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SEISMIC PROSPECTION

This study presents an intelligent model based on probabilistic neural networks (PNN) to produce a 
quantitative formulation between seismic attributes and hydraulic flow units (HFUs). Neural networks 
have been used for the last several years to estimate reservoir properties. However, their application 
for hydraulic flow unit estimation on a cube of seismic data is an interesting topic for research. The 
methodology for this application is illustrated using 3D seismic attributes and petrophysical and core 
data from 6 wells from the Kangan and Dalan gas reservoirs in the Persian Gulf basin. The methodology 
introduced in this study estimates HFUs from a large volume of 3D seismic data. This may increase 
exploration success rates and reduce costs through the application of more reliable output results in 
hydrocarbon exploration programs. 4 seismic attributes, including acoustic impedance, dominant fre-
quency, amplitude weighted phase and instantaneous phase, are considered as the optimal inputs for pre-
dicting HFUs from seismic data. The proposed technique is successfully tested in a carbonate sequence 
of Permian-Triassic rocks from the studied area. The results of this study demonstrate that there is a good 
agreement between the core and PNN-derived flow units. The PNN used in this study is successful in 
modeling flow units from 3D seismic data for which no core data or well log data are available.

Este estudio presenta un modelo inteligente basado en redes neuronales probabilísticas (PNN) para pro-
ducir una formulación cuantitativa entre atributos sísmicos y unidades de flujo hidráulico (HFU). Las 
redes neuronales han sido utilizadas durante los últimos años para estimar las propiedades de reserva. Sin 
embargo, su aplicación para estimación de unidades de flujo hidráulico en un cubo de datos sísmicos es 
un tema importante de investigación. La metodología para esta aplicación está ilustrada a partir de datos 
tridimensionales y datos petrofísicos y de núcleo tomados en 6 pozos de las reservas de Kangan y Dalan, 
de la cuenca del Golfo Pérsico. La metodología introducida en este estudio estima las HFU de un gran 
volúmen de datos sísmicos tridimensionales. Esto podría incrementar los índices positivos de explora-
ción y reducir los costos a través de una aplicación más confiable en resultados de producción para los 
programas de exploración en hidrocarbonos. Cuatro atributos sísmicos, obstrucción acústica, frecuencia 
dominante, fase de amplitud media y fase instantánea, son considerados en este trabajo como aportes 
claves para predecir los datos sísmicos de las HFU. La técnica propuesta ha sido evaluada exitosamente 
en una secuencia carbonada de rocas del Pérmicotriásico tomadas del área de estudio. Los resultados de 
este trabajo demuestran que hay concordancia entre la base de las PNN y las unidades derivadas de flujo. 
Las PNN utilizadas en este estudio son capaces de modelar unidades de flujo de datos sísmicos tridimen-
sionales para los cuales no hay un centro de datos o una secuencia de datos disponible.
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Introduction

Among the various geophysical techniques available for reservoir cha-
racterization, 3D seismic attributes have proven to be among the most 
useful. One of the greatest strengths of 3D seismic attributes is the dense 
and regular sampling of data over the region of interest, providing images 
that accurately represent the areal extent of the features of interest. When 
seismic amplitude changes associated with the features of interest are not 
noticeable on vertical sections, horizontal time or horizon slices often yield 
distinct patterns that are easily recognizable. Among the more valuable 
seismic attributes are those sensitive to reservoir impedance, thickness or 
geomorphology. Although there are a few hundred seismic attributes that 
are in common use today, here we discuss the application of post-stack 
attributes for the estimation of hydraulic flow units. Acoustic impedance, 
dominant frequency, amplitude weighted phase and instantaneous phase 
attributes are used as optimal attributes for the estimation of hydraulic 
flow units. We demonstrate that the value of using these attributes is useful 
in mapping the HFUs in the Persian Gulf Kangan and Dalan supergiant 
gas reservoirs.

