
The global gravity and crustal models are used in this study to determine the regional Moho model. For this 
purpose, we solve the Vening Meinesz-Moritz’s (VMM) inverse problem of isostasy defined in terms of the 
isostatic gravity gradient. The functional relation between the Moho depth and the second-order radial derivative 
of the VMM isostatic potential is formulated by means of the (linearized) Fredholm integral equation of the first 
kind. Methods for a spherical harmonic analysis and synthesis of the gravity field and crustal structure models 
are applied to evaluate the gravity gradient corrections and the respective corrected gravity gradient, taking into 
consideration major known density structures within the Earth’s crust (while mantle heterogeneities are disregarded). 
The resulting gravity gradient is compensated isostatically based on applying the VMM scheme. The VMM inverse 
problem for finding the Moho depths is solved iteratively. The regularization is applied to stabilize the ill-posed 
solution. The global geopotential model GOCO-03s, the global topographic/bathymetric model DTM2006.0 
and the global crustal model CRUST1.0 are used to generate the VMM isostatic gravity gradient with a spectral 
resolution complete to a spherical harmonic degree of 250. The VMM inverse scheme is used to determine the 
regional isostatic crustal thickness beneath the Tibetan Plateau and Himalayas (compiled on a 1x1 arc-deg grid). The 
differences between the isostatic and seismic Moho models are modeled and subsequently corrected for by applying 
the non-isostatic correction. Our results show that the regional gravity gradient inversion can model realistically 
the relative Moho geometry, while the solution contains a systematic bias. We explain this bias by more localized 
information on the Earth’s inner structure in the gravity gradient field compared to the potential or gravity fields.

Este estudio utiliza los modelos globales de gravedad y de espesor de la corteza para determinar un modelo regional 
de la discontinuidad de Mohorovičić (Moho). Con este fin se resolvió el problema inverso de isostasia Vening 
Meinesz-Moritz (VMM) definido en términos de gradiente gravitatoria isostática. La relación funcional entre la 
profundidad de la Moho y la derivación radial de segundo orden del potencial isostático VMM fue formulado a 
través de la ecuación integral Fredholm de primera clase. Se aplicaron métodos para el análisis esférico armónico 
y para la síntesis del campo gravitacional, y los modelos de estructura de corteza para evaluar las correcciones 
de gradiente gravitatoria y el respectivo gradiente gravitatorio corregido, considerando el conocimiento de las 
principales densidades de la estructura al interior de la corteza de la Tierra (las heterogenidades del manto fueron 
ignoradas). El gradiente gravitatorio resultante se compensó isostáticamente con la aplicación del esquema VVM. 
Se resolvió reiterativamente el problema inverso VVM para encontrar las profundidades de la discontinuidad Moho. 
Se aplicó la regularización para estabilizar la solución planteada. El modelo geopotencial global GOCO-03s, el 
modelo global topográfico/batimetrico DTM2006.0 y el modelo global de la corteza CRUST 1.0 permitieron generar 
el gradiente gravitacional isostático VVM con una resolución espectral completa a un grado esférico armonioso 
de 250. A través del esquema inverso VMM se determinó el espesor isostático regional bajo la meseta Tibetana 
y los Himalayas (compilada en una cuadrícula de 1x1 grados sexagesimales). Las diferencias entre los modelos 
isostático y sísmico de la Moho fueron modeladas y corregidas con la aplicación de la corrección no isostática. Los 
resultados muestran que la inversión del gradiente gravitatorio puede modelar realísticamente la geometría de la 
Moho, a pesar que la solución contiene una desviación sistemática. Esta inclinación se explica por la información 
estructural interna de la Tierra en el campo del gradiente gravitatorio comparado con el potencial gravitatorio.

EARTH SCIENCES 
RESEARCH JOURNAL

Earth Sci. Res. J. Vol. 19, No. 2 (December, 2015): 97 - 106

ABSTRACT

RESUMEN

Keywords: Density, gravity gradiometry, isostasy, 
Moho interface.

Palabras clave: Densidad, gradiometria gravitatoria, 
isostasia,  discontinuidad de Mohorovičić.

Isostatic Crustal Thickness Under The Tibetan Plateau And Himalayas From Satellite Gravity Gradiometry Data

Espesor isostático de la corteza bajo la meseta tibetana y los Himalayas a partir de datos satelitales de gradiente gravitatoria

Record

Manuscript received: 23/07/2014
Accepted for publication: 27/07/2015

How to cite item
Tenzer, R., Bagherbandi, M., Sjöberg, L.E. & 
Novák, P. (2015). Isostatic crustal thickness under 
the Tibetan Plateau and Himalayas from satellite 
gravity gradiometry data. Earth Sciences Research 
Journal, 19(2), 97-106. 
doi: http://dx.doi.org/10.15446/esrj.v19n2.44574

ISSN 1794-6190 e-ISSN 2339-3459         
http://dx.doi.org/10.15446/esrj.v19n2.44574

Robert Tenzer ¹,  Mohammad Bagherbandi ²,  Lars E Sjöberg 2,  Pavel Novák 3 

¹ Wuhan University, China
² Royal Institute of Technology, Sweden

3 University of West Bohemia, Czech Republic

G
R

AV
IT

Y



98 Robert Tenzer,  Mohammad Bagherbandi,  Lars E Sjöberg,  Pavel Novák 98

INTRODUCTION 

Gravimetric methods for the Moho depth determination have been 
developed and applied in global and regional studies. Examples of the 
gravimetric methods include, but are not limited to, studies by Čadek and 
Martinec (1991), Braitenberg and Zadro (1999), Braitenberg et al. (2000a, 
2000b, 2006), Arabelos et al. (2007), and Sjöberg (2009). Gravimetric 
methods should optimally combine the gravity and seismic data (if 
available). Braitenberg and Zadro (1999) proposed a method based on the 
iterative 3-D gravity inversion with integrated seismic data. Sjöberg and 
Bagherbandi (2011) developed and applied a least-squares approach based 
on solving the Vening Meinesz-Moritz (VMM) inverse problem of isostasy 
(Sjöberg 2009). This gravimetric method used the constraining information 
from the seismic model. They also presented a method of modeling the 
differences between isostatic and seismic models by applying the non-
isostatic correction (Bagherbandi and Sjöberg 2012). 

