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Since it is relatively time-consuming to determine compression ratio from oedometer tests and there exist difficulties 
associated with working on waste materials, it will be useful to develop models based on waste physical properties. 
Therefore, present research attempts to develop proper prediction models using ANFIS and ANN models. The 
compression ratio was modeled as a function of the physical properties of waste including dry unit weight, water 
content, and biodegradable organic content. A reliable experimental database of oedometer tests, taken from the 
literature, was employed to train and test the ANN and ANFIS models. The performance of the developed models 
was investigated according to different statistical criteria (i.e. correlation coefficient, root mean squared error, and 
mean absolute error) recommended by researchers. The final models have demonstrated the correlation coefficients 
higher than 90% and low error values; so, they have capability for acceptable prediction of municipal solid waste 
compression ratio. Furthermore, the values of performance measures obtained for ANN and ANFIS models indicate 
that the ANFIS model performs better than ANN model.

El índice de compresión de residuos sólidos es un parámetro esencial para la evaluación del asentamiento de un 
basurero municipal. Debido al desgaste de tiempo para determinar el índice de compresión a partir de pruebas 
edométricas y debido a las dificultades asociadas al trabajo con materiales desechados es necesario desarrollar 
modelos basados en las propiedades físicas de los desechos solidos. Además, la presente investigación pretende 
desarrollar modelos de predicción apropiados a partir de los esquemas ANFIS y ANN. El índice de comprensión 
se modeló como una función de propiedades físicas de desechos que incluyen el peso seco de una unidad, el 
contenido de agua y el contenido orgánico biodegradable. De la literatura se tomó una base de datos confiable 
de pruebas edométricas experimentales que fue empleada para preparar y evaluar los modelos ANFIS y ANN. 
El desempeño de los modelos desarrollados fue investigado de acuerdo con diferentes criterios estadísticos 
(por ejemplo, el coeficiente de correlación, el error cuadrático medio y el error medio absoluto) recomendados 
por investigadores. Los modelos finales han demostrado coeficientes de correlación mayores al 90 por ciento 
y valores bajos de error. Esto significa que estos modelos tienen una capacidad de predicción aceptable  para 
el índice de comprensión del basurero municipal. Además, los valores de las medidas de desempeño obtenidos 
para los modelos ANFIS y ANN indican que el modelo ANFIS tiene una mayor asertividad que el modelo ANN.
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Introduction
 
 Settling municipal solid waste (MSW) is a significant issue considered 

in geotechnical design of a landfill. Waste settlement influences the stability, 
deformation, and structural performance of landfills (Chen et al., 2010). The 
settlement of MSW is composed of three mechanisms: primary compression, 
mechanical creep, and bio-compression (Sowers, 1973; Edgers et al., 1992; 
Wall and Zeiss, 1995; El-Fadel and Khoury, 2000; and Bareither et al., 2011). 
Primary compression occurs quickly in response to self-weight and an external 
load applied to the waste. Secondary compression (i.e. Mechanical creep) is 
due to long-term slippages, reorientation of particles, and delayed compression 
of some waste constituents. Bio-compression is related biochemical processes 
associated with the decomposition of biological solids and gas generation. A 
commonly used parameter for predicting the primary compression strain in 
MSW is the compression ratio (C’c):

                                                                                                                  (1)
 

 where  εi is the primary compression in MSW, σ vo
'

 
is the existing 

vertical effective stress and Δσ v
' is the change in the vertical effective stress. 

The compression ratio represents the slope of the curve of the strain versus 
the logarithm of the effective pressure. It is conventionally determined through 
an oedometer test and is related to the compression index (Cc), which is 
commonly applied for soils by the equation C 'c = CC

1+ e0
, where e0 = initial void 

ratio. Considering some difficulties in calculating the initial void ratio of the 
waste materials, it is usually preferred to use the compression ratio instead of 
the compression index.

  There have been several studies investigating the effect of 
various parameters on waste compressibility. Chen et al. (2010) and Landva 
et al. (2000) examined waste samples with different initial densities. Their 
results demonstrate that an increase in the waste density reduces the C’c. 
Experimental works conducted by Sowers (1973), Swati and Joseph (2008), 
and Chen et al. (2009) on waste settlement revealed an increase in organic 
compounds and compressible materials could bring about an increase in 
C’c. Karimpour-fard and Machado (2009) and Chen et al. (2009) tried to 
examine the compressibility of waste samples that were at different ages. 
The results demonstrated that an increase in the age; thus, further waste 
decomposition decreased the waste compressibility and compression ratio. 
Durmusoglu et al. (2006) tested waste materials with a natural moisture 
content and field capacity moisture. The results indicated that wastes with 
field capacity moisture had a higher C’c than those with a natural moisture 
content. Other researchers, such as Vilar and Carvalho (2004) and Reddy et 
al. (2009b), examined waste samples with a similar composition and a dry 
unit weight. They reported higher C’c values for wastes with higher water 
contents. Earlier experimental works introduced such parameter as dry unit 
weight, water content, and contribution percentage of biodegradable organic 
materials (paper, food wastes, and yard wastes) as the most significant 
factors which affect the compressibility of municipal solid waste.