Because well log data are sparse and seismic data contain low verti-
cal resolution, combining both datasets is an important task for reservoir 
characterization. Reservoir characterization is a conceptual model of a re-
servoir or oil and gas field that can be constructed from sparse data, such 
as well data or from low vertical resolution data, such as seismic data or 
a combination of both datasets. The well logging is sparse in space, but 
seismic logging has a high resolution in the space direction compared with 
well logging.

Usually many seismic attributes are available and can be combined 
with well data for the estimation of flow units. The last decade has wit-
nessed significant advances in the study and application of expert systems 
in the petroleum industry. The establishment of the existence of an intel-
ligent formulation between two sets of data (inputs/outputs) has been the 
main topic of such studies. One such topic that has been of great interest 
is to characterize how 3D seismic data are related to lithology, rock types, 
fluid content, porosity, shear wave velocity and other reservoir properties. 
Petrophysical parameters, such as water saturation, porosity and permea-
bility, are important data for hydrocarbon reservoir modeling. Previous-
ly, several researchers have worked on predicting these parameters from 
seismic data using statistical methods and intelligent systems (Nikravesh 
et al., 1998; Balch et al., 1999; Trappe and Hellmich, 2000; Nikravesh 
and Aminzadeh, 2001; Wong and Nikravesh, 2001; Meldahl et al., 2001; 
Russell et al., 2002; Russell et al., 2003; Nikravesh and Hassibi, 2003; 
Russell, 2004; Aristimun and Aldana, 2006; Chopra and Marfurt, 2006; 
Soubotcheva and Stewart, 2006).

The introduction of petrophysics and petroleum engineering science 
into the mathematics and computer science area has played a significant 
role in solving petroleum industry problems. The application of artificial 
intelligence techniques, such as artificial neural networks, fuzzy logic and 
genetic algorithms, in reservoir characterization has been considered to 
be a milestone in the last decade’s improvements in the petroleum indus-
try, which has resulted in a significant decrease in exploration expenses 
(Dezfoolian and Sanaee, 2012). Generally, geological, petrophysical and 
seismic data are not clear-cut and are associated with inherent uncertain-
ties. Artificial neural networks have become one of the most modern and 
robust techniques for the analysis of geosciences data. These networks are 
able to recognize patterns between a set of input and output data (Rezaee 
et al., 2007; Kadkhodaie-Ilkhchi et al., 2006; Kadkhodaie et al., 2009).

Regional geology

In the studied field (Fig. 1), gas accumulation is mostly limited to the 
Permian–Triassic stratigraphic units. These units are known as the “Kan-
gan–Dalan Formations,” which constitute very extensive natural gas reser-

voirs in the field and Persian Gulf area. In addition, this area is composed 
of a carbonate–evaporate series commonly known as the Khuff Formation.
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Fig. 1. Map of the studied area in the Persian Gulf, south of Iran.

The gas-condensate bearing reservoirs of this field belong to the Kan-
gan formation of the Triassic age and Dalan formations of the Permian 
age. These carbonate formations were deposited in a shallow marine envi-
ronment during a general marine transgression that began in the middle of 
the Permian age and lasted until the early Triassic age. The basal section of 
the Dashtak formation, which was formed throughout the lower, middle 
and upper parts of the Triassic period, is composed of argillaceous siltsto-
ne, shale and dolomite, with anhydrite interbeds. The remaining middle 
and upper parts mainly consist of dolomite intercalation. The Dashtak 
formation is known to be a good seal for the Kangan-Dalan reservoirs. 
In Arabian nomenclature, the Kangan and Dalan reservoirs are equiva-
lent to the Khuff Formation. Within these reservoirs, there are 4 main 
producing levels, which from top to bottom are K1, K2, K3 and K4, each 
separated by anhydritic layers. Each of these levels has been divided into 
several subzones. A massive anhydrite body, known as the Nar Member, 
separates K4 from the underlying K5 member that exhibits poor reservoir 
characteristics.

