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alguns diagnósticos deste método; especificamente, 
as decomposições que revelam quando uma predição 
condicionada sobre um jogo de variáveis implica os 
cálculos de outras variáveis que são inconsistentes 
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Los modelos teóricamente consistentes deben mante-
nerse modestos para ser útiles. Si su fin es pronosticar 
eficazmente, tienen que basarse en datos ruidosos, irre-
gulares, no modelados y que se traten del futuro. Los 
agentes también pueden usar estos datos para formular 
sus propias expectativas. En este artículo ilustramos 
un esquema para condicionar de manera simultánea 
los pronósticos y expectativas internas de los modelos 
DSGE lineales con visión de futuro, con los datos a 
través de un filtro de Kalman de intervalos fijos suavi-
zado. También ensayamos con algunos diagnósticos de 
este método; específicamente, las descomposiciones que 
revelan cuando una predicción condicionada sobre un 
juego de variables implica los cálculos de otras variables 
que son inconsistentes con los precedentes económicos. 

Clasificación JEL: F47, E01, C61.

Palabras clave: predicción condicional, DSGE, filtro de 
Kalman.
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Theory-consistent models have to be kept small to be 
tractable. If they are to forecast well, they have to condi-
tion on data that are unmodelled, noisy, patchy and about 
the future. Agents can also use these data to form their 
own expectations. In this paper we illustrate a scheme 
for jointly conditioning the forecasts and internal expec-
tations of linearised forward-looking DSGE models on 
data through a Kalman Filter fixed-interval smoother. We 
also trial some diagnostics of this approach, in particular 
decompositions that reveal when a forecast conditioned 
on one set of variables implies estimates of other vari-
ables which are inconsistent with economic priors. 
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I.  INTRODUCTION

Forecasting is a very different exercise from simulating, especially when forecasts 
are used to guide and explain policy. A policy forecast should relate to all the data 
that features in the public debate, even if that comes in an awkward variety of shapes 
and forms. After all, agents in the real world could also be reacting to this data, after 
taking account of their measurement error. 

The need to reach out and connect with the relevant data is especially important 
when the forecast is based on a dynamic stochastic general equilibrium (henceforth, 
DSGE) model. DSGE models are distinguished by having a greater theoretical input. 
Indeed, this explains their appeal to policy; with more theory it is easier to use the 
forecast as a basis for discussion and explanation. Yet, more theory often comes at a 
cost in terms of worse forecast performance because it is harder to match more rigid 
theoretical concepts to available data and extending the model comes at great cost. 
But, if any policy model ultimately does not link to the real world, it cannot be of 
much use as a policy tool. 

There are two broad categories of reasons why we should expect the useful data set 
for a policy forecast to be awkward: 
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1)  Real world data is unbalanced. 

a)  Real world data comes with different release lags: we have more up to 
date information on some series than on other series. 

b)  Real world data comes with different frequencies. Some relevant eco-
nomic information is only available annually whilst some is in real 
time. 

c) There may be useful off-model information on the expected current 
and future values of exogenous and endogenous variables from other 
sources which cannot be incorporated into the model system, at least 
not without making the model cumbersome. Sometimes this informa-
tion is patchy: we have information on values at some future point. But 
sometimes the information may be complete for the whole horizon, as 
would be the case if we use the forecasts from other sources for the 
exogenous variables. 

2) Real world data is subject to time-varying measurement uncertainty. This 
also has many aspects. 

a)  Real world data is imperfectly measured. For this reason published 
data are often revised. 

b)  Real world data that is available to agents may differ from the econo-
mic concept that matters to their decisions. 

c)  Forecasts from other models and judgement also come with a measure-
ment error. 

Graph 1 shows us some examples of the kind of awkward data that one can expect to deal 
with in the real world. Assume we are time t and planning to forecast up until time T. 

• First, we have series, such as employment, which come to us after a longer 
delay. 

• In contrast, series such as CPI are very up to date. And then, often it is the case 
that a combination of small monthly models —monthly data on some prices 
and even information from the institutions which set regulated prices— can 
give a decent forecast of consumer prices into the next quarter. 

• Some data is only available annually. For example, in Colombia the only na-
tional salary series can be constructed from the income side of annual na-
tional accounts. 
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• Then, there is information on what can happen quite far ahead. The govern-
ment can preannounce its VAT plans which will have a first-round effect on 
inflation. In monetary policy conditioning scenarios, the central bank cred-
ibly announces its interest path (Laséen and Svensson, 2011). 

• Also, we have implied forecasts from financial markets data. For example, 
removing risk premia and other irrelevant effects from a yield curve gives us 
data on what the risk-free expectation of future interest rates may be. Some 
other important special cases of this type of information would be world inter-
est rates, world commodity prices and expected monetary policy rates. The 
forecast should then be conditioned on the useful information contained in 
this data. 

Graph 1
A Typical Real World Data Set for Forecasting

t T

Employment

CPI CPI
Judgement

Salaries

VAT
Announcement

Markets Rates

Remittances

IMF World GDP Forecast

Source: Author calculations.

• Finally, there are forecasts from other models. A good example is that of 
remittances. Using information on migration trends, exchange rate move-
ments, and some disaggregated capital flow data, a specialist can come up 
with a good forecast for remittances, or at least a forecast that is better than 
one that a DSGE model can generate internally. Population growth and rela-
tive food prices are two other examples of variables that might also be best 
forecast separately. Similarly, forecasts for the GDP of important trading 
partners should probably come from forecasters in those countries or from 
international institutions, such as the IMF, which are more capable of fore-
casting those series. 
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The contention of this paper is that a model can only provide both decent predictions 
and useful expla nations if it takes account of the real world data set. Obviously, if 
there is valuable information is in this awkward data set then the better forecasts 
should not ignore it. But more subtly, if the agents whose behaviour we are trying 
to model might be using this type of information when they form expectations, we 
would also need to mimic them if we are to expect to pick up their behaviour. For 
example, if the data is noisy and is infected by short-term movements which have 
nothing to do with the fundamentals, agents will ignore some of the movements in 
the data.. So, then should the forecast also do so.

Through the method described in this paper, a forecast can bring this rich but 
awkward information to bear in forming a policy forecast with a forward-looking 
DSGE model. The basic idea is to first solve the model for rational expectations 
under the assumption that the data up until the end of the forecast horizon is perfectly 
known. Then, in a second stage, the data uncertainty problem is wrapped around 
these solutions which are the state equations of a Kalman filter. In Kalman filter 
terminology, the solution is fixed-interval smoothing. 

This method has advantages over existing strategies. 

First it allows for measurement error of future data. If that future data consists of 
forecasts produced by other models, then this model’s forecast should take account 
of the external models’ errors. If that future data were instead announcements or 
plans made by external institutions, this method allows for the important possibility 
of imperfect credibility by incorporating that as measurement error. For example, a 
preannounced tax change may not be fully credible. 

Another important special case is financial market data. Financial market data is 
noisy in the sense that the price that data measures diverges from the economic 
concept that matters to agents. If agents have a longer holding horizon than financial 
market participants, they would not react to short-term, reversible, movements in 
financial data. Not to adjust for this would mean that forecasts might bounce around 
with financial data unrealistically. An influential paper by Lettau and Ludvigson 
(2004) emphasises that movements in short-term financial market data will be 
smoothed by agents, and this should also matter when policy modelers assess their 
impact on macroeconomic variables. 
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Policy forecasters commonly smooth financial market data by imposing prior views 
on the initial values and forecasts of financial variables; these are the controversial 
constant exchange rate and interest rate assumptions. Economic shocks are then made 
endogenous to make the model’s solutions comply with those priors. Our proposal is 
an alternative way of attaining the same result, and one which does not involve our 
rewriting the economic model to make structural shocks endogenous, for now those 
deviations are classified as data noise terms. 

