
La buena interpretación de datos estadísticos de refracción sísmica depende de la identificación acertada y confiable 
de los tiempos de llegada. Los primeros tiempos de llegada se pueden identificar en un gráfico o imagen por picado 
convencional, pero este proceso depende de factores externos como la escala y la calidad de información de la 
imagen, el índice de amplitud, la sensibilidad del cursor de recolección y la experiencia del usuario. Bajo estas 
consideraciones, la identificación de los tiempos de llegada bajo información ruidosa se vuelve más compleja e 
inestable. En este estudio, la técnica de Correlación Cruzada (CCT, en inglés), que es ampliamente trabajada en el 
proceso de análisis de datos de reflexión, se utilizó para seleccionar los primeros tiempos de llegada en información 
sísmica ruidosa o no ruidosa con un proceso semiautomático. La CCT redujo la dependencia en el usuario y bajó 
el nivel de selección incorrecta causada por el ruido ambiental al desplegar características y factores de escala. La 
CCT se ha probado en modelos sintéticos con diferentes contenidos de ruidos y diversa información de campo. 
El error de la norma Chi-cuadrado se utilizó para evaluar el desempeño de las selecciones. En adición, los efectos 
de las pequeñas diferencias de tiempo entre el proceso convencional de selección y la CCT se han demostrado en 
una tomografía reflexiva de velocidad. Además, se estima que el método propuesto es una contribución útil a los 
métodos existentes de la recolección de los primeros tiempos de llegada. 
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SEISMOLOGY

The high-quality interpretation of seismic refraction data depends on the accurate and reliable identification of the 
first arrival times. First arrivals can be identified on a graphic or image by conventional picking, but this process 
depends on external factors, such as the scale and quality of the imaging data, amplitude ratio, sensitivity of the 
picking cursor and user experience. Under these considerations, identifying first arrivals in noisy data becomes more 
complex and unstable. In this study, the Cross-Correlation Technique (CCT), which is widely used in the process of 
analyzing reflection data, has been used to pick the first arrival times in noisy or noiseless seismic refraction data by 
a semi-automatic process. The CCT has reduced the dependence on user and decreased incorrect picking caused by 
environmental noise, displaying characteristics and scaling factors. The CCT has been tested with synthetic models 
with different noise contents and various field data. The Chi-square error criterion was used to assess the performance 
of the pickings. In addition, effects of small-time differences between the conventional picking process and the 
CCT have been demonstrated on a refraction tomography velocity section. Therefore, we believe that our proposed 
method is a useful contribution to the existing methods of first arrival picking. 
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1. Introduction

One of the principal methods for near-surface exploration is the analysis of 
seismic refraction data. This method conventionally requires the picking of first 
arrivals of direct and head waves on many shot records. Determining the arrival 
times of seismic events is the first step in the conversion of seismic observations 
to geological models. To obtain a high degree of consistency between travel 
time data and the seismic model, it is important to use appropriate data for  f the 
inversion process (Leung, 2003). Generally, the identification of first arrivals in 
seismic refraction data depends on shallow geological structure, source type, 
and the signal to noise ratio (SNR). If the data are collected from complex 
geological structures or have low SNR, the automatic picking of the first travel 
times becomes a difficult process (Yilmaz, 2001). 

First arrival picking techniques can be divided into manual and automatic 
(Cox, 1999). Manual picking depends on visual inspection of the amplitudes, 
operator’s visual estimation capacity and experience, the scaling factor, and the 
quality of data imaging. These issues in data processing are time consuminging 
and can lead to inaccurate picks due to picking-operator subjectivity. Moreover, 
if seismic data contain various types of noise, the picking of first arrivals may 
not be simple and reliable. As a result, when the data volume is large and the 
data quality is poor, the picking procedure can take up to 20–30% of the total 
processing time (Sabbione and Velis, 2010).