K1 and K2 are Kangan’s producing layers. The dolomitic part of K1 is 
characterized to be mudstone, mudstone to packstone, beige, moderately 
hard to hard, crystalline to cryptocrystalline, have occasional pelloids, peb-
bles and shell fragments, have local mudcracks in mudstone, slightly argilla-
ceous in parts, have thin layers of anhydrite and o have good to fair vuggy 
and intercrystalline porosity. Its limestone is defined as mudstone, wacksto-
ne, off white to white, cream to light brown, brownish gray, soft, amorphous, 
chalky, cryptocrystalline to microcrystalline, brittle to crumbly, washable, 
slightly argillaceous, having traces of re-crystallized calcite and having poor 
to not visible porosity. It also contains anhydrite, which is white, off white, 
soft to firm, amorphous, cryptocrystalline and washable. On the other hand, 
K2 consists of limestone and dolomite. The limestone can be illustrated as 
mudstone, wackstone, grainstone, white to off white, cream, light gray, light 
brown, soft to firm, microcrystalline to fine crystalline, dolomitic and anhy-
dritic in parts, and slightly argillaceous. The dolomite section is an alterna-
tion of grainstone with oolites and cream packstone, moldic and vuggy fair 
to good porosity and moderately hard to hard.

The second important hydrocarbon bearing formation is the Dalan 
formation, which is composed of the 3 main producing layers of K3, K4 
and Nar. The K3 and K4 layers mainly consist of anhydrite, dolomite and 
limestone. The K3 dolomites are gray to dark gray, dark brown, brittle, 
fine crystalline, slightly argillaceous, hard to moderately hard, locally cal-
careous, micro-sucrosic, traced with oolites and pelloids and characterized 
by poor to visible porosity. The K3 anhydrite is characterized as milky 
white, soft to firm, amorphous, microcrystalline to cryptocrystalline, and 

is washable. Its limestone section is mainly mudstone and wackstone and 
can be light gray, off white, light grayish brown, soft, amorphous, cryp-
tocrystalline to microcrystalline, chalky in parts, moderately argillaceous 
and having no visible porosity. On the other hand, the K4 dolomites are 
thin alternations of mudstone-wackstone with packstone-grainstone, light 
brown, light brownish gray to gray, moderately hard to hard, cryptocrysta-
lline to microcrystalline, locally crystalline, brittle, sucrosic, traced with pe-
lloids and oolites, locally argillaceous and carbonaceous and characterized 
by good visible porosity. The limestone part includes mudstone-wackstone 
and packstone-grainstone and is light brown, light gray, microcrystalline, 
oolitic, traced with pelloids and characterized by good visible porosity. The 
anhydrites in K4 are milky white, soft to firm, amorphous, cryptocrysta-
lline and washable. Nar consists of anhydrite and dolomite. The anhydrite 
section can be summarized as white to milky white, soft to firm, amor-
phous, cryptocrystalline to microcrystalline, massive and washable; the as-
sociated dolomite section is light brown to light brownish gray, moderately 
hard to hard, compact, cryptocrystalline to microcrystalline, sucrosic and 
characterized by no visual porosity.

Data used in this article was collected from the drilled wells in the 
Kangan and Dalan carbonate formations pertaining to the studied field.

HFUs classification 

HFUs are defined as correlatable and mappable zones within a reser-
voir that control fluid flow. Each flow unit is characterized by a flow zone 
indicator (FZI), which can be understood in terms of the relationship bet-
ween the volume of void space ( ) and the geometric distribution of pore 
space (quantified as the reservoir quality index, RQI) as follows (Amaefule 
et al., 1993):

                                                                            (1)

Where    and    is the effective porosity.                                                             (2)

RQI can be calculated using the following equations:

                                                                                                  (3)

The FZI can be rearranged in terms of the measurable RQI as given 
below:

                                                                                                                 (4)

Where k is permeability in mD and  is the fractional porosity.