 Earlier studies have addressed the effect of some parameters on waste 
compression ratio. It is to be noted that determining compression ratio through 
an oedometer test is time-consuming. Another problem with doing this test 
on waste materials is the scale effect. Owing to the fact that the particles of 
waste materials are much larger than those of fine-grained soil, it is not 
possible to precisely determine the waste compressibility by commonly used 
oedometers such as Casagerande oedometer. In many cases, therefore, any 
precise investigation of the compressibility behavior of waste entails designing 
and manufacturing oedometer instruments that suit the size of waste materials. 
Also, owing to the specific nature of waste materials, it would be hard to work 
on them. Therefore, it seems necessary to develop models that are based on 
effective parameters measured through more simple experimental methods. In 
recent years, soft computing methods such as neural networks and neuro-fuzzy 
have been used successfully to solve a wide variety of problems in geosciences 

εi =Cc
' σ v0

' +Δσ v
'

σ v0
'

and geotechnical engineering. These include the estimation of the prediction 
of compression ratio of soils (Park and Lee, 2011; and Ozer et al., 2008), 
strength parameter modeling of different soils (Sezer, 2013; Khanlari 
et al., 2012; and Heshmati et al., 2009), Simulation of waste generation 
(Noori et al., 2009), estimation of probability of the liquefaction (Hanna 
et al., 2007; and Venkatesh et al., 2013). In the present study, two soft 
computing methods, i.e. adaptive neuro fuzzy inference system (ANFIS) 
and neural network (ANN), have been utilized to propose efficient models 
for predicting the compression ratio of MSW.

Artificial neural network (ANN)

A neural network consists of parallel layers of simple computational 
elements called ‘artificial neurons’. All of the layers are connected to each 
other by interconnection weights. Figure 1(b) shows an artificial neuron 
model. The artificial neurons basically include three parts: weight, bias and 
transfer function. In each neuron, coming signals from the previous layer,

ix , are multiplied by the related adjustable connection weight, ijW , and then 
summed in addition to an bias value,

 
θ j , . Then the combined input, jI , is 

passed through a nonlinear transfer function, )( jIf , to yield the output of 
the neuron (yi) (Jaksa et al., 2008). Output of each neuron creates the input of 
the neuron in the next layer. This process is summarized in Equations (2) and 
(3), and illustrated in Fig 1(b):

                    
                     (2)

                                                                                                                                (3)

Fig. 1 (a) The feed forward neural network structure used for modeling 
compression ratio of MSW, (b) The artificial neuron model

One of the most practical artificial neural networks for solving the 
problems of engineering and geotechnics is Multi-Layer Perceptron (MLP) 
network (Khanlari et al., 2012). The MLP networks contain an input layer, 
one or more hidden layers, and one output layer. This network is a feed-
forward network, the information of which only flows in one direction, from 
the input to the output. Figure 1 depicts a three-layered feed-forward network. 
MLP utilizes a supervised learning technique called ‘back propagation’ for 
training the network. Back propagation algorithm is one of the most common 
supervised learning algorithms for training feed forward multilayer networks. 
This algorithm involves two main phases, namely forward pass and backward 
pass. In the forward pass, an input training pattern is shown to the network, 
and its effect propagates in the network layer by layer until the output of 
the network is obtained. In the forward pass, the error between the network 
prediction and the target value is calculated and distributed; then, by means of 
a technique called gradient descent, it is propagated from the output layer to 
the input layer in order to reduce the error value. This process is iterated, and 
the weights are updated until the summed square of the errors comes below an 
acceptable value. To enhance speed and performance of the back propagation 
algorithm, Levenberg-Marquardt algorithm can be alternatively used instead of 
the conventional gradient descent method.