Automatic picking techniques, on the other hand, involve machine picking 
according to certain criteria. They are more efficient than manual picking but 
may also lead to false picking (Mausa et al., 2011). Depending on the increase 
in the volume of data and the significant development of computer technologies 
in recent decades, many automatic or semi-automatic techniques have been 
developed to pick first arrivals. First studies for this purpose were based on 
the correlation of sequential traces and delay times between sequential arrival 
times (Peraldi and Clement, 1972). Hatherly (1982) used the least squares 
method with the first kick concept to define first arrival times. Gelchinsky 
and Shtivelman (1983), Ervin et al. (1983) suggested using the correlation 
properties of signals and statistical criteria. McEvilly and Majer (1982), Coppen 
(1985), Baer and Kradolfer (1987), Gu et al. (1992), and Earle and Sharer 
(1994) obtained first arrivals by using the energy ratios of signals. Murat and 
Rudman (1992), Kusuma and Fish (1993), and McComack et al. (1993) applied 
neural network algorithms on the seismic data to detect first breaks. Boschetti 
et al. (1996) and Xu et al. (1999) conducted fractal dimensional analysis to 
determine first arrivals on seismic traces. Yung and Ikelle (1997) used a bi-
spectrum process instead of the traditional correlation method. Bois (1980), Liu 
and Fu (1982), and Wu and Nyland (1987) incorporated pattern recognition into 
the picking process. Keho and Zu (2009) presented an alternative approach using 
peak spikes and comparison of adjacent traces. Blais (2011) suggested the use 
of an optimization technique with an objective function and similarity of wave 
features. Liao et al. (2011) picked first breaks by spectral decomposition using 
minimum uncertainty wavelets. Mausa et al. (2011) presented a new technique for 
first arrival picking of refracted seismic data based on digital image segmentation. 
All techniques described above have advantages and disadvantages.    

In this study, we propose to apply the CCT, which is an efficient approach 
in vibro-seismic reflection data processing, to extract reflectors, inon refraction 
data and detect first arrival times more accurately by semi-automatically process 
and. The Cross-Correlation (CC) process often produces side-lobes that arrive 
before the first break, thus complicating the picking process. To overcome this 
problem, we have developed a semi-automatic picking procedure. The entire 
process involves three steps. The first step of the method consists inof obtaining 
a source wavelet according to the noise content of the dat aa and using the 
source wavelet as an input to the CC process. The second stage is the cross-
correlation between the source and traces in seismic refraction data. In the last 
stage, the first arrival times are automatically determined in the area marked by 
the user with linear lines on the cross-correlated output.

The effectiveness of the CCT is tested by means of noisy, noiseless 
synthetic and real data. Tests have shown that the method provides a faster 
and more reliable picking process, and it is an efficient approach to detect first 
breaks in all data types.  

1.1 Factors Affecting the First Arrival Pickings

It is difficult to detect the first breaks in noisy seismic refraction data. 
Even ifwhen it is possible, general opinion is that the first arrivals are in the 
form of a nearly straight line, and since because the human eye works in this 
direction, the arrival times for each receiver loses sensitivity.

Filtering is the first option to make noisy data more understandable. 
However, the amplitudes of the first arrivasl have low energies and variable 
waveforms compared to other traces in the data. In that case, filtering is a 
troublesome process and sometimes it may cause erroneous results. Moreover, 
different filter band ranges and slopes have some characteristic effects on signals. 
Filtering low frequencies increases the side lobe of the signal. In contrast, the 
signal waveform  the signalis extended without affecting the any side lobes 
when using high-cut filters. The filter slope is another parameter impacted by 
the filtering process. The energy of the wavelet tends to shift with an increasing 
slope of the filter (Geldart and Sheriff, 2004). These effects are shown on a zero-
phase Ricker wavelet in Fig. 1 by Butterworth filtering, with different frequency 
bands and slope values. Red ticks on the filter outputs indicate the real first break 
times. However, when the slope and high cut frequency of the filter increase, 
the first break points apparently move forward from the real point. In contrast, 
when the slope and low cut frequency of the filter increase, the first break points 
remain constant, but side lobes exist, leading to false picking.      