The gravimetric determination of the Moho depth has been typically 
realized using the isostatic gravity (or potential) field quantities. Sampietro 
(2011) discussed possibilities of using the gravity gradiometry data 
provided by the Gravity Field and Steady-State Ocean Circulation Explorer 
(GOCE). Bagherbandi (2011) developed an iterative method to recover 
the Moho geometry using directly the GOCE gravity gradiometry data. 
His formulation of the isostatic scheme for the gravity gradient field was 
based on solving the VMM problem of isostasy. Bagherbandi and Eshagh 
(2012) applied this theory to the real gradiometry data of GOCE. Their 
simulation study revealed a relatively good agreement between their global 
solution and the CRUST2.0 Moho seismic model (Bassin et al. 2000); 
the RMS of differences was found to be ῀5 km. Reguzzoni and Sampietro 
(2012) presented a case study to assess the inversion algorithm based on 
the linearization of Newton's gravitational law by exploiting the GOCE 
observables. They proposed a possible solution using the (local) Fourier 
analysis and the Wiener deconvolution of satellite data. Sampietro et al. 
(2013) presented the GOCE estimated Moho depths beneath the Tibetan 
Plateau and Himalayas. They showed that the expected Moho geometry 
has a good agreement with existing local seismic profiles. The GOCE-only 
solution was improved by using seismic profiles as additional observations; 
the RMS of residuals with respect to the seismic profiles was found to be 
῀4 km. Eshagh (2014) developed a linear approach to determine the Moho 
geometry from satellite gradiometry data and investigated some numerical 
aspects of the gravity gradiometry inversion. 

In the studies mentioned above, the Moho determination was realized 
using only the gravity gradiometry data (Bagherbandi and Eshagh 2012, 
Eshagh 2014). Sampietro et al. (2013) used the seismic data to improve the 
gravimetric Moho solution. In this study, we incorporate the information 
from seismic data directly to the VMM gravimetric solution for finding 
the Moho depths. This is done by combing the gravity and seismic crustal 
structure models in computing the isostatic gravity gradient and solving 
the VMM inverse problem of isostasy. For this purpose, we combine three 
recently developed numerical methods for a regional determination of the 
Moho geometry from the isostatic gravity gradient. The computation of 
the gravity gradient is realized according to the approach introduced by 
Tenzer et al. (2012a). They presented a uniform mathematical formalism 
of computing the gravity corrections and respective corrected gravity field. 
Novák and Tenzer (2013) applied this method to evaluate the diagonal 
elements of the (second-order) Marussi gravity gradient tensor corrected 
for major known anomalous density structures within the Earth’s crust. We 
further apply the VMM scheme to evaluate the isostatic gravity gradient 
and to estimate the isostatic Moho model according to the procedure of 
Bagherbandi (2011). Regarding to Bagherbandi and Sjöberg (2012), we 
finally define and apply the non-isostatic gravity gradient correction for 
combining the isostatic and seismic models. The VMM isostatic model 
and its gravity gradient modification are briefly recapitulated in Sections 
2 and 3. The non-isostatic gravity gradient correction is defined in Section 
3. The numerical experiment is conducted in the study area covering the 
Tibetan Plateau and the Himalayas (characterized by the largest continental 

crustal thickness). Summary of published seismic and gravimetric studies 
of the Moho geometry at the study area can be found in Tenzer et al. 
(2013). Results are presented and discussed in Section 5. The summary and 
concluding remarks are given in Section 6.  

Vening Meinesz-Moritz problem of isostasy

Sjöberg (2009, 2013) formulated the VMM problem of isostasy in 
the following generic form

                                                                                                          (1)  

                                                               
where G = 6.674 × 10 ¯¹¹ m³ kg¯¹ s¯² is the Newton’s gravitational 

constant, R= 6371 × 10³ m is the Earth’s mean radius, ∆ρc/m   is the Moho 
density contrast (in kg/m³), and f is the isostatic gravity functional. The 3-D 
position is defined in the spherical coordinate system (r,Ω) ; where  r  is the 
spherical radius, and Ω = (ϕ,λ) is the spherical direction with the spherical 
latitude ϕ and longitude λ . The infinitesimal surface element on the unit 
sphere is denoted as: d Ω' = cosϕ' dϕ' dλ', and Φ {Ω' = (ϕ', λ'): ϕ' ∈ [-π/2, 
π/2] ˄λ' ∈ [0,2 π)} is the full spatial angle. The integral kernel K in Eq. (1) 
is a function of the spherical distance ψ  and the Moho-depth parameter s= 
1-τ , with D'/ R and D' is the Moho depth. The spectral representation of  K 
reads (cf. Sjöberg 2009)

                                                                                                (2)

                                                                                            where Pn is the Legendre polynomial of degree n for the argument 
of  t = cosψ.