I j = wji∑ xi +θ j

yi = f (I j )
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 Adaptive neuro-fuzzy inference system (ANFIS)

Neuro-fuzzy systems are the result of the integration of fuzzy logics 
and artificial neural networks. So they benefit from the advantages of both 
fuzzy systems and neural networks. In this hybrid method, the fuzzy system 
provides the relation between input and output variables, while parameters of 
membership functions of the fuzzy system are optimized by the neural network. 
One of the well-known neuro-fuzzy models is adaptive neuro-fuzzy inference 
system (ANFIS) which is capable of modeling any nonlinear function with a 
desirable accuracy (Jang et al., 1997). ANFIS uses a feed forward network to 
optimize the parameters of a fuzzy inference system and perform well on a 
given task. The most common fuzzy inference system with this compatibility 
located in an adaptive network is Takagi-Sugeno fuzzy system. The first order 
Sugeno model was adopted in this study as it is also extensively used in many 
engineering problems. An example of the first order Sugeno fuzzy inference 
system with two inputs, one output and two membership functions for each of 
the inputs is illustrated in Figure 2(a). Two typical if-then rules can be stated for 
such a model (Sugeno and Kang, 1998): 

                                      (4)

                   If x = A2and y = B2 then f2(x,y) = p2x + q2y+K2          (5)

where A1, A2, B1, and B2 are the membership functions for inputs x and 
y, respectively, while k1, p1, q1 and k2, p2, q2 represent the parameters of output 
functions for the two defined rules. The discussed architecture of the ANFIS 
is also depicted in Figure 2(b). It can be seen that calculations of the ANFIS 
model are implemented in five layers. The detail and formulation on ANFIS 
are addressed by Jang et al. (1997). ANFIS utilizes a back propagation learning 
algorithm or a hybrid algorithm which is an integration of back propagation 
and least square techniques in order to generate fuzzy rules and tune member 
function.

Fig. 2 (a) The first order Sugeno fuzzy model, (b) corresponding ANFIS 
architecture (Padmini et al., 2008)

 Experimental Database

A valid database was used for modeling. It included the results of 64 
oedometer tests on MSW as well as information related to the tested waste 
properties such as dry unit weight (γd ), dry weight water content (ωd ), and 
percentage of biodegradable organic materials (OM ) obtained in previous 

f x = A1and y = B1 then f1(x,y) = p1x + q1y+K1

studies. A considerable part of these data and references cited by Bareither et al. 
(2012) were combined with the data provided by Hyun II et al. (2011), Reddy 
et al. (2011), and Karimpour-fard and Machado (2012). The employed data are 
indicated in Table 1. The physical properties of wastes (i.e ωd,γd, and OM) 
were used as the input parameters and the cC ' as the target in the ANFIS and 
the ANN models.

 

Table 1. The sources of the database

Reference No. of oedometer Test

Beaven and Powrie (1995) 5

Chen and Lee (1995) 1

Gabr and Valero (1995) 6

Landva et al. (2000) 4

Olivier and Gourc (2003) 1

Vilar and Carvaleho (2004) 4

Olivier and Gourc (2007) 2

Stoltz and Gourc (2007) 1

Chen et al. (2009) 5

Reddy et al. (2009a) 3

Reddy et al. (2009b) 4

Reddy et al. (2009c) 3

Reddy et al. (2011) 5

Chen et al. (2010) 2

Stoltz et al. (2010) 9

Breither et al. (2011) 6

Hyun II et al. (2011) 1

Karimpour- fard and Machado 

(2012) 2

In order to simulate the compression ratio, the database was randomly 
divided into two subsets, training and testing subsets. The training subset was 
used to calibrate the models, and the testing subset was used for validation of 
the developed models based on the training subset. The selection was such that 
the maximum, minimum, and mean value as well as the standard deviation 
of the parameters got to be close to each other in the training and the testing 
of the sub- sets. Eighty percent of the data (51 cases) were assigned for the 
training subset and twenty percent (13 cases) for the testing subset. To control 
network overtraining and over-fitting, the training set was divided into two 
subsets: training and cross validation. The use of about 10% of the training 
data as a cross validation set has been suggested by researchers (Kucuk 2008). 
As a result, in this study, 10% of the training subset was randomly taken and 
used for cross validation. The statistical properties of the divided subsets are 
summarized in Table 2.
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Table 2.  Statistical properties of the training and testing sets

Parameter Statistics
Training

data 

Testing 

data

d (%)ω
Max 151.00 135.00
Mean 71.02 73.79
Min 15.60 31.30

Std Dev 33.72 34.59

γd 

(KN/ m3)

Max 12.50 9.14
Mean 5.48 5.85
Min 2.45 1.86

Std Dev 1.86 2.18

OM (%)

Max 60.00 60.00
Mean 32.91 34.12
Min 0.49 2.00

Std Dev 19.79 20.03

C’c

Max 0.39 0.34
Mean 0.24 0.21
Min 0.09 0.14

Std Dev 0.06 0.07

Performance measures

Various statistical parameters including correlation coefficient (r), root 
mean squared error (RMSE), and mean absolute error (MAE) were investigated 
in order to evaluate the efficiency and accuracy of the proposed models. These 
parameters are defined as:

                                                                                                           

               (6)                                                                                                         
                                                                                                              
             
                (7)

                                                                                                                
                 (8)

In equations (6), (7) and (8), n is the number of the data,  Mi and  Pi
display the measured and predicted values, respectively. Also, M and Pare the 
mean values corresponding to the measured and predicted values, respectively.