Figure 1. Effects of low and high cut filters, and slopes of filters on 
zero phase Ricker wavelets with a center frequency of 50 Hz (upper row). The 

parameter “n” shows the filter degree of the Butterworth filter. Red ticks show the 
real first arrival time on the original Ricker signal.

The difficulties in the conventional process of first arrival picking, 
especially for noisy data, are related to numerous effects, such as human 
operator experience, sensitivity and capacity of the operator’s eyes, scale of the 
imaging and data amplitude, sensitivity of the picking cursor axes, and SNR. 
Therefore, the process is time consuming. 

The imaging scale and amplitude of the data directly affect the accuracy 
of the picked time (Douglas et al. 1997). The first arrivals picked at low-level 
amplitudes have delays compared to those picked at high levels because some 
earlier low-amplitude events will be masked by high levels, and normalization 
is not sufficient in these cases. Time scale is important to the sensitivity of the 
picking cursor. If the cursortime axis is too narrow, the sequenced picked times 
may appear very similarsimultaneously, which will cause an inaccurate picking.
usesthe alsthe  values

All the above-mentioned factors appear in the conventional picking 
process of the first breaks, which is performed on “an image” by clicking or 
marking. To overcome the difficulties inherent toin the traditional process, 



109A Semi-Automatic Approach to Identify First Arrival Time: the Cross-Correlation Technique (CCT)

picking must be done directly  with the numerical values of amplitudes and 
be performed independently for each channel by mathematical approaches 
and attributes. In this paper, an attempt is made to devise a simple and quick 
procedure, the CCT, to obtain accurate and sensitive first travel times in 
refraction data.  

2. Method
Our method is based on the simple and practical CC technique. It is well 

known that the CC process is not affected by random noise in signals. This is 
an unique and useful feature of the CC process under noisy conditions. It can 
permit us to obtain travel times independently of noise, and it is possible to 
increase the quality of first breaks. 
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From Eq. (1), CC requires two inputs in the time domain: data st and 
the source wavelet wt. If the seismic data are modeled as a linear system, the 
source wavelet becomes an input, the linear system is a homogeneous layered 
earth, and the output is the refraction data. According to this linear system, each 
seismic refraction datum is influenced by its source. Therefore, the correlation 
function, which is generated by the CC of the refraction signals and source, has 
a maximum correlation value where the data and source wavelet appear to be 
the same waveform or shape. Consequently, the first break time is defined as the 
time of the maximum correlation value on the time axis.  

The theoretical accuracy of the proposed method has been shown in Fig. 
2(a) on a simple and noiseless synthetic signal generated by the previously 
mentioned linear system. The correlation function, the CC of the source and 
data, has a maximum correlation value where itthe function entirely matches 
with the first break at 17.25 ms. To demonstrate the success of the CC process 
under the random noise condition, this basic application was repeated with 
5% and 15% random noise (Fig. 2(b), 2(c), respectively). In both cases, the 
maximum correlation value indicates itself on the same theoretical first break 
time as in the noiseless one.

Figure 2. Examination of noise effects on a simple theoretical waveform 
for the CCT for a (a) nNoiseless signal, with (b) 5% and (c) 15% random noise. 

The vertical green dashed line shows the maximum value of the CC and indicates 
the first break point. Note that although the noise increases, the location of the first 

break point remains equalunchanged.   

3. Synthetic Applications

The CCT was tested by means of synthetic models under different noise 
conditions. In the synthetic tests, data were generated by the convolution of a 
modified sine wave as a source with an impulse series that had a single impulse 
for each channel on the calculated theoretical wave travel time sample (Fig. 
3). Our earth model was based on the superposition of a horizontally layered, 
homogenous model, and we confine ourselves to a single interface with 
parameters as given in Table 1.