A second advantage of this method is that the model does not need to be rewritten 
each time the shape of the data of each given series changes. One only has to fill 
the parts of the data set where data exists and put blanks (NAs!) in where there is 
nothing available. With this method, one can imagine how the task of building the 
data set and that of maintaining the forecasting model can become separate and 
hence, carried out at different intervals and by different groups of specialists. 

Third, we can be much more imaginative with what data we use with this method. 
In this paper, we show how the measurement equations can be adapted to push the 
forecast towards where there is interesting information without having to extend the 
economic part of the model. In this way, we can exploit the interesting information 
in money data without making that part of the endogenous core of the model, for 
example. We can allow for the peculiarities of the national accounts data, and espe-
cially what we know about its revisions policy. We can bring in information from 
surveys that we know are important in monetary policy decisions. 

Another advantage to this approach is that it allows us access to the whole toolkit 
that comes with the Kalman filter. We show how we can derive decompositions of 
forecasts according to the contributions of data, and not just according to the contri-
butions of economic shocks, as is standard. In fact, we can show how estimates of 
the contributions of the shocks depend on data. Going further, we also show how 
we can try and spot where forecasts will not be well identified in terms of shocks. 
The information context of different series to the forecast can be measured. And 
then retrospectively, we can use this technology to compare the forecasts across 
different vintages of data to see if policy mistakes were due to data mismeasurement, 
as suggested by Orphanides (2001) and Borağan Aruoba (2004). This means that we 
can present the differences between forecasts across policy rounds in terms of the 
contribution of news in the data. This incremental way of presenting the forecast to a 
busy Monetary Policy Committee is at least more efficient. All these outputs help us 
to integrate the model’s forecast into the central bank’s policy decisions. 
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This paper belongs to a branch of the forecasting literature that addresses the problem 
that it is simply not viable for one model to incorporate all useful information. An 
important paper by Kalchbrenner, Tins-ley, Berry, and Garrett (1977) formalises 
how to bring in auxiliary information of a different frequency and with patchy 
observations into a backward-looking forecasting model —model-pooling. Papers 
by Leeper and Zha (2003) and more recently Robertson, Tallman, and Whiteman 
(2005) and Andersson, Palmqvist, and Waggoner (2010) have implemented condi-
tioning in VAR models. Working with a forward-looking DSGE model, Monti (2010) 
demonstrates how to pool the model forecast with judgemental forecasts, and Beneš, 
Binning, and Lees (2008) present tests of how plausible these pooled forecasts are. 
Schorfheide, et al., (2011) discusses appending forecasts for non-modelled variables 
onto a DSGE model. But these papers do not consider how the agents in the DSGE 
model might themselves be using future information. 

This crucial step was taken in a recent paper by Maih (2010) —the closest to our 
work. Maih allows for agents to incorporate future uncertain data in forming expec-
tations and considers the choice between conditioning on future information in the 
form of a truncated normal distribution which, having upper and lower bounds as 
well as a covariance and a mean as parameters, is a more general model of condi-
tioning than ours. However, as the variance of a truncated normal variable is a non-
linear function of the bounds, the reader may prefer an approach in terms of means 
and variances only. Maih did not discuss ways to get around the potentially serious 
computational costs of solving a forward-looking model with anticipated future data, 
nor did he discuss unbalanced data. We cover these gaps. We also derive and trial 
some revealing outputs and diagnostics, new to the conditioning literature. 

A systematic conditioning strategy is already common practice among those central 
banks that pioneered the use of DSGE models to forecast, in Norway, for example. 
We acknowledge their contribution without being able to cite unpublished work. 

The rest of this paper is organized as follows. Section II summarises our key assump-
tions and clarifies our notation. Section III presents the solved economic model in the 
absence of data uncertainty, in this section this is also extended to allow for future 
data. In Section IV, this is extended to introduce the data into our forecast. Section V 
discusses the different strategies for modelling data uncertainty. Section VI presents 
several useful different ways of presenting the policy forecast. Section VII allows 
for reporting variables. Section VIII discusses the problem of state identification. 
Section IX presents some forecasts using this strategy on Colombian data. Section 
X concludes. 
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II.  THE KEY ASSUMPTIONS, THE SEQUENCING OF 
SOLUTIONS AND NOTATION

A.  CRUCIAL ASSUMPTIONS

The input of this paper is the outcome of a micro-founded general equilibrium 
problem. We assume that in a prior stage, the relevant decisions of agents have been 
formulated as optimizing problems, that the first and second-order conditions have 
been derived and that those conditions have then been aggregated to match the data 
and transformed into a linear dynamic system with all variables only in terms of log 
deviations from time-invariant steady-state values. See for example Uhlig (1995).
 
This paper begins at the next stage: where we need to solve to model and then to 
match it to available data. By solving the model, we mean that we need to model 
how the monetary policymakers choose their policy instrument and how agents form 
rational expectations. By forecasting, we mean how we want to use this model to fit 
and predict available data. We want all these decisions to reflect what data are really 
available. Even then, as we shall now see, we make use of a separation theorem to 
focus on the data part of the solution, assuming that the model has been solved and 
is given to us in a standard form. 

B.  THE SEQUENCE OF EvENTS AND THE INFORMATION SETS

The choices of policymakers and agents happen at a current time s = t which lies 
in between 1 and the end of the forecast horizon, T = t + k. Unlike conventional 
expositions, it is assumed that the potential data set that was available to agents and 
policymakers at any time in the past up until now, that is at time u (u = 1,..., t), could 
have included possibly useful off-model information on variables timed from 1 
to u + k, and also could have included information about data uncertainty. Later on, 
we specify exactly what are in the data sets, but here, we just mention that they could 
contain values of future variables which we interpret as forecasts from other models. 
As we move from the past to the current date, information is never forgotten. The 
information sets are written as 0,…, t with the property that i Ì j for any i < j. 
The macroeconomic forecaster makes his/her optimal forecasts based on the same 
data set as the one used by economic agents. 
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In this set up, the information set is common, the dynamic model linear, the objec-
tive function quadratic and expectations rational. Then, the literature on optimal 
policy under data uncertainty tells us that there is a separation property such that 
the problem can be split into two artificial stages and solved recursively.1 The first 
stage, where the rational expectations of agents are solved for, is certainty equiva-
lent; at this point, the second-order properties of the data measurement and economic 
shocks do not matter. Our scheme allows for future data. For that reason, agents and 
the forecaster must be allowed to see shocks k periods in advance in this artificial 
first stage, as in Schmitt-Grohé and Uribe (2008). In a second stage, this partial solu-
tion is combined with a description of the data and the second-order properties of the 
data measurement and economic shocks to give the final solution. 

C. NOTATION

The operator Ei means that we are taking expectations of a variable with respect to 
an information set i of timing i. Matrices and vectors are in bold, with matrices in 
upper case. IM refers to the (M  M) identity matrix. 0MN is an (M  N) matrix with 

zero elements. Tr refers to the trace of matrix .  H refers to the transpose of a 

matrix .  + refers to the Moore Penrose inverse of the matrix .  (i, j) is the ijth 

element of the matrix .