Development of ANN model

As the topology of a network directly influences its computational 
complexity and generalization capability, it is important to devise appropriate 
network architecture in neural network modeling.  This needs determination of 
the number of hidden layers and the number of neurons in each layer. Theoretical 
works have revealed that a multilayer feed forward network with one hidden 
layer is able to approximate any continuous and complex nonlinear function 
with the desired degree of accuracy (Hornik et al., 1989). Consequently, one 
hidden layer was used in this study. 

The number of neurons in the input and output layers is dependent on 
the number of model inputs and outputs. The input layer of the ANN model, 
developed in this study, has tree neurons, including one for each input. 
The output layer has only one neuron representing the measured value of 
compression ratio. The ANN performance is influenced by the number of 
neurons in hidden layers.  However, there are no specific guidelines that can 

r =
(Mi −Mi=1

n
∑ )(Pi −P)

(Mi −M )
2 ( (Pi −P)

2
i=1

n
∑i=1

n
∑

RMSE =
(Mi −Pi )

2
i=1

n
∑

n

MAE = 1
n

Mi −Pii=1

n
∑

be used to select the optimum number of neurons in a hidden layer for a 
given problem. This parameter is often selected through a trial and error 
method. To obtain the optimum network architecture, different numbers 
of hidden-layer neurons, from 3 to 8, were employed to train different 
networks. Finally, an appropriate ANN network with best performance 
was selected by considering r and RMSE values of the testing data set and 
the training data set.

A back-propagation algorithm was used to train the MLP neural 
network. Specifically, the Levenberg–Marquardt algorithm was used to 
improve the speed and efficiency of back propagation algorithm. Also, 
a tan-sigmoid function was used as the activation function in the hidden 
and output layers. After the training phase, the generalization capability 
of the trained model was evaluated using the test data set (13 data). The 
output value of the optimal network, compression ratio, can be calculated 
by equation (18):

            
  
               (9)

where W1 and W2 are the weight matrices, and b1 and b2 are the biases 
vectors. The values of these parameters are presented in Table 3.

Development of ANFIS model

In the ANFIS system, each input parameter must be clustered into 
several class values in order to form fuzzy rules, and each fuzzy rule is 
made up of two or more membership functions .Various methods have been 
proposed for the clustering of the input parameter and development of the 
rules, the most common of which are: “Subtractive Clustering” method 
(Chie, 1994) and “Grid Partitioning” method (Jang and Sun, 1995). The 
former was adopted in this study because it required less computational 
effort and calculation time.

 The subtractive clustering algorithm assumes that every data 
point is a candidate that can become a cluster center. Then, a measure of 
density for each data point is used to determine the potential of a point 
to become a cluster center (Chiu, 1994). The data point with the highest 
potential is selected as the first cluster center, and the data points near the 
first cluster center are removed, as determined by the influential radius. 
The algorithm searches for a new data point having the highest number 
of neighbors as the next cluster center. Then the data points near the new 
cluster center with fewer neighbors are removed. This is repeated until all 
the data points are examined and sufficient numbers of cluster centers can be 
generated. The influential radius is necessary for determining the number of 
clusters. A smaller radius leads to many smaller clusters in the data space, 
thereby resulting in more rules, and vice versa.

The value of the optimal radius in a trial and error process was 
determined by changing the radius from 0.1 to 1 with an increment of 0.05. 
At last, the radius value was chosen to be 0.9 that resulted in approximately 
two clusters. Therefore, each input and output was characterized by two 
membership functions and, hence, two rules were created. The Gaussian-
type membership function was assigned to each input variable. After 
constructing the initial FIS structure, the training stage was done. The hybrid 
learning algorithm was employed as an optimizing method in the training stage. 
In this step, the number of iterations of the hybrid algorithm for the correction 
of model parameters and goal error were considered 100 and 0, respectively. 
The constructed ANFIS model has 20 parameters (8 linear and 12 nonlinear). 
The membership function (MF) plots of the dry weight water content, dry unit 
weight, and biodegradable organic compounds used in the training stage are 
shown in Fig. 3.
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Fig. 3 Membership function plots of the compression ratio, (a) dry 
weight water content, (b) dry unit weight, and (c) biodegradable 

organic compound

Results and discussion  

 ANN model

Fig. 1(a) schematically depicts the ANN architecture used in this study. 
A study on different networks with different hidden neurons showed that a 
network comprising five neurons in a hidden layer approaches the lowest 
prediction errors and maximum correlation coefficient. A comparison of the 
prediction made by the ANN with the experimental value for each of the 
training and testing data set is shown in Fig 4. As it can be seen, most of the 
cases in the training and testing subsets are around the middle, indicating a 
good agreement between the ANN model prediction and the experimental 
values.