Figure 3(d) indicates the results of the CCT on 24 channels of noiseless 
synthetic seismic refraction data. The semi-automatic picked times havehad 
high accuracy compared to theoretical wave arrivals. This consistency was 
demonstrated by a chi-squared error value with a 95% confidence interval. 
Figure 3(c) shows flagged lines, which were used to restrict the automatic 
search area of first breaks. This restriction must be applied to shorten the 

process time and reduce failed picks under real field conditions that may have 
several maximum correlation values at late times caused by side-lobes.

Table 1. Synthetic model parameters

Synthetic Model Parameters Synthetic  Data Parameters

Velocities (m/s)

V1: 350 Time sampling (ms) 5

V2:1200 Number of samples 401

Interface depth (m) 10 Number of receiver 24

Receiver interval (m) 2

Offset (m) 5

Figure 3. Application of the CCT to synthetic data: (a) Source wavelet, (b) 
impulse series, (c) correlation section and first break searching area (red lines), (d) 

comparison of output of CCT and theoretical first breaks.

The synthetic tests were extended to data with three different noise contents: 
i) 30% random noisy data as high-frequency noises (Fig. 4), ii) 0.15% system 
noise as low frequency, coherent noise (Fig. 5), and iii) mixed noise as both 30% 
random and 0.15% system noise (Fig. 6). While first breaks were determined with 
9.30*10-2 ms and 6.92*10-1 ms chi-squared error for the data for random and 
system noises data, respectively, the error value was 4.96*10-1 ms for the mixed 
noisy data. These results demonstrate that the CCT is an useful process even in the 
case of different levels of noise because of the nature of the CC process.

Figure 4. CCT performance in the case of 30% random noise: (a) Data with 
random noise, (b) first arrival times from theoretical and the CCT. 

Figure 5. CCT performance on data with 0.15% system noise: (a) Data with 
system noise, (b) first arrival times from theoretical and CCT. 
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Figure 6. CCT performance on data with mixed noises (30% random, 0.15% 
system): (a) Data with mixed noise, (b) first arrival times from theoretical and CCT. 

4. Real Data Examples

Data were gathered from different fields containing various frequencies 
and types of noise to demonstrate the flexibility of this method. Data sets were 
provided by the Seismic Data Process Group at the Geophysical Engineering 
Department of Karadeniz Technical University, in Trabzon, Turkey. All 
field data were collected at 12 receivers with varying spreads on a ES3000 
seismograph by 8 kg hammer impacts, using a time sampling of 0.25 ms. 

In the semi-automatic process, we hadencountered two major issues: i) 
polarity changes between channels, ii) source wavelet estimation for the data 
that is acquired from uncontrolled sources. Polarity changes of waves are 
caused by complex or inordinate near-surface conditions. In the last stage of 
the CCT, first breaks are searched in the marked area as a maximum correlation 
function value. In the case of a polarity change, the correlation function assumes 
a negative rather than positive maximum value. Therefore, the automatic 
searching for first breaks must be applied to absolute values of the correlation 
function to avoid affecting polarity changes.

The selection of an optimum source type in field studies relates to the 
desired source wavelet, portability, cost, repeatability, and environmental 
damage and safety factors. Considering these factors, the uncontrolled sources, 
such as hammer and weight-drop apparatus, are the most suitable ways to acquire 
seismic refraction data sets. However, In addition tothe source shapes and the 
frequency band ranges of uncontrolled sources generally change between shots, 
so they are not completely explained by fixed mathematical functions. This 
situation is a considerable issue for CCT applications in uncontrolled source 
data. Eq. (1) shows that a source wavelet function is necessary for CC and is a 
single and dominant input to generate a reliable correlation function and travel 
time. Therefore, a reliable estimation of the seismic source can be a pivotal 
point for a successful picking process.