III.  SOLvING THE MODEL WITH FUTURE DATA 

Incorporating future information substantially expands the number of variables in 
the model. The purpose of this section is to show how future information can be 
incorporated into a DSGE model solution without adding substantially to the compu-
tational cost, because we only need to carry out some of the less intensive computa-
tions on the extended model. Essentially, the solution with future information can be 
carried by the commonplace solution without future information. 

1 See a parallel literature on assessing optimal policies in linear rational expectations models 
under data uncertainty following papers by Gerali and Lippi (2003), Pearlman (1986), Svensson and 
Woodford (2003) and Svensson and Woodford (2004). 
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Our starting point is a micro founded general equilibrium problem that has already 
been expressed in terms of log-linearised deviations from a steady state. The exposi-
tion and method of solution follows Klein (2000) closely:

AEs s+ s sx Bx C z1
0 0 0

1
0= + +  (1)

There are N variables in the vector x xs s
0 0.  includes all economic variables endog-

enous for the model. The Nε variables in z s
0

 are a set of exogenous variables that 
follow univariate first-order process. We call them economic shocks. Then there is 
a matrix equation 

z B z Ds s s+1
0 0

+1= +e ee
0 0

 (2)

where Be
0  and De

0  are both diagonal matrices, although Be
0  may have a zero entry 

on its diagonal. These exogenous variables could be extended to include those which 
follow a VAR but for ease of exposition, and without any loss of generality, here we 
assume that they are only univariate. 

Being exogenous, these variables have no expectational error. Any autoregressive 
component of the shock is captured in the process (2) such that es+1 is a martingale 
difference process with respect to the information set at time s. In particular

Es s N 1e e+ =1   0   (3)

and, without loss of generality: 

E Is s s
H

Ne e
e+1 +1 = . (4)

The trivial steady-state solution, defined by x 0s N
0

1= , .  and e es 1= 0N , for all time s, 
exists and is unique. The model begins at that steady state: 

x 00
0

1= N , .  (5)

Then, if we include the variables in zs
0

 in the vector x s
0  the solved model can be 

presented in the form:

 . (6)
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The solution in the form of equation (6) can be written in partitioned form, with the 
exogenous variables z s

0( )  recovered in the lower partition:




. (7)

where the matrices Be
0  and De

0  are defined in equation (2). 

In fact Klein (2000, pages 1417-1418, equations (5.20) and (5.21)) shows that the upper 
partition of the equation (7) can be partitioned further, where the upper positions of 
the vector are assigned to the non-predetermined variables, and the lower to the 
predetermined endogenous variables. From now on it is assumed that the vector xs

0  

is arranged in that way, and Np is defined as the number of endogenous predetermined 
variables. A variable is predetermined if its generating process is backward-looking, 
follow ing Klein’s definition of a backward-looking process. We need not impose this 
prior designationbut if not, we would have to allow for more initial conditions for 
state variables (Sims, 2002), complicating the exposition. 

According to this further partition: 






 (8) 

Where:

R Z Z L NB0 º 21 11
1 0[ ] +−

e

N Z Z Z Z M0 º 22 21 11
1

12
0− [ ]( )− , (9)

L Z S T Z Z M0 º  - 11 11
1

22 11
1

12
0[ ] [ ]− −  (10)

 
Z S T M S M B Q C11 11

1
12

0
12

0 0
1

0[ ] − + 
−

e

 Z M B12
0 0

e ,
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And:

vec vec
H

NM B S I Q C0
22 22

1

2
0º e e

0  ⊗ − ⊗











 
−

T  (11)

The matrices Sij, Tij, Zij, Qi for i, j =1, 2 are determined by a generalized Schur 
factorization of A and B. For this paper, it is crucial to note that these matrices are 
independent of the matrices Be

0

 and De
0

 where the error process enters. Thus, it will 
always be the case that the matrix Ξ111

0
 is independent of the parameters of the exog-

enous shock processes of matrices   B De e
0 0and( ).

The matrices N N N−( ) ×e e , Ξ112
0  and Ξ211

0  do depend on Be
0  and De

0
 however.

To allow for the possibility of future data to affect current behaviour, agents must 
be able to anticipate shocks up until the forecast horizon. In this section, the model 
and solution is extended to allow for that possibility along the lines of Schmitt-Grohé 
and Uribe (2008). 

It has been assumed that at each time u when a forecast is made, shocks in principle 
can be anticipated k periods ahead k T t i s= −( ) +. ,  1  is defined as perfect informa-
tion on the vector of shocks es+1 but known earlier at time s – i for i =0, ..., k – 1. Then, 
the extended vector of exogenous shocks can be written as:

Z z0
s+ s+ s

H
k s
H

HH

1 1 0º , , ,, , + − +…



1 1 1  (12)

and the extended vector of economic variables becomes:

X X0
s+ s s

H
k s
H

HH

1 1º + + − +




1 0 1 1, ,, ,  . (13)

The extended system of exogenous variables is now:

z B z Ds+ s s1 = + +e ee 1 (14)

With: B

B I 0 0 0

0 0 I 0 0

0 0 0
e

e e e e e

e e e e e

e eº

0        

      

  

N N N N

N N N N N

N N N





ee e e

e e e e

    

                      
    

I 0

 
0 0 0 0

N N

N N N N



     





  

      

I

0 0 0 0 0
N

N N N N N

e

e e e e e




























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And: D

0

0

0

0

D

e

e

e

e

e

e

º

N

N

N

N

,

,

,

,

.

1

1

1

1

0

  

  





























 

It immediately follows that the solution to the extended system is of the form:

  (15)

With: 


,

 


.
   

Comparing the two solutions, we can see that only the matrices Ξ112 and Ξ211 need to 
be recalculated. These matrices can be derived from applying the same formulae as 
in the model without future shocks, (17), (18) and 3 but when Be

0  is replaced with Be, 
De

0  is replaced with De and C is replaced with C 0  N N N K− e e, .



 

 (16)

Where:

R Z Z L NBº 21 11
1[ ] +−

e

 (17)

N Z Z Z Z Mº )( 22 21 11
1

12− [ ]− ,

L S T Mº - [ ] [ ]- -Z Z Z11 11
1

22 11
1

12

Z11 11
1

12 12 1S T M S MB Q C[ ] - +[ ]-
e  (18)
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Z MB12 e,

And: vec vecH
NM B S I Q Cº e e

[ ] ⊗ − ⊗









 [ ]

−

22 22

1

2T .

We have shown that extending the model to incorporate future information does not 
require carrying out a new Schur factorization on a system with many more endog-
enous variables reflecting information on each future period on each variable. 

The computational cost would also be high if the vectorised formula 3 were actu-
ally used in the larger extended model. Luckily, as Klein (2000) explains, there is an 
alternative recursive method for calculating M, that can be applied to the extended 
system to keep the computational cost manageable. In summary, the solution to the 
model with future shocks can be carried most of the way by the solution to the model 
without future shocks. 

Iv.  ALLOWING FOR AWKWARD FEATURES OF THE POLICY 
FORECASTING DATA SET 

Up until now, the solution has abstracted from the data set. In this section, the data 
are introduced. Data can be uncertain and unbalanced. The idea is to wrap the 
system of (15) around an observation system which relates the true values to the 
noisy observed data values. We will now describe the observation system.