The integral equation in Eq. (1) functionally relates the (unknown) 
Moho depths with the (given) isostatic gravity data (i.e., the isostatic gravity 
disturbances or anomalies). For the isostatic gravity disturbance δgᵢ, the 
isostatic gravity functional f on the right-hand side of Eq. (1) becomes (cf. 
Tenzer and Bagherbandi 2012) 

  f (r, Ω) ≡ δgi (r, Ω) = δgcs (r, Ω) + gc(r, Ω) = 0,                       (3)

                                                                            where gc is the isostatic compensation attraction (Moritz 1990, Sjöberg 
2009), and δgcs is the consolidated crust-stripped gravity disturbance 
(Tenzer et al. 2009). The evaluation of δgcs from the gravity disturbance δg 
is based on applying the topographic and stripping gravity corrections due 
to major known anomalous crustal density structures. These refined gravity 
data should have (theoretically) a maximum correlation with the Moho 
geometry (Tenzer et al. 2012b). However, these gravity data still comprise 
the long-wavelength gravity signal of unmodelled heterogeneities within 
the lithospheric mantle and the asthenosphere (including the core-mantle 
boundary zone) as well as uncertainties within the crustal model. The 
isostatic compensation attraction gc  in Eq. (3) is given by (cf. Sjöberg 2009)  

                                                                                                      ,         
                                                                                                

(4)

                                     
where D0 is the nominal (mean) value of the Moho depth, ℓ is the Euclidean 

spatial distance of two points (r, Ω) and (r', Ω'), and ψ is the respective spherical 
distance. The formula in Eq. (3) defines the condition of the VMM isostatic 
equilibrium by means of a fully-compensated crustal model.  

The expression in Eq. (1) is a (non-linear) Fredholm integral equation 
of the first kind. Its direct solution was given by Sjöberg (2009) in the form 
of a second-order approximation 

                                                                                  ,                       (5)
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The term D1 is computed approximately using the following spectral 
expansion   

                                                                
                                                                                ,                  (6)

where Yn,m are the (fully-normalized) surface spherical harmonics of 
degree n and order m, fn,m  are the numerical coefficients of the functional f, 
and n is the maximum degree of spherical harmonics. The third constituent 
on the right-hand side of Eq. (5) has a singularity for ψ →0 . Sjöberg (2009) 
solved this integral singularity by applying a planar approximation to the 
inner-zone contribution. This constituent is computed by implementing the 
surface integration over the inner zone (while disregarding the distant-zone 
contribution). The system of integral equations for finding the Moho depths is 
then solved directly without applying an iterative procedure. 

Vening Meinesz-Moritz isostatic model for the gravity gradient

Bagherbandi (2011) reformulated the VMM inverse problem of 
isostasy for the second-order radial derivative of the isostatic potential 
V i; i.e., V irr = ∂ ²V i/∂ r². By analogy with Eq. (3), he established the isostatic 
condition for the component V i

rr as follows (see also Bagherbandi and 
Eshagh 2012)

   

     V irr
 
 (r , Ω) = T          (r , Ω) + V     (r , Ω) =  0,            (7)  

                                            
where the second-order radial derivatives of the consolidated 

crust-stripped disturbing potential T CSand the isostatic compensation 
potential V c are denoted as T         and V         , respectively. The computation 
of the consolidated crust-stripped gravity gradient T  is summarized in 
Appendices A and B. Bagherbandi (2011) applied a decomposition of the 
isostatic compensation gradient V c into the nominal and residual parts:

      V      (r , Ω) = V         (r , Ω) + dV    (r , Ω).                     (8)  

                                                     
      The nominal part V         is computed from the following formula 

                                                                              ,            (9)

where τ0 = D0 / R. With reference to Eq. (1), the residual part dV        is 
given by  

                                                                               ,           (10)

where the integral kernel function  Krr   reads  

                                          .                                           ,    (11)

Bagherbandi (2011) derived the solution to the integral equation in 
Eq. (10) in the following form   

                                                                        ,                 (12)

where  ds = 1- dτ is a function of the differential Moho-depth 
correction (i.e., dτ = dD'/R ), and the isostatic gravity gradient functional 
f  is defined as 

                                             .                                      
                                                                                     ,    (13)
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The Moho-depth corrections dD' are found based on solving the 
VMM inverse problem of isostasy formed for the given values of the 
isostatic gravity gradient. The final Moho depths D' are obtained by adding 
these corrections dD' to the nominal Moho depth D0 ;i.e.,D'= D0+dD'.

From Eq. (11), the partial derivative of the kernel function Krr  with 
respect to the argument s was found to be  

                                                                                ,        (14)

The corresponding closed analytical form of Eq. (14) was given 
by Bagherbandi (2011). The linearization of  Krr by means of the Taylor 
series yields

                                                                       ,      (15)

where s1 is an approximate value to the argument s. 

