 2,2293 2,3129 2,3965 2,4445

2,5762 2,6728 2,7695 2,9772 3,2005 3,4405 3,6985 3,9759

4,125 4,2741 4,4344 4,5947 4,767 4,9393 5,1245 5,3098

5,708 5,9220 6,1361 6,3662 6,5963 6,8437 7,0911 7,357

7,6229 8,2160 8 8,8092 9,5 10,1802

Source: The author

Figure 1. Consequence of the parameters variation in the Pareto PDF.
Source: The author
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the detector operates with a preset window size and a 
fixed false alarm probability. In its original configuration, 
the CA-CFAR establishes a constant T value because it 
assumes that the clutter statistical behavior is invariable. 
In practice, when statistical variations occurs, meaning the 
clutter shape parameter is fluctuating, the operational false 
alarm probability deviates from the intended design value 
(Machado Fernández & Bacallao Vidal, 2014).

Conducted simulations

The conducted simulations aimed at correcting the above 
problem. First, the Set A was assembled, consisting of 38 
groups of 1 million Pareto samples each. The Pareto sam-
ples were computer-generated by using one of the a values 
presented in Table 1 for each group.

Then, the first group of samples was processed with a CA-
CFAR whose reference window had 64 cells. A random T 
value was used in the first iteration and the obtained Pf 
was recorded. Next, the T value was modified in successive 
iterations forcing the Pf to reach the figures of 10-2, 10-3 and 
10-4, with an error of less than a 1%. 

Given the inverse relationship between the T and the Pf  
(Machado Fernández, 2015), the implemented algorithm 
was actually a binary search where T was increased 
whenever a reduction of the Pf  was necessary, and vice 
versa. The sequence of steps was repeated for each group, 
requiring about 25 iterations to produce each T value with 
the specified accuracy.

The b parameter of the Pareto distribution was forced to 
0,001 for all simulations. This parameter defines the mini-
mum possible value of the received samples, which is very 
small for radar applications. The b parameter was conceived 
for the initial applications of the distribution when it was 
used for modeling the income of a group of people. The b 
parameter allowed establishing the minimum salary. On the 
contrary, as it was demonstrated in Machado Fernández & 
Bacallao Vidal, (2014), the scale parameter of the statistical 
distributions has no influence of the detection performed 
by a CA-CFAR scheme.

2. Results and Discussion

As a result of the conducted experiments, three T values 
were produced from each group of samples. This makes 
a total of 114 T values, where 38 correspond to Pf=10-2, 
and an equal number to Pf =10-3 and Pf =10-4. The obtained 
results are summarized in Figure 3 that reveals the influence 
of a on the modification of T for the three addressed Pf . In 
addition, three graphs placed within Figure 3, plot individually 
the data for Pf  =10-2, Pf  =10-3 and Pf =10-4, proving that the 
tendency is common for all three cases.

As it can be seen, a small modification in the region of 
reduced a values requires a significant correction of T in 
order to maintain the design Pf . However, for a > 7, the 
behavior is close to linear, with a marked tendency of T to 
remain constant. So, it’s safe to say that the influence of a 
over T gets saturated.

X X X XN M+1 M 1Y

∑ ∑

∑1/N

THRESHOLD
MULTIPLIER

(T)
COMPARISON

TARGET

CLUTTER

SHIFT
SLIDING WINDOW

X

Figure 2. Internal Structure of the CA-CFAR processor.
Source: Rohling, 1983
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The CA-CFAR threshold multiplier is an excellent measure 
of the spiky property of a distribution. The Pareto clutter 
is more spiky as the a value gets smaller, characteristic it 
shares with the K distribution according to that observed in 
Machado Fernández, (2015); Machado Fernández & Bacallao 
Vidal, (2016b). On the contrary, the Log-Normal distribu-
tion histograms have longer tails for high values of the shape 
parameter (Machado Fernández & Bacallao Vidal, 2016a).

 
Deviation of the false alarm probability

Next, the authors created a new set (Set B) with the same 
dimension of Set A but completely independent from it. 
The T values found with the Set A were used to process 
the samples from Set B in order to find the deviation 
experienced in the false alarm probability. The results are 
plotted in Figure 4 for Pf  =10-2, Pf  =10-3 and Pf =10-4.

As the reader may notice, both positives and negatives 
errors occurred, representing a desired behavior. The exact 
figures for the average deviation were: 1,1247∙10-4 for Pf  

=10-2; 3,5500∙10-5 for Pf  =10-3; and 1,1184∙10-5 for Pf =10-4. 
Therefore, it was demonstrated that the T estimated values 

ensure the operational false alarm probability will remain 
close to the design value regardless of the used dataset.

Fitting the results

The T values shown in Figure 3 can be applied when the 
Pareto clutter corresponds to any of the shape parameters 
included in Table 1. However, it’s necessary to generalize the 
results for the entire region of possible occurrences of the 
parameter (2 < a < 10). Thus, a T estimate will be available 
for any statistical condition of the Pareto clutter.