A.  INTRODUCING THE DATA SET

Let the vector y s
u  of size NDs

u ×( )1  be the observed data that pertains to variables at 
time s available in information set u. There can be holes in this data: some observa-
tions may not be available at the time s in information set of time u. Thus N NDs

u
D≤  max  

where ND max is the maximum number of data series possibly available. 

This measurement system is written as: 

y R H xs
u

D
u

s
u

Ds
u

D D

t

N N N N N N
S

´ ´ ´ ´ 1
 = 

   
 

   
   

  1max max
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+ 
       

  
  1

 + 
   

R H Rs
u

D
u

D D

s
u

s
u

D
uN N N N N N N

S S
´ ´ ´ ´max max



 



DD

s
u

DNmax max 
 

v
  1´

 (19)

With:

v 0s
u s

u

D D

N
N N

 ,
max max

 
    
∑
×







. (20)

s
u  is the vector of deterministic variables such as dummies, constants or trends 

which can affect data measure ment. (Economic adjustments to the model are already 
incorporated in the states). vs

u  is the normally distributed stochastic component of 
the data errors which have variance-covariance matrices ∑s

u  that vary both with the 
time of the data and also with the information set. 

Note that the data errors are assumed to be independent of the economic shocks. 
This assumption is contestable: in many cases, one would expect data measurement 
problems to be related to the economic cycle or the entry or exit of members of the 
sample during booms and recessions.2 It can easily be relaxed in the Kalman filter 
algorithms. However, the greater generality makes it harder to identify shocks. And 
so, the possibly strong restriction that the economic and data uncertainty shocks are 
independent is imposed in order to avoid getting embroiled in identification prob-
lems at this point. Problems of identification are discussed later on. 

R s
u
 is a selector matrix which alters the number of rows to suit the number of series 

with time s data observations within the time u information set: s = 1,...,T and 
u = 1,..., t. It is assumed that there is data available in principle from time 0 to time 
T, where T is the end of the forecast, but this is quite general as R s

u  can fill in the 
holes. 

Then, the selector matrices R s
u  are formed by taking the ND max  ND max identity 

matrix and deleting rows corresponding to when there are no data series available at 
time s within information set u.

2  Data and economic shocks will also be correlated in the complicated case that information is 
not symmetric between agents and the modellor. 
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Naturally, then: 

y R ys
u

s
u

s
u= ∗  (21)

With y s
u∗  being a mythical data set where the maximum number of data series is 

always available (although with measurement error).

That the variance-covariance matrices of the data error ∑s
u  are both time and infor-

mation set het eroscedastic means that available data can be weighted according to 
how reliable that data is thought to be, but also in real time; that is, relative to when 
decisions are made and expectations formed.

B.  THE INFORMATION SET

The information sets available to agents, policymakers and the forecasters alike at 
time u is given by:

 (22)

for u = 1,...,t, t + k = T and 0 0 0 0= ∑{ }x P, , . This structure satisfies the descriptions 
given in section II.B. As shall be seen shortly, the information set up allows for a data 
set with the particular characteristics mentioned in the introduction.

C.  THE SOLUTION TO THE DATA UNCERTAINTY PROBLEM

The idea is to derive the expectations and forecasts of the economic variables in 
the model as the fixed-interval smoothed state estimates of the economic system 
(6) conditional on the measurement system (19) and (20) and the information struc-
ture (22).

Although the exposition of the Kalman filter is standard, see Harvey (1991); Durbin 
and Koopman (2001) for example, it is worth repeating here so that we can clarify our 
particular notation. Given assumptions that the residuals are Gaussian, the Kalman 
filter produces the minimum mean squared linear estimator of the state vector xt +1

using the set of observations for time t in information set u. Let us call that estimate 
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and its associated covariance . The series of these estimates are a building 

block towards what we are really interested in: the fixed interval smoothed estimates. 
We carry out this calculation for each information set, although typically we will only 
be interested in the forecasts from the last (the current) time u = t information set. 

Begin with the initial values contained in information set 1. Then the recursion runs 
from s = 1 to s = T – 1 over: 

–  (23)

Where:

And the N NDs
u  ×  gain matrices are:

K , (24)

the N  N covariance matrices of one-step estimation error are given by the Riccati 
equation:

,

and the N NDs
u

Ds
u  ×  covariance matrices of the one-step-ahead prediction errors in 

the observation data Ls
u

 are defined as: 


1

u H Hu u u u u u
s ss s s s s s−    + ∑   L R HP R H R R .

The initial values are given as: 

And: .

We also need an updated estimate at least at time T: 
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.

with a series of variance-covariance matrices: 

.

Where:

u u
s s    = + ∑   

H Hu u u u u
s s-1 s s s sF R H P R H R R

 .

The fixed-interval smoothed estimates are instead given by working backwards from 
xT T

u
½  with the following recursion:

, (25)

r R H F w L rs
u

s
u

s
u H

s
u

s
u

s
u

−

−
=    1

1


With rT
u = 0  for s = T – 1, T – 2,...,1 and the associated variance-covariance matrices 

of the smoothed prediction error given by: 

,  (26)

N R H F R H L Ls 1
u H

s
u 1

s
u

s
u H

s
u

s
u

-
-= +  s

u N

The one-step ahead predictions of the data are given by:
 

 (27)

and the smoothed predictions follow a process: 
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The N NDs
u

Ds
u×   variance-covariance matrix of the forecast error in the smoothed 

predictions of the fitted data at time s conditional on the information set u, G s
u

 is 
given by:

 = R HP R H R Rs
u

s T
u

s
u H

s
u

s
u

s
u H

ê   + ∑   .

The forecasts and fitted values of our model, which are identical to the expectations 
of agents, are given as:

. (28)

Equation (28) is possibly the most important in the paper, linking the estimates from 
the algorithm using the data to the expectations of agents. It can be thought of as an 
assumption, as it would not hold if information sets of agents and the policy modellor 
were not symmetric.

The Kalman filter algorithm also gives us other useful statistics which we can use in 
analyzing and presenting the forecast, as we shall do later on.

v.  PHILOSOPHIES FOR FINDING PARAMETER vALUES FOR 
THE DATA MEASUREMENT EQUATION

To make this idea operational, we need to describe the schemes to find values for the 

matrices H, δs
u

s

T  1
 and ∑  =s

u
s

T

1
 that describe the data measurement system.

A.  TENDER LOvING CARE 

Priors for each of the elements of these matrices could be justified and imposed on a 
case by case basis, and the rest estimated. Provided the estimations are identified, a 
large degree of generality could be allowed for here. The model could be estimated in 
separate parts (ignoring some of the interrelations) or it could be estimated together, 
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or in blocks. In any case, an appropriate estimation method, probably Bayesian, 
which balances prior information against data information, could be applied to the 
problem. As the priors are not automatic, and both the state-space and the data set 
could be very large, this could be costly to carry out and possibly even to maintain. 
But this might well be the most accurate method for building the data uncertainty 
part of the model, and may be what is needed if the demands of policy are such that 
the forecasts have to be consistent with all monitored indicators.

B.  PURPOSE-BUILT DATA SET 

The most common method used to construct the data set for a forecasting model is 
by finding one data series to match each important state variable. However, there 
will be some series —for example, the Lagrange multipliers or the flexible price 
variables— for which no good data series is available at all. They could be left to be 
solved within the model. 