Rocks with a narrow range of FZI values belong to a single hydraulic 
unit, i.e., they have similar flow properties (Prasad, 2003). To estimate 
core-derived HFUs from 3D seismic attributes, which is the main objec-
tive of this study, the FZI data are calculated for 4 cored wells in one of 
the Persian Gulf hydrocarbon fields using the available porosity and per-
meability data. In this paper, data collected from the drilled wells and the 
3D seismic data from the Kangan (K1 & K2), Dalan (K3 & K4) and Nar 
carbonate formations are presented. The formations that fall within the 
age of the Permian-Triassic range are known as reservoir formations, which 
cover large regions of the Persian Gulf. Flow unit classification is carried 
out on the basis of calculated flow zone indicators. Graphical clustering, 
using the RQI-   plot, is found to be the simplest analytical method 
for determining the flow unit numbers, although it is not sufficient to 
distinguish between different flow units or to estimate their boundaries. 
To overcome these limitations, hierarchical cluster analysis is performed 

(Matlab user’s guide, 2012). Cluster analysis starts by setting the number 
of flow units equal to the number of samples, then gradually merging the 
samples with similar FZI values into joint clusters. The sum squared error 
(SSE) in the log FZI calculation from the known primary porosity and 
permeability is evaluated using classifications with a different number of 
flow units (clusters) (Fig. 2a). The results show that any increase in the 
number of clusters above 5 does not lead to a significant reduction in the 
flow units estimation error. The clustering of FZI data is performed on the 
basis of the logarithm of FZI values because the FZI values calculated from 
actual field data usually exhibit a log-normal distribution. Because the FZI 
distribution is a superposition of multiple log-normal distributions, a his-
togram of log FZI values should show N number of normal distributions 
for N number of HFUs. Therefore, a histogram analysis is used as an alter-
native tool for clustering analysis. Fig. 2b shows the histogram of a log FZI 
distribution over the cored intervals. This is another efficient method for 
identifying the optimal number of flow units. In this regard, 5 HFUs are 
distinguished. This is consistent with the results of cluster analysis, indica-
ting the reliability of the method applied. The flow units identified in the 
studied reservoir are as follows:

HFU 1: log FZI< -0.37
HFU 2: -0.37< log FZI< 0.19
HFU 3: 0.19< log FZI< 0.73
HFU 4: 0.73< log FZI< 1.36
HFU 5: log FZI> 1.36

(a)

(b)

Fig. 2. (a) The sum squared error (SSE) in the log FZI calculation from known 
porosity and permeability, using classifications with different number of HFUs. 

(b) Histogram of the calculated flow zone indicator.
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The geological description of the clustered flow units is as follows.

HFU1: Shaly limestone and shaly dolostone with anhydrite inter-
beds; mudstone.

HFU2: Limestone; mudstone to packstone.
HFU3: Dolostone; mudstone to packstone.
HFU4: Limestone and dolomitic limestone; grainstone.
HFU5: Dolostone and limy dolostone; grainstone.

Porosity-permeability cross-plots for these flow units are shown 
in Fig. 3. This graph demonstrates that the subdivision of the stud-
ied reservoir into flow units illustrates the stronger relationships be-
tween porosity and permeability within each individual flow unit. 
The relationship between RQI and  is used to show that samples 
with similar FZI values lie close together on a semilog plot of poros-
ity versus permeability (Amaefule et al., 1993). Fig. 4 shows a plot 
of RQI versus  for data from all cored intervals. HFU1 shows a 
poor reservoir quality with low to average permeability and porosity. 
HFU1 is mainly composed of fine grained, well rounded, moderately 
sorted sequences with high clay content. HFUs 2 and 3 have low to 
medium reservoir quality. HFU 4 has medium to good reservoir qual-
ity. HFU5 is composed of facies with high permeability and porosity 
values with an excellent reservoir quality. After identification of the 
flow units, we will attempt to merge them with seismic traces at well 
locations. The process of converting a 3D seismic cube to reservoir 
flow units is discussed below.

Fig. 3. Cross-plot showing the porosity-permeability 
relationship of HFUs 1-6 for all of the cored wells.

Fig. 4. Plot of RQI versus  for all of the cored intervals.