We offer three ways to determine the source wavelet function from 
uncontrolled source data: i) by choosing a wavelet on the trace with high SNR, 
ii) by inverse Fourier transformation according to center frequency of a smooth 
average power spectrum of the data, iii) by generating suitable mathematical 
operator functions. According to noise content, the user must decide which 
option is most appropriate.  

Our experiences have shown that seismic refraction data can be divided 
into four categories according to noise content and ease of picking the first 
arrival times:
a) nearlyNearly noiseless data with clear first arrivals
b) Data containing high frequency environmental noises (i.e. industrial and traffic)
c) Data with an altered waveform for most receivers and unknown noise 
sources in the subsurface or on the ground
d) Data with very low SNR, in which it may be impossible to pick first breaks

     Our experimental analyses show that the source wavelet can be estimated 
directly on a clear channel for a-type data, whilea the smooth spectrum approach is 
very useful on b-types. To generate a source function in the cases of c and d-types, 
a mathematical operator will be suitable. Moreover, a mathematical function can be 
adapted to data with numerous minimum phase function approaches. We shall 
concentrate on a source estimation step because of its direct importance to the 
accuracy of the time picking. If possible, it has been suggested that the source 
wavelet to be used should initially be chosen on a clear channel. 

CCT applications have been illustrated several times for each type of real 
data to verify effectiveness and usability. First arrivals picked from clean data 
with high accuracy can be observed in Fig. 7(a) and 7(b). Applications of the 
proposed method on high and low frequency noises are shown in between Fig. 
7(c) and 7(f), and Fig.  and respectively. Fig. 7(g) and 7(h) illustrate instances 
of the picking with a mathematical operator and smooth spectrum application 
on hard data compared with others. We used the earlier part of a modified sine 
function as a mathematical operator. Furthermore, the estimated source wavelets 
have been shown in Fig. 8, following the same sequences in the data imaging. 
Effectiveness and accuracy of the CCT directly depend on the estimated source 
wavelet. We suggest using the half the length of the estimated source wavelet 
in the CCT. However, our tests indicate that when the data includes more noise, 
the length may be longer.          

Refraction tomography is becoming a common method to estimate the 
accuracy of near-surface velocity models. This process also depends on the 
picking of first arrivals of refracted data and tomographic inversions are very 
sensitive to each individual travel time. One of the main difficulties with the 
refraction tomography is the low SNR characterizing the first break waveform, 
especially for far-offset receivers. Moreover, our experiences have shown that 
other seismic refraction data interpretation methods, such as the Delay Time 
Method, can also be affected. Therefore, we want to demonstrate that small 
time differences between first arrivals may have a substantial effect on seismic 
velocity and thickness sections. 
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Figure 7. First break picking (red dots) on real data by the CCT (horizontal and vertical axis, respectively, offset (m) and time (s)): (a-b) Nearly clean data, (c-d) data 
with random noises, (e-f) altered waveform and low frequency noises, (g-h) data with more noise in each channel.

Figure 8. The estimated source wavelets from data in Fig. 7 that have been 
used in CCT processes.

We used two different seismic refraction data sets (Cases 1 and 2) that 
were recorded with 12 channels to search sliding surfaces in a land-fill area 
interface. Some shots for Cases 1 and 2 are illustrated in Fig. 9. is The data does 
not include more noise than the data of types a and b. We chose this data set 

specifically to demonstrate the importance of small time differences between 
traditional picking and the CCT in tomographic solutions. However, because 
we lack well-log information about the working area, we avoid comparing both 
tomographic results in terms of structural interpretation. Therefore, we prefer to 
work with reliable and fairly clear data sets. Both data sets were picked using the 
traditional method and CCT (Fig. 10). The obtained maximum, minimum and 
mean absolute time differences of first breaks for each shot are shown in Table 
2 for each case. We used to the same tomographic inversion parameters for both 
data sets in each case  to makeprovide a better comparison. Tomographic results 
for Cases 1 and 2 are shown in Figs. 11 and 12, respectively.  Generally, the 
depth of layer interfaces are nearly the same, but their resolution and stability 
are comparable. This is exactly our main intention.