  

Fig.4.  Measured versus predicted compression ratio of MSW using ANN 
model, (a) Training data set, (b) Testing data test

 Table 3 shows the weights of the input-hidden and hidden-output 
layer connections and biases of the proposed ANN model after the end of 
the training procedure. The relative importance of the input parameters 
can be assessed by partitioning the hidden-output connection weights into 
components connected with each input variable. Table 4 lists the relative 
importance of the input variables in the ANN model. As seen in this Table, the 
dry density and the dry weight water content have the most significant effect 
on the predicted compression ratio with average relative importance values of 
41.88 and 43.47%, respectively.

Table 3. Connection weights and biases  

Bias
Connection 
weights

Hidden 
neurons

b2b1OutputOM

-3.400870.85305-0.16996-0.54242.3920481

-1.01113-0.305351.3268221.993881-0.997252

0.108780.4829270.9026261.1143041.0685023

-0.18422-0.4320.1127751.8204131.3946824

2.493959-0.49832-0.415312.31615 0.445335

0.876667Output neuron

  

wd
γd

Table 4. The relative importance of the ANN model input variables.

OM
dgdwInput parameter

14.6541.8843.47Relative importance (%)

According to Smith (1986), if a proposed model provides r> 0.8 and 
the error values (e.g. MAE and RMSE) are at the minimum, there is a strong 
correlation between the measured and predicted values. The training and 
testing results of the ANN model are presented in Table 5. The results show 
that the ANN model performs well, with r, RMSE, and MAE at the values of 
0.93, 0.0187, and 0.0219 in the training stage and 0.928, 0.0378, and 0.0404 in 
the testing stage, respectively.

ANFIS model
      Fig. 5 represents the structure of the proposed ANFIS model in this 

study. The fuzzy radius of this model is 0.9, and it is formed of two rules. 

Fig. 5 The schematic of ANFIS architecture based on Sugeno fuzzy model 
developed in this study

Fig. 6 compares the ANFIS predictions with the experimental values 
of the compression ratio of MSW for the training and testing data sets. The 
proposed model shows a very good correlation to the training and testing data. 
The predictive performance of the ANFIS model is summarized in Table 5. 
The results demonstrate that the ANFIS model with a high r and low RMSE 
and MAE values is trained well and able to estimate the target values with an 
acceptable degree of accuracy. 

Fig.6  Measured versus predicted compression ratio of MSW using ANFIS 
model, (a) Training data set, (b) Testing data test

                    Table 5. Performance of the proposed models

TestingTrainingModel

RMSEMAERRMSEMAER

0.05150.0480.90.06020.02350.904ANN

0.03960.03470.9230.02220.01870.923
AN-
FIS
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  Prediction results obtained from the ANN and ANFIS models are compared 
in Table 5. The high correlation coefficient and the lower error in both models 
demonstrate the capability of those models in acceptably predicting the com-
pression ratio. As suggested by the results, the error rates of the ANFIS model 
are lower than ANN model; so, ANFIS has performed more precisely. Table 5 
also shows that the results obtained for each of the models during testing are 
generally consistent with those obtained during training. This suggests that the 
proposed models are able to generalize within the range of data used for training. 

It is noteworthy that, although the predictive capability of the proposed 
models is limited to the range of the data used for their calibration, if a new data 
set becomes available, these models can be retrained and updated easily without 
repeating the development procedures from the beginning.

Conclusions

 In this research, ANFIS and ANN models were used to predict the 
compression ratio of municipal solid waste. The models were developed 
based on a reliable database obtained from the literature. The following 
emerge as the conclusions of the study:

1 - The proposed models developed through ANN and ANFIS modeling 
techniques can precisely predict the compression ratio of MSW.

2 - The relative importance study indicates that dry unit weight and dry weight 
water content have a significant effect on the compression ratio of MSW.

3 - A major advantage of ANN and ANFIS models is that, once a new set 
of data becomes available, they can be easily updated and improved without 
repeating the development procedures from the beginning.
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