Correlation of well logs with seismic data

In the first step of this study, well log data are correlated to seis-
mic data. Synthetic seismograms are generated for the available wells, 
including F-105, F-109, F-113, FD112B-108, FD112C-108 and 
FD112D-108. The acoustic velocities from the sonic logs are multiplied 
by the bulk density values from density logs to compute the acoustic im-
pedance logs. This impedance is converted to reflectivity, which is then 
converted from depth to time using a suitable time–depth relationship. 
Finally, the reflectivity in time is convolved with an appropriate wavelet 

to produce a synthetic seismogram. The depth-to-time conversion of the 
well logs is accomplished by applying checkshot data, which has been 
supplied for all wells. It was necessary to create synthetics and to extract 
the wavelets iteratively for the placement of the log data in time. This 
depth-to-time process allowed for a comparison of the well logs and their 
associated tops with the seismic data in time. Horizon interpretations 
and geologic well tops are used as an aid in determining a time–depth 
relationship for deviated wells. The results of wells-to-seismic tie for 
wells FD112B-108, FD112C-108 and F-113 are illustrated in Fig. 5. As 
shown in the figure, the correlation between the synthetic seismogram 
(blue) and composite trace (red) at FD112B-108, FD112C-108 and 
F-113 is 0.92, 0.98 and 0.79, respectively.

Post-stack Seismic Inversion

A seismic reflection occurs when there is a change in acoustic imped-
ances in the earth’s layers. Post-stack seismic inversion is the process that at-
tempts to remove the seismic source signature (wavelet) effect, which con-
sequently reconstructs the velocity or impedance structure of underground 
layers from stacked seismic traces. It is assumed that the stack section does 
not contain the wavelet effect due to its removal by deconvolution. There-
fore, wavelet side lobes are removed, and the tuning effect is diminished 
and resolution is increased. As such, a seismic reflection can be considered 
as the opposite of forward modeling, which involves creating a synthetic 
seismic section based on a model of the earth. To extract the seismic acous-(a)

(b)

(c)

Fig. 5. Samples of wells to seismically tie at wells  
(a) FD112B-108, (b) FD112C-108 and (c) F-113.

(a)

(b)
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predicting HFUs are shown in Table 2. As seen in Table 2, adding more at-
tributes improves the prediction process. This does not always mean that the 
added attributes are able to predict the true signal in the target data. The valida-
tion error can be considered as a criterion for determining when to stop adding 
attributes to the input set. The MSE (mean square error) between the real and 
estimated data is calculated. Training data are presented to the network during 
training, and the network is adjusted according to its error. The training set 
is used to train and create the network. The actual output of the training set 
data is used to develop the weights in the network. Validation data are used to 
measure network generalization and to halt training when generalization stops 
improving. The validation set is used to evaluate the accuracy of the newly built 
network by providing the network with a set of data it has never observed. 
According to Table 2, the first 4 attributes composed of acoustic impedance, 
dominant frequency, amplitude weighted phase and instantaneous phase are 
considered to be the optimal input sets for predicting HFUs.

Design of a probabilistic neural network for the estimation of HFUs 

A probabilistic neural network (PNN) is a forward feed network built 
with 3 layers that can be used for predicting both continuous or discrete 
(classification) data. It was first proposed by Specht (1990) and is based 
on a distance concept between objects. It is a fast and efficient method to 
map a set of input data to their outputs. Pj is the distance scale factor for 
each of the input attributes. The only parameter of the PNN that needs 
to be optimized is the scale factor, Pj. In comparison with the other types 
of neural networks, such as the multi-layer perceptron that requires many 
parameters to be optimized, a PNN is simple, fast and efficient. The opti-
mal value of Pj is obtained when the validation error reaches its minimum 
value. For optimizing distance scale factor Pj, the range parameter is taken 
between 0.10 and 3.00. The number of Pj values to evaluate is set at 25. 
The optimized values of Pj are as follows:

Acoustic impedance: 0.425; dominant frequency: 0.626; amplitude 
weighted phase: 0.885; instantaneous phase: 1.894; and global Pj: 1.014. 
The MSE of PNN models in the test data is measured as 0.015654. This 
error magnitude is obtained from the testing well.