For those variables for which there is a series in the data set, the choice of H is 
straightforward: where the model concept has a series to match a state variable, the 
row and column H would serve as an identity matrix. For example, if the national 
accounts GDP data corresponds to the value-added output in the model and GDP 
is the nth data series and value-added output the mth state variable, H will have a 1 
in entry (m, n) and zero elsewhere in the mth row and the nth column. Even if it can 
be assumed that that data series might on average rise and fall alongside the model 
concept, there is less reason to argue that it will be unbiased or without some noise. 
On these grounds, some systematic bias, δs

u m 0, and some data measurement 
error, ∑ ( )s

u m m, > 0, might be allowed to interfere in these relations. 

Where the model concept has no data, the consistent and transparent solution would 
be to eliminate that row in H and let the model solve for these series, by combining 
the available data with knowledge of model structure and parameter estimates. 

This method is less costly, as data series are chosen essentially based on only what 
state variables are important in the model. But the forecasts may be much worse 
than an approach that also considers what useful data is available in designing the 
match. The purpose-built data set ignores the useful technology that is in this paper 
for bringing in other useful data.
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C.  ExTENDING THE MODEL TO FIT IN DATA

Yet, there may be variables which are not needed in the core solution of the model, 
but for which there is useful data. It can be very valuable to extend the model to 
include data from these variables for two reasons. First, if that data is informative it 
should directly improve the forecast. Second, if that data is what agents and policy-
makers use, the model will need to incorporate that data if it is to predict their behav-
iour well. One example is that of money aggregates which on occasion provide very 
useful and timely information for monetary policy, but which do not play a critical 
part in the solution of many DSGE models. Another example is when there is only 
annual data available for a quarterly model. 

It is assumed that there are NM of these variables, called ms and that can be written 
as a static function of the variables in the model:


 (29)

with each em,s other and es uncorrelated Ξ4 non-singular. The key assumption here is 
that the solution for these variables can take place in a second stage after the main 
model has been solved. For example, assume that annual data is only available on a 
flow series, such as GDP:

y za,s q,s-i
i

 0 25
0

.
=
∑

3

where ya,s is the data on the annual series and zq,s-i is the unobserved (season-
ally adjusted) quarterly state, and where both the annual and quarterly series are 
expressed in terms of log deviations of steady state. This could be introduced into the 
model in the form of equation (29). 

Let us assume that these variables are related to the data according to the equation: 

y R H ms
u

Ds
u

s
u

Ds
u

D

M

D M

s

MN N N N N N×
=

× × ×1
  

 
    

1max max

+
1

+R R
v

s
u

D D

s
u

D
s
u

D D

s
u

DN N N N N N
Ξ δ Ξ6 7

max max max max max

.
   mmax 1
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Therefore, this extension of the model can be built in by adapting the measurement 
equation according to: 

y R H H x R Hs
u

s
u

M t s
u

s
u= + + +Ξ Ξ Ξ δδ4

1
3 6    



The rest of the results of the paper would follow if the following replacements were 
made in the measurement equation:

H H Hwith  M Ξ Ξ4
1

3  
.

Hδ δ Ξwith   6H



.

If the form (29) is not justified, then the original system would have to be enlarged 
to incorporate this information. 

D.  DATA INTENSIvE METHODS 

At the other extreme, very many data series, many more than there are states, could 
be included, as in Boivin and Giannoni (2006). With very many data series, it will 
be infeasible to separately impose priors on the elements of the matrices linking each 
data series to each unobserved state variables. 

What might be possible is to group the data series in terms of which state vari-
able they contain some useful information for, with the groups not necessarily being 
exclusive. There would be, at most, N groups of data. 
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One possible identifying assumption is that the common information that this 
group contains is pro portional to the state variable that indexes that group. Standard 
dynamic factor analysis methods can be used to estimate and forecast each state 
variable, with the added twist here that the unobserved behaviour of the state vari-
ables is restricted to be consistent with the economic model.

E.  SOME GENERAL PRINCIPLES TO CHOOSE THE 
DATA MEASUREMENT UNCERTAINTY

A more difficult decision is the choice of ∑s
u . Imposing case-by-case priors and esti-

mating will almost certainly be infeasible, and also unidentifiable. It would be better 
to impose some structure to reduce the degrees of freedom. One solution could be 
to assume some process for the variance to increase slowly over the sample, starting 
from time 0 up until the end of the forecast, but with that rate of increase slowing 
down. The idea is to then estimate, or calibrate, that process, taking each series at a 
time —or much more ambitiously— to estimate the series of the matrices as a whole. 
But, there may be some uneven heteroskedasticity around the current period because 
of the calendar of national accounts release. This could be dealt with by splitting the 
data set into three periods and by putting in slope dummies into the variance process 
to adjust for the regime shift. 

• The first period goes from time 0 to time T1, and takes us up to two quarters 
before the current quarter for which national accounts data is available.

• The second period is from time T1 to time T2 which is two quarters after the 
current quarter. Within this year, centered on the current time, judgement 
plays a major role. 

• The final period is from time T2 up until the end of the forecast at time T.

∑ ( ) = ∑ ( ) ∑ ( )−( )
−

∑ ∑ ∑ ∑

s end si i i i i ii i s i s i i s i s, , ,1
1

1 2 1 2     

for s T= 1,...,

with   ∑ ( ) ∑ ( )0 i i i iend, , ;<

δ
δ

 


i s

i

s t
s t1

1

for qrts
qrts









1 3
3



271enSayoS Sobre política económica, vol. 29, núm. 66, edición diciembre 2011

δ
δ

 


i s

i

s t
s t2

2

1 1
1









for
qrts

∑ ( ) = ∑ ( ) = =− + −s
u

s u ti i i i s T u t, , ,..., ,...,1 1 1 for   and 

and  for ∑ ( ) =s
u i j i j  , .0 ¹

For each data series, the T 
 
t data measurement variances across both time and 

information sets are summarised by five parameters: a starting value 0 (i,i), a final 
value end (i,i), a rate of improvement α, and two slope dummies to separate out the 
window surrounding the current time, δΣi1 and δΣi2. If a real time data base were 
available, that could be used to set estimates of the scale of data uncertainty at a 
particular lag, for example at t – 3, and through that same route to estimate t – 3 (i,i). 
These kinds of estimates should help pin down values of the parameters here.

vI.  USEFUL OUTPUTS FROM THE FORECASTING SYSTEM 

A policy forecast is judged not just on its predictability, but also on how well it tells 
stories. Indeed, often the job of the policy forecaster is to explain what went wrong! In 
order to do this, it is important to be able to decompose the forecast into two dimensions: 
first, in terms of the data and second, in terms of the economic and data measurement 
shocks. The contributions on either dimension are myriad, and so it is also important to 
think of interesting ways of summarising this information. Finally, it would be useful 
to have a metric for assessing the information worth of bits of data or whole series.

A.  DATA DECOMPOSITIONS

Consider the N NDs
u×  multiplier matrices , which when 

multiplied by the selector matrix R j
u

 
determine how much each piece of informa-

tion (data plus adjustments) from the mythical full data set at time s based on the 
information set u y j

u∗( )  affects the smoothed estimate at time s. These multipliers are 
defined by the relationship: 

. (30)
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Define N NDs
u×  the matrices Ψs

u:

Ψs
u

s
u H

s
u

s
u H

s
u H

s
u

s
u

s
u R H L K R H L R HK

           1
1 1





      


Ξ1
1

0H
s
u H

s
u

s
u

s
u s TR H L R HK for ,..., .