Non-isostatic correction 

The isostatic mass balance depends on loading and effective elastic 
thickness, rigidity, rheology of the lithosphere and viscosity of the asthenosphere 
(e.g., Watts 2001). Moreover, the glacial isostatic adjustment, present-day glacial 
melting, plate motion, mantle convection and other geodynamic processes 
contribute to the overall isostatic balance, which are not modeled realistically by 
the adopted isostatic model. It imply that: δgi ≠ 0. To fulfill the condition of the 
isostatic equilibrium of  f = δgi  = 0 in Eq. (3), Bagherbandi and Sjöberg (2012) 
introduced the non-isostatic correction term. By analogy with their definition, we 
apply the non-isostatic correction V       to the isostatic gravity gradient functional 
f  in Eq. (13). Hence

                             .                                                           ,      (16)
 
The non-isostatic gravity gradient correction V            is given by

                                                                                      ,        (17)
                                                          

The coefficients         are generated by applying the following integral 
convolution

  
                                                                                            ,       (18)

The non-isostatic gravitational attraction gnie is computed approximately 
from (cf. Sjöberg 2009)

                                                                                         ,         (19)

where    is the seismic Moho depth, and the nominal compensation 
attraction (of zero-degree) c

0
~g  stipulated at the sphere of radius R is 

computed as   
                                                                                              (20)

Results 

The study area of the Tibetan Plateau and Himalayas is bounded by 
the parallels of 25 and 40 arc-deg northern latitudes and the meridians of 
70 and 110 arc-deg eastern longitudes. The solid topography of the study 
area is shown in Fig. 1. The solid topography was computed on a 1×1 
arc-deg grid using the coefficients of the DTM2006.0 global topographic/
bathymetric model (Pavlis et al. 2007) with a spectral resolution complete 
to degree/order 250. The maximum bathymetric depth is 0.3 km, and the 
maximum topographic heights reach 5.8 km. 
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1. Isostatic gravity gradients 

We applied the gravimetric forward modeling technique to compute 
the VMM isostatic gravity gradient with a spectral resolution complete 
to degree 250 of spherical harmonics. All gravity gradient-related 
computations were realized on a 1×1 arc-deg surface grid. The computation 
consists of three numerical steps. The spherical harmonic analysis of the 
crustal density structures (Eqs. A.4-A7) was first applied to generate the 
coefficients Ln,m and Un,m , which describe the mass density (or the density 
contrast) distribution within the topography, seawater (bathymetry), 
sediments and remaining crustal structures. The spherical harmonic 
synthesis (Eqs. A.1-A.3 and Eqs. B.1-B3) was then applied to compile the 
respective gravity gradient corrections and the consolidated crust-stripped 
gravity gradient. The ice stripping correction due to glacial cover of the 
Tibetan Plateau and Himalayas was not applied due to the absence of 
reliable data of the ice thickness. The VMM isostatic gravity gradient was 
finally obtained from the consolidated crust-stripped gravity gradient after 
applying the isostatic compensation gradient (see Section 3). 

The gravity gradient was generated using the GOCO-03s coefficients 
(Mayer-Guerr et al. 2012). The parameters of GRS-80 (Moritz 2000) 
were used to define normal gravity gradient. The topographic and 
bathymetric stripping gravity gradient corrections were calculated using the 
DTM2006.0 coefficients (Pavlis et al. 2007). The average density of the 
upper continental crust of 2670 kg m-3 (see Hinze 2003) was adopted as 
the topographic density. The same value was used to define the reference 
crustal density. The bathymetric stripping gravity gradient correction was 
evaluated utilizing the seawater density-depth equation (Tenzer et al. 2011). 
The 1×1 arc-deg data of sediments and consolidated crustal layers from 
the global crustal model CRUST1.0 were used to evaluate the respective 
stripping gravity gradient corrections. Note that these two corrections we 
computed with a spectral resolution only up to degree 180 of spherical 
harmonics. 

The GOCO-03s gravity gradient over the study area is shown in Fig. 2. 
It ranges from -1.4 to 1.4 E (E = Eötvös), with a mean of -0.04 E and a 
standard deviation of 0.6 E. The regional map of the consolidated crust-
stripped gravity gradient is shown in Fig. 3. This refined gravity gradient 
is everywhere negative and varies between -11.9 and -0.5 E, with a mean 
of -5.7 E and a standard deviation of 3.5 E. The absolute gravity gradient 
maxima are situated in central Tibet, while the corresponding minima are in 
the Sichuan, Tarim, Qaidam and Indo-Gangetic basins. The VMM isostatic 
gravity gradient is shown in Fig. 4. It varies between 14.2 and 2.3 E, with a 
mean of 8.6 E and a standard deviation of 3.4 E. The pattern of the isostatic 
gravity gradient is very similar to the consolidated crust-stripped gravity 
gradient, while having opposite sign. 

2. VMM Moho model

The values of the isostatic gravity gradient (shown in Fig. 4) were 
used to solve the VMM inverse problem for finding the Moho depth within 
the study area on a 1×1 arc-deg grid. The system of observation equations 
was formed by discretizing the integral equation in Eq. (12). The zero-order 
Tikhonov (1963) regularization was applied to stabilize the solution. The 
inversion scheme with the regularization parameter α was described in the 
following vector-matrix form 

     
             Δŝ =  ( AT A+α I)-1 AT1,                                         (21)

where A is the design matrix of the discretized integrals (i.e., the right-
hand side of Eq. 12); Δŝ is the parameter vector of the unknown Moho-
depth parameters ds ; the regularization matrix R is the identity matrix I , i.e. 
R≡I ; and  I is the vector of observables consisting of values of the isostatic 
gravity gradient. The solution to the system of observation equations in 
Eq. (21) for finding the unknown Moho-depth parameters ds was carried 
out iteratively using the Gauss-Seidel method (e.g., Young 1971). A priori 
error model was not applied. The stopping criterion of the convergence 

between the results of two successive steps (k and k+1) was set based on 
the following condition:||s(k+1) - s(k)||2 = ||dŝ (k+1)||2 ≤ c, where c is a limit of 
convergence. The iteration stopped when the relative differences between 
two successive solutions reached 0.1%. The choice of the regularization 
parameter was based on minimizing the RMS of differences between the 
gravimetric and seismic models. In this way, we selected the regularization 
parameter for the gravimetric solution which had the best RMS fit with the 
CRUST1.0 Moho depths.  