Finally, using the PNN constructed for this research, the 3D seismic data 
of the studied reservoir are converted to HFUs. Seismic sections showing the 
distribution of the PNN estimated HFUs for testing data are shown in Fig. 8. 
This figure shows estimated HFUs for seismic data. As seen in Fig. 8, seismic 
sections crossing the well location indicate that the reservoir is mainly compo-

(a)

(c)

Fig. 6. Sections from the seismic inversion results crossing well locations (a) FD112B-108, (b) FD112C-108  
and (c) F-113. The color scale is acoustic impedance. The P wave log is plotted to show the location of wells.

tic impedance as a 3D seismic attribute, a seismic inversion is carried out.
A post-stack seismic inversion is the process by which we analyze 

stacked seismic traces and attempt to reconstruct the velocity or imped-
ance structure of the earth. First, an initial geological inversion model is 
created for the seismic inversion. An important component for building 
the model for the seismic inversion is a set of seismic horizons. These 
horizons are used to guide the interpolation between wells. When the 
model is built, the seismic data are ready for the inversion process. This 
process is performed in 2 stages. Fig. 6 shows the seismic impedances de-
rived from post-stack seismic inversion crossing the well locations (wells 
FD112B-108, FD112C-108 and F-113). The inversion result is an attri-
bute that is used for this research. The color scale is acoustic impedance. 
The seismic volume has been processed through a model-based inversion 
algorithm to produce an acoustic impedance volume. This volume is used 
as an attribute in the process. The color scale is shown in acoustic imped-
ance units, with the higher acoustic impedance colored red to purple. The 
low acoustic impedance values are green to yellow. The acoustic impedance 
cubes are generated for all of the 3D seismic surveys using a model-based 
seismic inversion algorithm. The acoustic impedance cube is generated as a 
strong input to support the estimation of the HFU cube. Fig. 7 compares 
the well log impedance and the seismic impedance in wells FD112B-108, 
FD112C-108 and F-113. Table 1 shows the correlation and error between 
the well log impedance and the seismic impedance in wells FD112B-108, 
FD112C-108 and F-113.

Table 1. Correlation and error between well log impedance and seismic  
impedance in wells FD112B-108, FD112C-108 and F-113.

Well Correlation Error

FD112B-108 0.950 0.320

FD112C-108 0.969 0.293

F-113 0.962 0.282

Selection of optimal seismic attributes

Generally, the purpose of applying several statistical and intelligent 
models is to find linear and non-linear relationships and structures between 
input and output data. For this purpose, there should be a logical relation-
ship between the input and target parameter. In this section, the statistical 
relationships between the input data (seismic attributes) and output data (log 
FZI) are investigated through the application of a multi-regression analysis. A 
multi-regression analysis is a simple and practical method to find the strongest 
inputs for predicting a target parameter. Accordingly, the multi-attributes to be 
used in the construction of the ANN models are chosen based on the trend 
obtained from regression analysis. The results of a multi-regression analysis for 

(b)

(c)

Fig. 7. Comparison between well log impedance and seismic impedance  
in wells (a) FD112B-108, (b) FD112C-108 and (c) F-113.
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Table 2. Multi-attribute list for predicting the hydraulic flow units.

Attribute 
number Final attribute Training error Validation 

error

1 Acoustic impedance 0.212654 0.312354

2 Dominant frequency 0.156062 0.225605

3 Amplitude weighted 
phase 0.089112 0.113027

4 Instantaneous phase 0.067245 0.098850

5 Quadratur e trace 0.065526 0.106321

6 Integrated absolute 
amplitude 0.060235 0.126905

7 Filter 35/40–45/50 0.056960 0.185030

8 Apparent polarity 0.051005 0.230362

9 Second derivative 0.046215 0.344566
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sed of flow units 2, 3 and 4, with good reservoir quality. According to Figs. 3 
and 4, HFU 5 has the best reservoir quality, HFU 1 shows the worst reservoir 
quality and HFUs 2, 3 and 4 have good reservoir quality. These HFUs are 
shown in Fig. 8 separately. Fig. 9 shows a data slice through the PNN neural 
network that results in 1600 ms for studied area. As shown in this figure, the 
HFUs can be observed on the slice image, but the HFUs are not more obvious 
compared to what can be observed on the section image.