Then, the multiplier matrices are calculated in part backwards and in part forwards 
from time s. The recursion formulas from Koopman and Harvey (2003) are: 

; (31)

 (32)

 (33)

for j s= −1 0,..., . (34)

And:

 (35)

Θ Θ Ξs j
u

s j
u

s
u

s
u H

,
*

,
*

   1 1 K R H  (36)

with Θs s
u

s s
u

,
*  P  1 (37)

for j = s,…,T. (38)

The contributions of each piece of data to these estimates are then simply that piece 
of data multiplied by its multiplier, only that here they are also indexed by the infor-
mation sets through u. 

Publishing forecasts is about communications as much as anything else. But, if the 
central bank wants to communicate with the public, it should always refer to data 
that is publicly and objectively available1. For that reason, it is also important to 
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present the contributions of data to the smoothed estimates of the data series them-
selves. These are given by: 

. (39)

A popular maxim in policy forecasting is that it is the source of the shock that 
matters, meaning that the explanations of the forecast depend very much on what 
shocks are believed driving the forecast. It would therefore be useful to know how 
we determine these shocks; in terms of which bits of data tell us that there is a 
demand versus a supply side shock, for example. The economic shocks are given as 
the last kN members of the state vector, and so equation 6.1 can be used to generate 
this interesting decomposition. 

1.  Summarizing the Information Given by the Data Decompositions

The decompositions in this section provide a myriad of information. It is usually 
convenient to summarize that information along some relevant dimension. There are 
many interesting possibilities; but three standard aggregations spring to mind: 

1)  The contribution of each individual data series in a given set is given by add-
ing up the contributions of observations on each series over time. 

2)  The impact of the news in each data series on each forecasted variable can 
be calculated by sub tracting the contribution of each data series as it was in 
the previous information set from the contribution of that series as it is in the 
current data set.

3) The data set into the part that reflects off -model judgement and the rest.The 
role of judgements is then the sum of the contributions of those pieces of data 
which are designated to be judgement.

4) These calculations can only be in terms of the contribution exclusive to key 
variables, for example inflation and GDP, and then only over the more inter-
esting periods, such as the forecast. 

2.  The Information Contribution of Each Piece of Data to the Forecast 

The expected contributions of particular pieces of data to the forecasted variable 
were derived previously in this section. It is interesting to complement that with 
some measure of how much useful information each data series brings to the fore-
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cast, which can be thought of as a forecast error variance decomposition in terms of 
the data series. 

Tinsley, Spindt, and Friar (1980) and later Coenen, Levin, and Wieland (2004) 
describe how the infor mation contribution of a piece of data to a forecast is related to 
the reduction in uncertainty that using that data brings to the forecast. The expected 
uncertainty in two sets of variables x and y is defined as: 

H y x E f y x, ,( ) − ( )( ) º In 

where f (y,x) is their joint density. Consistently the uncertainty in just y is: 

H y E f y( ) = − ( )( ) In 

where f (y) is the marginal density of y, and the conditional uncertainty of y 
given x is: 

H y x E f y x  In   ½ ½( ) = − ( )( ) 

where f (y | x) is the conditional density of y given x. The mutual information content 
of x and y is then defined by the reduction in expected uncertainty when x is used to 
predict y: 

I y x H y H y x    ½ º ½( ) ( ) − ( )

and is always positive definite. If y and x are jointly normally distributed, Tinsley, 
Spindt, and Friar (1980) show that the mutual information content is then: 

where Ωz1z2 is the covariance matrix between two vectors z1 and z2. If x is partioned 
into two sets of information, the extra gain in using x1 alongside x2 over just using x1 
is G(y | x1, x2) where: 

G y x x I y x I y x          ½     ½ ½1 2 1,( ) ≡ ( ) − ( )
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. (40)

This is the percentage difference between the square root of the determinant of the 
conditional variance covariance matrix of y just using x1 and the square root of the 
determinant of the conditional variance covariance matrix using both x1 and x2. As 
such it seems to be a good measure of the marginal information content of x2 over 
and above x1. Note that it is not the same as mutual information content of y and x2, 
which is I (y | x2). 

This measures the information value to estimating all the states in the forecast over 
the whole sample. But, what is more likely to be of interest is to assess the informa-
tion content of a data series in terms of predicting just one state variable, and even 
then, over a particular time window. For example, the relevant question might be, 
how useful is a particular data series in predicting inflation over the two-year fore-
cast horizon? An appropriate answer would then be given by the following statistic 
based on a scalar version of (40) above.

Proposition. The extra information content of the jth data series in predicting the ith 

variable on average over the two year forecast horizon could then be measured by:
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 (41)

where the ith variable is of interest, t is the current time and the frequency is quarterly, 
and T –j indicates that all but the jth data series whose information content we want to 
measure to calculate the covariance of the states is being used. 

B.  ExTRACTING INFORMATION ON THE ECONOMIC 
CONTENT OF THE MODEL 

It is also interesting to see to what extent the forecasted values are driven by economic 
shocks. The economic content of the model can also be presented as impulse responses 
or variance decompositions as in Gerali and Lippi (2003).
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1. Economic Decompositions 

The last kNe state variables describe the exogenous economic shocks, also in terms 
of when they were first spotted. refers to the vector of state estimates of those 
state variables at time s using information set u. The lower partition described in 
equation (15) and these smoothed state estimates to recover smoothed estimates of 
the white noise components of these shocks as: 

. (42)

Then the contribution of the ith shock to the smoothed estimate at time s on informa-
tion set u is:

  , (43)

where Rei is a k N N k N N −( ) × −( )e e  matrix formed by taking an identity matrix 
and putting zeros in all but the ith diagonal element. The contribution to the smoothed 
fitted values of the data series will be:

.

Here, it should be remembered that the sum of the contributions across all shock 
will equal the smoothed estimate of the data series minus the mean bias terms 
R Hs

u
s
u

δδ .
2. Impulse Responses

To obtain the economic decomposition of the states, the decomposition is first 
written as:

= w Hx vs j T
u
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where the N ND max×   matrices Ws j T
u
, ½  are given by .
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Substituting out for the true states gives: 

  (44)

which decomposes the state estimate into the contribution of each economic shock 
and each data noise shock. Impulse responses to economic shocks or data errors can 
now be derived from expression (44). 

Similarly, the smoothed estimates of the data and the policy interest rate can be 
decomposed into shocks with a view to obtaining the impulse responses to the fitted 
data values: 

 .

3. Variance Decompositions

The variance decomposition of a state estimate is the proportion of vari ance explained 
by the variance of each type of shock at each horizon. The unconditional variance of 
the state estimates is first derived as: 

 
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Given a suitable calibration about the variance-covariance matrix of economic 
shocks E k k

H
e e[ ]



( )

 
which could be an identity matrix, expression (45) permits 

the decomposition. 

It would be useful to draw bands of uncertainty around the forecasts. The forecast 
error of the estimated state variable is:
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Similarly the covariance of the estimates of the fitted variables is:

with the covariance of the forecast error of fitted data in terms of shocks as: 

.