The result is shown in Fig. 5. The VMM Moho depths, determined 
within the study area, vary between 44.0 and 66.9 km, with a mean of 56.2 
km and a standard deviation of 5.8 km. The most pronounced pattern of 
the Moho geometry is a significant contrast between the crustal thickness 
of orogenic formations compared to continental sedimentary basins. 
The largest crustal thickness is detected beneath Himalayas and Tibetan 
Plateau; the Moho depths there typically exceed 60 km. The Moho depths 
substantially decrease to less than 50 km in the Sichuan, Tarim, Qaidam 
and Indo-Gangetic basins. 

To model the differences between the isostatic and seismic Moho 
models, we further applied the non-isostatic correction into the isostatic 
gravity gradient. The non-isostatically corrected gravity gradient data were 
then used to refine the VMM Moho solution. The non-isostatic corrections 
to the isostatic gravity gradient and to the Moho depths are shown in Fig. 
6. The former varies between -2.4 and 3.1 E, with a mean of 0.3 E and a 
standard deviation of 1.0 E (see Fig. 6a). The latter is between -6.8 and 
8.0 km, with a mean of 2.3 km and a standard deviation of 3.2 km (see 
Fig. 6b). The VMM Moho depths corrected for the non-isostatic effect are 
shown in Fig. 7. These Moho depths vary between 31.1 and 67.9 km, with 
a mean of 54.2 km and a standard deviation of 7.5 km. The application of 
the non-isostatic correction changed significantly a spatial pattern of the 
Moho geometry (compare Figs. 5 and 7). The most noticeable changes are 
related to the maximum Moho depths in central Tibet and less pronounced 
contours of the crustal thickness between orogens and sedimentary basins. 

3. Correlation analysis  

We investigated the spatial correlation of the consolidated crust-
stripped gravity gradient with the non-isostatically corrected and uncorrected 
Moho geometry. The scatter plots are shown in Fig. 8. As seen in Fig. 8a, 
the consolidated crust-stripped gravity gradient has a systematic trend with 
respect to the VMM Moho depths. The largest (absolute) values of this 
gravity gradient correspond with the largest spatial variations of the Moho 
geometry under orogens attributed to a high correlation of the consolidated 
crust-stripped gravity disturbances with the Moho geometry (cf. Tenzer 
et al. 2012c). The application of the non-isostatic correction to the VMM 
Moho depths changed the spatial correlation between investigated quantities, 
especially under orogens (cf. Fig. 8b). To explain this spatial behavior, we further 
investigated the relation between the non-isostatic correction with the non-
isostatically corrected and uncorrected Moho geometry. The scatter plots are 
shown in Fig. 9. Whereas there is no apparent correlation of this correction with 
the uncorrected Moho depths (see Fig. 9a), the non-isostatic correction is highly 
corrected with the corrected Moho geometry (see Fig. 9b). The application of 
this correction thus significantly changed the spatial pattern of the Moho 
geometry; it increased the crustal thickness in central Tibet and decreased 
beneath most of sedimentary basins. This is also evident from the relation 
between the non-isostatic gravity gradient correction and the corresponding 
changes of the Moho geometry (see Fig. 10). The largest (absolute) values 
of the non-isostatic gravity gradient correction typically correspond with 
the largest changes of the Moho geometry.  From these findings we can 
conclude that the purely isostatic model significantly underestimates the 
crustal thickness of the orogenic formations, while overestimates the crustal 
thickness of continental sedimentary basins. 

It is worth mentioning that the errors in the gravimetrically 
determined Moho depths attributed to the commission and omission errors 
of the global geopotential model are much smaller than the Moho errors 
caused by the uncertainties in the CRUST1.0 crustal structure model 
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(Bagherbandi et al. 2014). The constraining information on the crustal 
density structure from seismic data is thus essential for the combined 
gravimetric-seismic Moho recovery, while the accuracy of the currently 
available global gravity models is sufficient.        

4. Validation of results 

Both regional Moho solutions were compared with the EuCRUST07 
(Tesauro et al. 2008, Stolk et al. 2013), CRUST1.0 (Bassin et al. 2000) 
and TibXS13 (Tenzer et al. 2013) Moho models. The EuCRUST07, 
CRUST1.0 and TibXS13 Moho models at the study area are shown in 
Figs. 10-13; statistics are summarized in Table 1. The differences between 
the VMM Moho solution (shown in Fig. 5) and these three Moho models 
are shown in Fig. 14; statistics of differences are given in Table 2. The 
same compassion was done for the non-isostatically corrected VMM 
Moho solution (shown in Fig. 7). The Moho depth differences are shown 
in Fig. 15 and the corresponding statistics are summarized in Table 3.  

As seen from the comparison in Tables 2 and 3, the application of 
the non-isostatic correction slightly improved the RMS fit of the VMM 
Moho model with the CRUST1.0 and EuCRUST07, while decreased 
significantly when compared with TibXS13. The most significant 
change after applying the non-isostatic correction is seen in a substantial 
reduction of the systematic bias of the VMM Moho solution relative to 
the CRUST1.0 and TibXS13 Moho models. The systematic bias between 
the VMM and EuCRUST07 Moho models increased in the absolute sense. 