Conclusion

In this study, a PNN is used for the classification of HFUs from 
seismic attributes. The methodology introduced in this study is able to 

estimate HFUs from a large volume of 3D seismic data. This may in-
crease exploration success rates and reduce costs through the applica-
tion of more reliable results in hydrocarbon exploration programs. By 
analyzing core data and investigating its relation to seismic attributes, it 
is possible to offer a model for HFU prediction from 3D seismic data. 
The sum squared error (SSE) in the log FZI calculation from the known 
porosity and permeability data is used as a criterion for the identification 
of the optimum number of flow units. A histogram analysis is used to 
evaluate the results using classifications of the different number of flow 
units (clusters). The statistical relationships between input data (seismic 
attributes) and output data (HFUs) are investigated through the applica-
tion of multi-regression analyses. Accordingly, the multi-attributes to be 

used in the construction of ANN models are chosen based on the trend 
obtained from regression analyses. The validation error can be considered 
as a criterion for determining when to stop adding attributes to the input 
set. 4 attributes, including acoustic impedance, dominant frequency, am-
plitude weighted phase and instantaneous phase, are considered to be the 
optimal inputs for predicting HFUs. The optimized values of the scale 
factor (Pj) in PNN are defined as follows: acoustic impedance: 0.425; 
dominant frequency: 0.626; amplitude weighted phase: 0.885; instanta-
neous phase: 1.894; and global Pj: 1.014.

Among the various attributes used, acoustic impedance shows a strong 
correlation with log FZI data. The results of this study show that a PNN is 
successful for converting a 3D volume of seismic data to flow units. Neural 

(a) (c)

(b) (d)

networks are still among the fastest and most robust tools for reservoir mo-
deling and characterization. 

The results of this research provide a unique parameter, the Flow Zone In-
dicator, for delineating the number of layers (hydraulic units) required for the 
assignment of geological and petrophysical parameters in numerical simulators.
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Fig. 8. Sections showing the distribution of PNN estimated hydraulic flow units at the location of the wells (a) F-105, (b) F-109, (c) F-113, (d) 
FD112B-108, (e) FD112C-108 and (f ) FD112D-108. The studied flow units are characterized sedimentologically as follows: HFU1: shaly limestone 

dolostone with anhydrite interbeds, HFU2: limy mudstone to packstone, HFU3: dolomitic mudstone to packstone, HFU4: dolomitic limy grainstone and 
HFU5: dolostone and limy grainstone.

the research council of the University of Tehran, which enabled him to 
perform this research.

References

Amaefule, J. O., Altunbay, M., Tiab, D., Kersey D. G., and Kedan, 
D. K. (1993). Enhanced reservoir description: Using core and log 
data to identify hydraulic (flow) unites and predict permeability in 

uncored intervals / wells. SPE. 26436: 1-16.
Aristimun, O. J., Aldana, M., (2006). Fuzzy logic prediction of petrophysical 

parameters (porosity and velocity) at La Faja del Orinoco, Venezuela. Eu-
ropean Geosciences Union, Geophysical Research Abstracts. 8. 03825.

Balch, R.S., Stubbs, B.S., Weiss., W.W., Wo, S., (1999). Using artificial 
intelligence to correlate multiple seismic attributes to reservoir pro-
perties. Proceedings of the Society of Petroleum Engineers Annual 
Technical Conference, Houston, TX, USA. 553–566.