It should be noted, however, that these expressions do not take account of estimation 
uncertainty. That would seem to be more obviously deficient in a set up where the data 
are formally separated from the model variables. In our opinion, then, these expres-
sions should be superceded by a formal combined treatment of uncertainty and estima-
tion, and by one which is designed for policy. Such a scheme is outlined in Sims (2002) 
and applied by Adolfson, Andersson, Lindé, Villani, and Vredin (2005). 

vII.  ALLOWING FOR REPORTING vARIABLES 

One way to better exploit this wealth of information, is to introduce variables into the 
economic model which are there just for reporting. This is a very common practice 
in policy forecasting as round by round the way the forecast is presented changes 
depending on particular issues. 

Formally, the reporting variables could follow the process: 

rp H xt rp s rp s= + ,

where rp s,   is a vector of white noise residuals, allowing for the fact that reporting is 
not exact. Schorfheide, Sill, and Kryshko (2010) discuss the importance of allowing 
for these non-modelled variables and suggest how such auxiliary equations can be 
estimated. Here, more simply, the variance of these residuals is assumed to be given. 
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In keeping with the spirit of what a reporting variable is it is also assumed that these 
residuals are independent of the shocks and data noise terms in the rest of the model. 
Otherwise these variables would have to be incorporated into the model. 

The smoothed estimates of the reporting variables are: 

.

Then, the forecast of these variables can be decomposed into the contributions of 
economic shocks with: 

from equation (43). 

The impulse responses are:

 ;

and the variance decomposition follows:

.

The variance-covariance matrix of forecast errors is: 

.

vIII.  THE STATE IDENTIFICATION PROBLEM 

An identification problem arises when the values of parameters cannot be separately 
estimated given the combination of a theoretical model and a data set. This type of 
identification problems bedevils the estimation of DSGE models: see Canova and 
Sala (2006), Fukač and Pagan (2006) and Guerron-Quintana (2007) and recently 
Koop, Pesaran, and Smith (2011). Here, it is assumed that the parameter values are 
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known; and so, that particular problem has been set aside. However, it is still very 
possible that there is an identification problem in the estimates of state variables: the 
data and model together might fail to separately identify some states. Indeed, as the 
solution for states is a first step in the recursions used to estimate parameters; for 
example, as in maximum likelihood estimation, state identification could be seen a 
necessary condition for parameter identification. These problems are not generic to 
the proposal in this paper, but this procedure will certainly bring these problems to 
the fore. Therefore, it is worthwhile to spend some time discussing the problem of 
state identification. 

Weak identification can be expected to especially affect our estimates of the economic 
shocks. Remember that economic shocks have no direct data counterpart to which 
their value can be tied down. Then, it becomes more likely that the forecast of a vari-
able —even on which good data is available— is based on very unreliable estimates 
of what shocks cause those movements. 

There are many different ways in which these problems can show themselves, if one 
digs deep enough. 

One classic symptom would be if the estimates of two shocks that affect one variable 
for which there is a data counterpart were estimated to have large, but offsetting, 
contributions. Another would be if the estimate of a shock failed to update from 
its initial prior value. A different way of looking at this problem is to note that the 
data series are not separately informative about state estimates, and are in this sense 
multicollinear. This then points to yet another symptom: one which would be where 
the estimates of particular states were too sensitive to changes in the data set, as 
explained in Watson (1983). 

One subcategory of this shock identification problem is when data measurement 
errors cannot be sep arately estimated from economic shocks. This could reveal itself 
when the estimate of a data measurement error were negatively correlated with the 
economic shock. Remember that the covariances between data measurement and 
economic shocks are assumed to be zero. Relaxing that assumption would be more 
realistic but would also expose us to more identification errors of this type. 

It is difficult to offer general solutions to state identification problems. It is important 
to remember that a failure of identification has to do with the flawed combination of 
model and data —and with neither individually—. 
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Thus, there may be some shocks that can be identified with some data but not with 
others. And, there may be some shocks which are not identifiable by any data that are 
available! The solution to identification may lie either in changing the model; or, in 
looking for new data; and will probably involve some compromises in either or both 
directions. Solutions would seem to be case by case. 

But, it is possible to formulate general tests to detect identification problems. 
Burmeister and Wall (1982) offer one test for the identification problems for param-
eter estimates in state space models. Their suggestion is to keep an eye out for very 
large correlations among parameter estimates. Analogously, here high correlations 
among the estimates of the economic shocks would reveal poor identification. 

The variance-covariance matrix of the impact of the economic shocks (which are 
included in the state vector) is given in equation (45). Then, the following test can 
be constructed. 

Proposition. Given an information set u, the estimate of the economic shock impacts 
i and j at time s are not likely to be well identified separately if:

P

P P
s T
u

s T
u

s T
u

i j
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½

½ ½

>
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..

( )
( ) ( )( )0 5 0 95 . (46)

The identification problem can also be assessed from the point of view of whether 
adding a particular series to a given data set brings in more information in identi-
fying a group of variables, using test (41). 

Ix.  SOME APPLICATIONS 

In this section some experiments from applying this approach to a quarterly DSGE 
model for Colombia are reported. The model (PATACON) is described in Gómez, 
Mahadeva, Sarmiento, and Rodríguez (2011). It is an open economy model which 
has been calibrated to fit Colombian data for the period 2003-2006. The database, of 
a quarterly frequency, runs from 1994Q1 to 2006Q4, is described in Mahadeva and 
Parra (2008). 
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A. A COMPLETE FORECAST

To begin with, the first aim is to show that this model, and its database, is at least 
capable of generating a decent forecast. One can, in principle, generate a forecast 
with very little data, but that forecast could be quite poor. Adding more data can in 
principle improve that forecast. 

The Graphs 2 and 3 show the forecasts of the model for quarterly real value-added 
income (nominal GDP divided by the CPI) growth. Twelve series are included in 
the data base up until period 40 (10 years of data), and it is assumed that they are all 
perfectly measured. In this experiment, the model allows for 12 structural shocks all 
of which seem to be reasonably well identified. 

Graph 2
Forecast of Real GDP Growth with Data Up to Period 40 
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Source: DANE and author calculations.

The first Graph presents the forecast with no other data beyond the 40 quarters´ 
cutoff point. The forecast in the second Graph is based on an extra two quarters of 
inflation, interest rate, and real exchange rate data. 
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Graph 3
Forecast of Real GDP Growth with Extra Data 
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Comparing the two forecasts makes the simple point that this model is capable of 
making a decent forecast, but only if the information on recent data is included. This 
is true even if that information is from other series, given that the theoretical part of 
the model is able to interpret the linkages between these series. 

B.  ExPERIMENT TO SHOW THE IMPORTANCE OF IMPERFECTLY 
MEASURED AWKWARD DATA

This next set of experiments is about the advantage of allowing for measurement error 
in unbalanced data. The first in this next set of experiments uses data on consump-
tion and inflation only until period 47 and no more, and assumes that both series 
are well measured. The results are in Graph 4. Then, three extra quarters of data 
on CPI inflation are introduced, while still assuming that both those series are well 
measured. This is a very similar exercise to that of the previous section. Comparing 
Graph 4 with Graph 5, it seems that the extra data on CPI ensures that the boom in 
consumption in between periods 47-52 picked up. 
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Graph 4
Forecast of Consumption Growth Without Extra CPI Data
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Graph 5
Forecast of Consumption Growth with CPI Data
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However, we should be careful about leaping to the conclusion that more data always 
improves a forecast. All that has been shown is that the extra data on prices helps 
the forecast track consumption better. If those extra two data points in the CPI were 
badly measured, then what we have produced is an even worse forecast. This is a 
very real possibility in Colombia because the statistical authority only updates its 
aggregate CPI weights once every five years, and then even near term forecasts are 
subject to measurement error. 