Summary and concluding remarks  

We have utilized the VMM isostatic scheme for a determination of 
the Moho geometry from the gravity gradient data. The gravimetric forward 
modeling of the isostatic gravity gradient was realized in a frequency 
domain based on applying the spherical harmonic analysis and synthesis 
of the global gravity and crustal structure models. The regional Moho 
inversion was realized in a frequency domain. The non-isostatic correction 
was applied to combine the isostatic and seismic Moho models. 

The results of the gravimetric forward modeling showed that the 
maxima of the consolidated crust-stripped gravity gradient correspond 
with the largest spatial variations of the Moho geometry, revealing mainly 
the contrast in the crustal thickness between the orogens and continental 
sedimentary basins. 

The VMM isostatic gravity gradient correction has a similar magnitude 
as the consolidated crust-stripped gravity gradient, while opposite sing. 
Both gravity gradient quantities have a similar spatial distribution.  

The range of the consolidated crust-stripped gravity gradient is 11.4 
E. The isostatic gravity gradient has a similar range of values of 11.9 E. This 
indicates that the gravity gradient field approximates realistically a relative 
geometry of the Moho interface. Hoverer, the refined gravity gradient field 
is systematically biased compared to the isostatic gravity gradient field; the 
difference between (absolute) mean values is 2.9 E. 

The results of the gravimetric Moho inversion revealed how the 
systematic bias in the gravity gradient data propagates into the VMM Moho 
solution. To remove the systematic bias in the regional Moho model, we 
introduced and applied the non-isostatic gravity gradient correction for 
combining the isostatic and seismic Moho models. This correction also accounts 
for the unmodelled heterogeneous sub-crustal density structures, uncertainties 
of applied crustal model and geodynamic processes which cannot be modeled 
by the adopted isostatic scheme. 

The application of the non-isostatic correction changed significantly 
the Moho geometry. The spatial geometry of the non-isostatic correction 
indicates that the largest discrepancies between the VMM isostatic and 
seismic Moho models at the study area are likely attributed to the active 
tectonic and crustal flexure.   

Acknowledgments: 

The Swedish National Space Board (SNSB) is cordially acknowledged 
for a financial support of M. Bagherbandi and L.E. Sjöberg by project No. 
76/10:1 and 116/12. P. Novák was supported by the project 209/12/1929 
of the Czech Science Foundation. We also acknowledge the research 
founding for foreign experts provided to R. Tenzer by the Chinese Ministry 
of Education.  

References

Arabelos, D., G. Mantzios, and D. Tsoulis, 2007: Moho depths in the Indian 
Ocean based on the inversion of satellite gravity data. Adv. Geoscien., 
9: Solid Earth, Ocean Science and Atmospheric Science, (Eds.) Huen 
W., Chen Y.T., World Scientific Publishing, pp. 41-52.  

Bagherbandi, M., 2011: An Isostatic Earth Crustal model and Its Geodetic 
Applications. Unpublished PhD thesis. Royal Institute of Technology.

Bagherbandi, M., and M. Eshagh, 2012: Recovery of Moho’s undulations 
based on the Vening Meinesz-Moritz theory from satellite gravity 
gradiometry data: A simulation study. Adv. Space Res., 49, 1097–
1111., doi:10.1016/j.asr.2011.12.033.

Bagherbandi, M., and L. E. Sjöberg, 2012: Non-isostatic effects on crustal 
thickness: A study using CRUST2.0 in Fennoscandia. Phys. Earth 
Planet. Inter., 200-201, 37-44.  

Bassin, C., G. Laske, and G. Masters, 2000: The current limits of resolution for 
surface wave tomography in North America. Eos, Trans., AGU, 81, F897.

Braitenberg, C., and M. Zadro, 1999: Iterative 3D gravity inversion with integration 
of seismologic data. Boll. Geof. Teor. Appl., 40, 3/4, 469-476.

Braitenberg, C., M. Zadro, J. Fang, Y. Wang, and H. T. Hsu, 2000a: Gravity 
inversion in Qinghai-Tibet plateau. Phys. Chem. Earth, 25, 381-
386, doi: 10.1016/S1464-1895(00)00060-0. 

Braitenberg, C., M. Zadro, J. Fang, Y. Wang, and H. T. Hsu, 2000b: The 
gravity and isostatic Moho undulations in Qinghai-Tibet plateau. J. 
Geodyn., 30, 489-505, doi: 10.1016/S0264-3707(00)00004-1. 

Braitenberg, C., S. Wienecke, and Y. Wang, 2006: Basement structures 
from satellite-derived gravity field: south China Sea ridge. J. 
Geophys. Res., 111, B05407.

Braitenberg, C., P. Mariani, M. Reguzzoni, and N. Ussami, 2010: GOCE 
observations for detecting unknown tectonic features. In: Proc. 
of the ESA Living Planet Symposium, 28 June – 2, July 2010, 
Bergen, Norway, ESA SP-686. 

Čadek, O. and Z. Martinec, 1991: Spherical harmonic expansion of the 
earth’s crustal thickness up to degree and order 30. Stud. Geophys. 
Geod., 35, 151-165.

Eshagh, M., 2014: Determination of Moho discontinuity from satellite 
gradiometry data: linear approach. Geodyn. Res. Int. Bull., 1, 2,1-13.

Hinze, W. J., 2003: Bouguer reduction density, why 2.67? Geophysics, 68, 
1559-1560, doi: 10.1190/1.1620629.