Chopra, S., Marfurt, K., (2006) .Seismic attributes- a promi-
sing aid for geologic prediction: Canadian Society of Explora-

tion Geophysicists Recorder 2006 Special Edition. 111–121.
Dezfoolian, M. A., and Sanaee, R. (2012). A Comparison of Reservoir 

Mineralogy Prediction Utilizing Logging Data and Elastic Wave Ve-
locities by Virtue of an Artificial Neural Network in South Pars Field. 
Petroleum Science and Technology. 30: 817–829.

Kadkhodaie, A., Rezaee, M.R., Rahimpour-Bonab, H. and Chehrazi, A. 
(2009). Petrophysical data prediction from seismic attributes using 
committee fuzzy inference system, Computers & Geosciences. 35: 
2314–2330

Kadkhodaie-Ilkhchi, A., Rezaee, M.R., Moallemi, S.A. (2006). A fuzzy logic 
approach for the estimation of permeability and rock types from conven-
tional well log data: an example from the Kangan reservoir in Iran Offs-
hore Gas Field, Iran. Journal of Geophysics and Engineering 3: 356–369.

Matlab User’s guide. (2012). Statistical toolbox, Matlab CDRoom. The 
Math Works, Inc.

Meldahl, P., Heggland, R., Bril, B., Groot, P., (2001). Identifying faults 
and gas chimneys using multiattributes and neural networks. The 
Leading Edge. 20: 474–478.

Nikravesh, M., Aminzadeh, F., (2001). Mining and fusion of petroleum 
data with fuzzy logic and neural network agents. Journal of Petroleum 
Science and Engineering. 29: 221–238.

Nikravesh, M., Hassibi, M., (2003). Intelligent reservoir characterization 
(IRESC). Proceedings of IEEE International Conference on Indus-
trial Informatics 2003. Banff, Alberta, Issue, 21–24: 369–373.

Nikravesh, M., Novak, B., Aminzadeh, F., (1998). Data mining and fusion 
with integrated neuro-fuzzy agents: rock properties and seismic atte-
nuation. Proceeding of JCIS 1998, The Fourth Joint Conference on 

Information Sciences, North Carolina, USA.
Prasad, M. (2003). Velocity-permeability relations within hydraulic units. 

Geophysics. 68: 108-117.
Rezaee, M.R., Kadkhodaie-Ilkhchi, A., Barabadi, A. (2007). Prediction of 

shear wave velocity from petrophysical data utilizing intelligent sys-
tems: an example from a sandstone reservoir of Canarvon Basin, Aus-
tralia. Journal of Petroleum Science and Engineering. 55: 201–212.

Russell, B.H. (2004). The application of multivariate statistics and neural 
networks to the prediction of reservoir parameters using seismic at-
tributes. Ph.D. Dissertation, University of Calgary, Alberta. pp. 392.

Russell, B.H., Lines, L.R., Hampson, D. P., (2003). Application of the ra-
dial basis function neural network to the prediction of log properties 
from seismic data. Exploration Geophysics. 34: 15–23.

Russell, B.H., Ross, C.P., Lines, L.R., (2002). Neural networks and AVO. 
The Leading Edge. 21 (3): 268–277.

Soubotcheva, N., Stewart, N., (2006). Predicting lithology and porosity at 
the pikes peak heavy oilfield, Saskatchewan using 3D seismic data and 
well logs. Canadian Society of Exploration Geophysicists Recorder. 
35-39.

Specht, D. (1990). Probabilistic neural networks. Neural Networks 3. 
109–118. 

Svirsky, D., Ryazanov, A., Pankov, M., Yukos, E.P., and Corbett , P.W.M. 
(2004). Hydraulic flow units resolve reservoir description challenges 
in a Siberian Oil Field. SPE. 87056.

Trappe, H., Hellmich, C., (2000). Using neural networks to predict poro-
sity thickness from 3D seismic. First Break. 18 (9): 377–384.

Wong, P.M., Nikravesh, M., (2001). Introduction: field applications of 
intelligent computing techniques. Journal of Petroleum Geology. 24 
(4): 381–387.

Fig. 9. A data slice through the PNN neural network results at 1600 ms. The predicted HFUs are shown in color.
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