To this end, the authors tested different curve fittings 
searching for a good approximation to the observed 
behavior. The best match was exhibited for the power and 
rational fits. The expressions found through the fits are 
offered in Tables 2 and 3, together with the measured RMSE 
(Root Mean Squared Error).

Moreover, Figure 5 shows the accuracy achieved by the two 
fits. Both alternatives showed a good proximity to the data. 
Nevertheless, the numerical comparisons indicated that the 
power fit was slightly more accurate for Pf = 10 -2, and sli-
ghtly worst for the other two false alarm probabilities.

Figure 3. Optimal  values for multiple statistical conditions of Pareto distributed clutter.
Source: The author

Figure 4. Experienced deviation in the operational false alarm probability after processing Set B.
Source: The author
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The T values corresponding to the as from Table 1 were 
re-calculated using the obtained fits. The result was com-
pared to the ones obtained with the T values from Figure 
3. Figure 6 plots the error introduced by the power and 
rational approximations. As it can be observed, the greatest 
errors occurred in the region of small magnitudes of a, a 
fact that can be explained given the great influence of the 
shape parameter over T selection in this region. However, 
the overall mistake is small, confirming therefore the quality 
of the fit.

The error for Pf = 10-2 was 0,0147 for the power fit and 
0,0094 for the rational fit. The quantities were 0,1108 and 
0,0762 for Pf = 10-3 and 0,7750 and 0,6451 for Pf = 10-4. So, 
only a very small error is introduced when replacing the 
binary search estimates for the mathematical expressions, 
being more accurate the rational fit.

Validation of the fit

Besides checking the existing proximity between the T va-
lues extracted from the experiments and those calculated 
by expressions from Tables 2 and 3, the authors conducted 
a further test to ensure validation. The T values obtained 
through the fits were used to process data from Set B with 
a 64 cells CA-CFAR. The experienced deviation in the false 
alarm probability is plotted in Figure 7 for Pf = 10-2.

As the figure shows, the deviation suffered by the rational 
fit is smaller than the one experienced by the power fit for 
Pf = 10-2.  A similar behavior was observed for the other 
two addressed false alarm probabilities.

The mean deviation for Pf = 10-2 was 3,3866∙10-4 for the 
power fit and 1,6708∙10-4 for the rational fit. The num-
bers were 1,3445∙10-4 and 8,7868∙10-5 for Pf = 10-3; and 
3,6421∙10-5 and 2,9789∙10-5 for Pf  =10-4.

As expected, the error increases with the reduction of the 
false alarm probability due to the fixed amount of samples 
included in each of the groups from both sets (one million 

Table 2.
Expressions found for the power fit.

False Alarm 
Probability

Expressions found 
through the fit RMSE

Pf = 10-2 T =13,62 α-1,796 + 1,247 0,01894

Pf = 10-3 T = 87,4 α-2,614 + 1,796 0,1363

Pf = 10-4 T = 643 α-3,721 + 3,067 1,066

Table 3.
Expressions found with the rational fit.

False Alarm 
Probability

Expressions found 
through the fit

RMSE

Pf = 10-2 T =  0,02236 α 2 + 0,6324 α + 4,691
α - 0,8357 0,01465

Pf = 10-3 T  =    0,1464 α 2- 1,229 α + 14,51
α - 1,218 0,1168

Pf = 10-4

T =   0,6207 α 2 + -7,763 α +40,44
α-1,471

1,075

Source: The author

Figure 5. Power and rational fits for the  values corresponding to Pf = 10-2 .
Source: The author

Figure 6. Deviation in T values after using the Power and Rational fits for the false alarm probabilities of 10-2,  10-3 y 10-4 
Source: The author
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3. Conclusions and future research

Mathematical expressions for estimating the optimal value 
of the threshold multiplier factor were found for a 64 cells 
CA-CFAR scheme operating under the assumption of Pa-
reto distributed clutter with a priori known parameters. 
The authors demonstrated that the offered expressions 
guarantee the detector will operate with a reduced devia-
tion of the false alarm probability even if the Pareto shape 
parameter varies over a wide range. Therefore, the solution 
ensures the adaptation of the detector to slow clutter sta-
tistical changes that, despite being ignored by most of the 
previously presented solutions, have a proven influence in 
the detection performance. In addition, an important requi-
rement was fulfill for the design of a processor capable of 
adapting to the clutter statistical changes without a priori 
knowledge of the shape parameter of the distribution.

This research contributes to the development of the theory 
of the Pareto distribution that has found recent application 
in sea clutter modeling. It was verified that the influence of 
the Pareto shape parameter is significant for the lower figu-
res of the parameter and is rapidly saturated with its increa-
se. Recommendations were also offered on the number of 
trials to be performed in order to obtain reliable estimates 
of the multiplicative factor for a given false alarm probability.

The authors will focus next on performing similar estimates 
for other clutter related distributions such as the Com-
pound Gaussian and KK. The design of a neural solution for 
the improved estimation of the Pareto shape parameter is 
also recom-mended.
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