Mayer-Guerr T., D. Rieser, E. Höck, J. M. Brockmann, W. – D. Schuh, 
I. Krasbutter, J. Kusche, A. Maier, S. Krauss, W. Hausleitner, O. 
Baur, A. Jäggi, U. Meyer, L. Prange, R. Pail, T. Fecher, and T.

Gruber, 2012: The new combined satellite only model GOCO03s. Presented 
at GGHS2012, Venice, October. 

Moritz, H., 2000: Geodetic Reference System 1980. J. Geod., 74, 128-162.
Novák, P., and R. Tenzer, 2013: Gravitational gradients as a tool for probing 

the Earth’s structure. Surv. Geoph., doi: 10.1007/s10712-013-9243-1.
Pavlis, N. K., J. K. Factor, and S. A. Holmes, 2007: Terrain-related 

gravimetric quantities computed for the next EGM. Presented at 
the 1st International symposium of the International gravity service 
2006, August 28 - September 1, Istanbul, Turkey.

Reguzoni, M., and D. Sampietro, 2012: Moho estimation using GOCE data: 
A numerical simulation. In: Geodesy for Planet Earth International 
Association of Geodesy Symposia, 136,  pp. 205-214.



102 Robert Tenzer,  Mohammad Bagherbandi,  Lars E Sjöberg,  Pavel Novák 102

Sampietro, D., M. Reguzzoni, and C. Braitenberg, 2013: The GOCE 
estimated Moho beneath the Tibetan Plateau and Himalaya. In: 
International Association of Geodesy Symposia, Earth on the Edge: 
Science for a Sustainable Planet, Proceedings of the IAG General 
Assembly, 28 June - 2 July 2011, Melbourne, Australia, Rizos, C. 
and P. Willis (Eds.), Vol. 139, Springer-Verlag, Berlin.

Sampietro, D., 2011: GOCE exploitation for Moho modelling and 
applications. In: Proceedings of the 4th international GOCE user 
workshop, Munich, Germany,Vol. 31.

Sjöberg, L. E., 2009: Solving Vening Meinesz-Moritz inverse problem in 
isostasy. Geophys. J. Int., 179, 1527-1536, doi: 10.1111/j.1365-
246X.2009.04397.x.

Sjöberg, L. E. and M. Bagherbandi, 2011: A method of estimating the Moho 
density contrast with a tentative application of EGM08 and CRUST2.0. 
Acta Geophys., 59, 502-525, doi: 10.2478/s11600-011-0004-6. 

Sjöberg, L.E., 2013: On the isotactic gravity anomaly and disturbance and 
their applications to Vening Meinesz-Moritz gravimetric inverse 
problem. Geophys. J. Int., doi: 10.1093/gji/ggt008.

Stolk, W., M. K. Kaban, F. Beekman, M. Tesauro, W. D. Mooney, and S. A. 
P. L. Cloetingh, 2013: Tectonoph., in press, accepted paper, available 
online since 31 January 2013 from the Tectonophysics web site.

Tenzer, R., Hamayun, and P. Vajda, 2009: Global maps of the CRUST2.0 
crustal components stripped gravity disturbances. J. Geophys. 
Res., 114, B, 05408.

Tenzer, R., P. Novák, and V. Gladkikh, 2011: On the accuracy of the bathymetry-
generated gravitational field quantities for a depth-dependent seawater 
density distribution. Studia Geophys. Geodaet., 55, 4, 609-626.

Tenzer, R., and M. Bagherbandi, 2012: Reformulation of the Vening-
Meinesz Moritz inverse problem of isostasy for isostatic gravity 
disturbances. Inter. J. Geoscien., 3, 5, 918-929.

Tenzer, R., P. Novák, P. Vajda, V. Gladkikh, and Hamayun, 2012a: Spectral 
harmonic analysis and synthesis of Earth’s crust gravity field. 
Comput. Geosc., 16, 1, 193-207.

Tenzer, R., V. Gladkikh, P. Vajda, and P. Novák, 2012b:  Spatial and spectral 
analysis of refined gravity data for modelling the crust-mantle interface 
and mantle-lithosphere structure. Surv. Geoph., 33, 5, 817-839. 

Tenzer, R., M. Bagherbandi, Ch. Hwang, and E. T. Y. Chang, 2013: Moho 
interface modeling beneath Himalayas, Tibet and central Siberia 
using GOCO02S and DTM2006.0. In: Special issue on geophysical 
and climate change studies in Tibet, Xinjiang, and Siberia 
from satellite geodesy. Terr. Atm. Ocean. Scie., doi: 10.3319/
TAO.2012.11.01.02 (TibXS). 

Appendix A: Gravimetric forward modeling    

Tenzer et al. (2012a) developed and applied a uniform mathematical 
formalism of computing the gravity corrections. It utilizes the expression 
for the gravitational potential V generated by an arbitrary volumetric mass 
layer with a variable depth and thickness while having laterally distributed 
vertical mass density variations. For a computation point (r,Ω), it reads 

V r,Ω( ) = GM
R

R
r

⎛

⎝
⎜

⎞

⎠
⎟
n+1

Vn,m Yn,m Ω( )
m=−n

n

∑
n=0

n

∑                       
                                                                    

.                          (A.1)

where GM=3986005×108 m3 s-2 is the geocentric gravitational 
constant. The potential coefficients Vn,m in Eq. (A.1) are defined as 

 
                                                              ,                                (A.2)
                                                                                  
where ρEarth =5500kg/m3 is the Earth’s mean density (cf. Novák 2010). 