To expand further on this point, the next experiment compares the previous two 
forecasts with one in which we allow for data mismeasurement in the extra three CPI 
data points, in Graph 6. This forecast is now a compromise between the two others; 
and, perhaps, reflects a better balance between not ignoring important data and not 
chasing it too closely.

Graph 6
Forecast of Consumption Growth Allowing for Error in CPI Data
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C. ExPERIMENTS TO SHOW THE IMPORTANCE OF OFF-MODEL FORECASTS

The next set of Graphs illustrates the use of the data decompositions. In what follows, 
there are only two economic shocks, a demand and a supply shock, and it is assumed 
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that the supply shock dominates. In the first experiment there is only noisy data 
on consumption. The task is to predict all variables in the model, including true 
consumption itself. Graph 7 shows the multipliers of consumption data in predicting 
true consumption in period 45 in this experiment. Notice that the distribution is 
symmetric about the current period. Given that there are measurement errors, 
surrounding data helps to estimate the unobserved state at the current period: only 
that here, that pattern reflects in part the dynamics of the DSGE model.

Graph 7
Kalman Smoother Multipliers on Consumption Data
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The next experiment looks into exactly how the information from off-model forecast 
of inflation in the short term helps in predicting consumption now. The experiment 
assumes perfectly measured data on consumption and inflation only until period 40, 
and then inflation data only for the next two years. These extra two years of inflation 
data are assumed to have measurement error, just as if they were forecasts from a 
separate inflation model. 

The multipliers on estimating consumption in period 45, shown in Graph 8, describe 
how inflation data —even a year ahead— plays some part in helping us understand 



overcominG the forecaStinG limitationS of forward-lookinG theory baSed modelS

pp. 246-294
288

what is happening to consumption in the absence of timely consumption data. The 
multipliers are negative because higher prices imply a lower level of consumption, 
conditional on the supply shock being important. Shown this figure, a policymaker 
would understand how his/her off-model inflation forecast would be consistent with 
his/her forecast for consumption, and so ultimately with GDP. 

Graph 8
Kalman Smoother Multipliers on Inflation Data
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Source: DANE and author calculations.

This can be compared to a forecast with data on both consumption and inflation 
up until period 53. Consumption is imperfectly measured, but the inflation data 
is assumed to be without error. Graph 9 plots the multipliers on inflation data in 
predicting consumption at period 45. It is interesting to see that the multipliers on 
future inflation data are now positive in predicting current consumption. This has to 
do with the economic dynamics of the model. Given that the supply shock is impor-
tant, higher prices now mean lower consumption level now, and so higher prices in 
the future mean lower consumption expected in the future. Intertemporal consump-
tion dictates that lower expected consumption in the future would raise consumption 
now and so the multiplier on future inflation data is positive. 
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Graph 9
Kalman Smoother Multipliers on Inflation Data
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Data about the future in the form of forecasts from external sources can be useful but 
is uncertain. To bring this out, the next experiment examines the role of imperfectly 
credible announcements of future data outturns. In this experiment, the forecaster 
is assumed to be in period 40 and trying to forecast consumption a year ahead. 
Consumption and inflation data only up until period 40 are available and both those 
series are perfectly measured. Now, information is provided to agents and forecaster 
alike on what remittances are going to be for the next two years (from periods 41 to 
49). Those announcements are not perfectly credible though; there is measurement 
error. The multipliers reveal how that future imperfect information on an important 
exogenous variable matters for the forecast of consumption in period 45. This could 
also be presented by picking out the contribution to consumption growth in period 
45 of the remittance data. In more sophisticated experiments, this technology can be 
used to explain the importance of financial market data on the expected future values 
of asset prices on forecasts of macroeconomic variables. 
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Graph 10
Kalman Smoother Multipliers on Remittances Data 
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D. ExPERIMENT TO REvEAL THE IDENTIFICATION PROBLEM

The Graph 11 illustrates the identification problems that we discussed in section 
VIII. The figure shows the contribution of two main shocks to con sumption growth 
when we do not allow for measurement error in the CPI, and when it is assumed 
that there are only two economic shocks. The model has picked up what it identi-
fies as being a very large offsetting contribution of the two shocks. It does not seem 
likely that these really have had offsetting effects on consumption, but rather that the 
model and data cannot separately identify the contribution of each, only their linear 
combination.

x.  CONCLUSIONS

The data that is informative for making monetary policy decisions comes in many 
shapes and sizes and is uncertain. In this paper, we propose one possible way of 
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putting that awkward, but still useful, data set to work in forecasting from a linear 
dynamic forward-looking model. 

Graph 11
Economic Decomposition of Consumption Growth
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There are some important practical advantages to this approach. First, it allows theo-
retical models access to the rich set of real world data that is actually in use. The 
method also stimulates different ways of presenting and explaining the forecasting. 
For example, we can present a forecast in terms of what data explains the decisions 
over key variables, and not just what set of shocks causes that forecast. The differ-
ence is that as the data is observed the forecast becomes more transparent. We also 
show how this method can cope with less than perfectly credible announcements 
of future information, such as that contained in financial market data. Last, but not 
least, this method has the advantage of separating the data preparation process from 
the model formulation and solution process. This would better suit how central banks 
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carry out their policy forecasts in practice, given that these two activities are quite 
specialized. 

That said, although we consider this approach to be a step forward, there still remain 
some important aspects of the policy forecasting problem which have not been taken 
into account. 

First, we do not deal with the possibility of inevitable misspecification, a recent 
preoccupation of the DSGE literature (Negro and Schorfheide, 2009); even though, 
as Maih (2010) shows, the benefits of conditioning depend crucially on misspecifica-
tion. An important source of misspecification and forecast error in DSGE models 
is down to drift in economic relations, which are assumed to be fixed in the steady 
state of these models. For example, it is often observed that the imports to GDP and 
exports to GDP ratios rise persistently with greater openness. Our data uncertainty 
method is not designed to deal with such trending economic shocks. 

Second, we do not discuss how the parameters of the economic model are estimated 
or calibrated. We discuss alternative procedures for estimating the measurement 
system that links the data to the unobserved economic model, but we do not do 
that in much depth. As such, we do not allow for parameter estimation effects in 
this decomposition of the contributions of different data series. Neither have we yet 
tackled the problem of estimating the whole distribution of these impulse responses 
and decompositions of the forecasts, and not just the mode value, as this would need 
to take account of parameter estimation uncertainty. We do provide some expres-
sions for the asymptotic conditional uncertainty of the forecast; but without formal 
treatment of estimation uncertainty, we cannot claim that this is a serious presenta-
tion of the forecast distribution. 

We do not allow for second-order approximations of the form popularised by 
Schmitt-Grohé and Uribe (2004). Nor do we allow for asymmetric risks in the fore-
cast which has become common central bank practice following Britton, Fisher, 
and Whitley (1998). 

Finally, as the set up here is based on a linear model, or more precisely a linearised 
version of a nonlinear model, this strategy does not apply to nonlinear solution 
methods, such as that presented in Laxton and Juillard (1996) and Pichler (2008). It 
is our hope that we, and others, will be able to apply some common solutions to these 
problems within our apparatus.
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