In Table 2, the mean absolute time difference for Case 1 is 1.212 ms.. 
Although this value seems small, it can cause unexpected effects on the solution. 
At the first glancesight of Fig. 11, layer interfaces are flatter in the traditional 
result, so the lateral resolution is lower than that obtained by the CCT. This result 
occurs because the human operator inherently desires to pick first breaks on an 
approximately straight line and based on a trend of first breaks on neighboring 
channels. Therefore, each channel cannot be evaluated independently in the 
traditional picking procedure; thus, the dependency inherently causes loss of 
resolution. In contrast, in the CCT, first breaks are picked independently on 
each channel. In this way, the lateral resolution of velocity sections can increase, 
and more reliable results can be obtained. In Fig. 11, the area between 23-26 m 
on the first layer interface (marked by I) is unexpectedly truncated instead of 
continuing toward the end of the line. In contrast, the continuity of the first layer 
interface in this area can be clearly observed from the CCT section. Moreover, 
the traditional velocity section has a scattered and nebulous area for the second 
layer interface between 20-23 m (marked by II), but this area is more stable in 
the CCT section. In Case 2, the increases in lateral resolution for the first and 
second interface are clearly seen in the whole CCT section, even though the 
mean difference is only 1.370 ms between data sets.
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Figure 9. (a,b,c) Seismic refraction records from different shot points for Case 1 (a,b,c) and Case 2. (d,e,f). Examples for Case 2.
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Figure 10. Picking of first arrival times by the CCT and traditional method for (a) Case 1 and (b) Case 2. The green stars show the shot locations.

Table 2. Comparison of time differences between CCT and traditional method.
Case 1 Case 2

Shot 
Number

max(abs(dif))
(ms)

min(abs(dif))
(ms)

mean(abs(dif))
(ms)

max(abs(dif))
(ms)

min(abs(dif))
(ms)

mean(abs(dif))
(ms)

1 1.506 0.033 0.654 2.682 0.082 0.911
2 3.292 0.187 1.091 3.450 0.130 1.423
3 3.825 0.099 1.427 4.225 0.095 1.547
4 3.063 0.283 1.848 3.380 0.250 1.798
5 2.862 0.025 1.039 2.350 0.125 1.170

mean 1.212 1.370
max(abs(dif)): maximum absolute differences 
min(abs(dif)): minimum absolute differences
mean(abs(dif)): mean of absolute differences for a shot 
mean: mean of absolute differences for all shots

Figure 11. Comparison of the tomographic inversion results for Case 1 using 
(a) the traditional method and (b) the CCT. The color scale shows P-wave velocity.

Figure 12. Comparison of tomographic inversion results for Case 2 using (a) 
the traditional method and (b) the CCT. The color scale shows P-wave velocity.
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5. Conclusions

In this paper, we introduce a new procedure based on a semi-automatic 
first arrival pick, called the CCT. The procedure overcomes traditional picking 
difficulties and provides an accurate, reliable method of picking first arrival 
times with a basic mathematical approach. The obvious benefits of the 
CCT are that the algorithm allows detection of travel times on each channel 
independently and reduces misleading human operator effects. Moreover, the 
picking of first arrivals can be performed without random noise and complex 
near surface effects due to the nature of CC. Synthetic and real data examples 
show that the estimation of a seismic source is the pivotal decision for success 
because the source function is the basic information being searched for during 
the CC process. Hence, if the input of CC has ambiguities, the correlation 
section may produce deceptive correlation values. To avoid possible erroneous 
picking, the user must maintain an active position during the determination 
of the possible source wavelet and mark borders of an automatic searching 
area on the correlation section. The resulting tomograms show that small time 
differences in first break pickings are important and effective on all results that 
can be obtained from refraction data.
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