The numerical coefficients {                                  } are given by  

                                                                                               (A.3)

           
The terms            and  Un,m Yn,m

m=−n

n

∑  define the spherical lower-bound 
and upper-bound laterally distributed radial density variation functions Ln 
and  Un of degree n. These numerical coefficients combine the information 
on the geometry and mass density (or mass density contrast) distribution 
within a volumetric layer. The computation of these coefficients is realized 
to a certain degree of spherical harmonics using discrete data of the 
spatial density distribution (typically provided by means of density, depth 
and thickness data) of a particular structural component of the Earth’s 
interior. The spherical functions Ln and Un, and their higher-order terms 
{Lnk+1+i( ),Un

k+1+i( ) : k = 0,1,... ; i =1,2, ..., I } are generated using the following integral 
convolutions   

                                                                                            (A.4)

                                                                                            (A.5)

The heights/depths DU and DL of the upper-bound and lower-bound of 
the volumetric mass density layer are stipulated with respect to the sphere of 
radius R. For a specific volumetric layer, the mass density ρ is either constant 
ρ, laterally-varying ρ (Ω') , or – in the most general case – approximated 
by a 3-D density model. For each lateral column ʹ′Ω : ʹ′Ω ∈Φ{ }  , we have

                                                                                            (A.6)

The nominal value of the lateral density ρ(DU,Ω') is stipulated at DU. 
This density distribution model describes the radial density variation (by 
means of the coefficients { α:i = 1,2,...,I} and β ) within the volumetric mass 
layer at a location Ω' . Alternatively, when modeling the gravitational field 
of anomalous density structures, the density contrast Δρ of a volumetric 
mass layer relative to the reference density ρc  is defined as  

                                                        
           
                             
                                                                                               (A.7)

 

where Δρ(DU,Ω') is the nominal value of the lateral density contrast 
stipulated at DU. Here the reference density ρc of the homogenous crust 
was used. 

Fln,m
(i) , Fun,m

(i) : i = 0,1, ..., I
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Appendix B: Consolidated crust-stripped gravity gradient

The consolidated crust-stripped gravity T 
  gradient is obtained 

from the corresponding gravity gradient component Trr  after applying 
the topographic and crust density contrasts stripping gravity gradient 
corrections. The computation is realized according to the following scheme 
(Tenzer et al. 2012b)

                                                                                               (B.1)        
                                     

where                                  and  V      are, respectively, the gravitational gradients 
generated by the topography and density contrasts of the ocean (bathymetry), 
ice, sediments and remaining anomalous density structures within the 
consolidated (crystalline) crust. 

The radial gravity gradient Vrr at a point (r, Ω) is computed as

                                                                                           
                                                                                        ,     (B.2)

where Tn,m are the (fully-normalized) numerical coefficients which 
describe the disturbing gravity potential T (i.e., the difference between the 
Earth’s and normal gravity potentials). The coefficients Tn,m

 

are obtained 
from the coefficients of a global geopotential model (describing the Earth’s 
gravity field) after subtracting the spherical harmonic coefficients of the 
normal gravity field. 

The computation of the gravity gradient corrections in terms of the 
potential coefficients Vn,m (see Eq. A.2) for a particular structural component 
of the Earth’s crust                                              is realized using the following 
expression 

                                                       
                                                                                   ,                  (B.3)Vrr =
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Table 1: Statistics of the Moho models.

Table 2: Statistics of the differences between the VMM Moho solution and the 
EuCRUST-07, CRUST1.0, and TibXS13 Moho models.  

Table 3: Statistics of the differences between the non-isostatically corrected VMM 
Moho solution and the EuCRUST-07, CRUST1.0, and TibXS13 Moho models.  

Fig.1 Solid topography of the study area (in km). 

 

Fig.2 Regional map of the GOCO-03s gravity gradient (in E).

Fig.3 Regional map of the consolidated crust-stripped gravity gradient (in E). 

 Fig.4 Regional map of the isostatic gravity gradient (in E). 
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Fig.5 VMM Moho depths (in km) based on the isostatic gravity gradient inversion. 

a. 

b.
Fig.6 The non-isostatic correction to: (a) the gravity gradient (in E), and (b) the 

Moho depths (in km). 

Fig.7 VMM Moho depths (in km) corrected for the non-isostatic effect. 

a.

b.

Fig. 8 Scatter plots of the consolidated crust-stripped gravity gradients (shown in 
Fig. 3) versus: (a) the VMM Moho depths (shown in Fig. 5), and 

 (b) the non-isostatically corrected VMM Moho depths (shown in Fig. 7).  
 

a.
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b.

Fig. 9 Scatter plots of the non-isostatic correction to the gravity gradient (shown 
in Fig. 6a) versus: (a) the isostatic Moho depths (shown in Fig. 5), and (b) the non-

isostatically corrected Moho depths (shown in Fig. 7).  

Fig. 10 Relation between the non-isostatic correction to the gravity gradient and 
Moho depts. 

  

Fig. 11 EuCRUST07 Moho model (in km). 

 

Fig. 12 CRUST1.0 Moho model (in km). 

Fig. 13 TibXS13 Moho model (in km).  

 

a.

b.
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c.

Fig. 14 Comparison of the VMM Moho solution with: (a) EuCRUST-07, (b) 
CRUST1.0, and (c) TibXS13 Moho models (in km).

a.

b.

c.

Fig. 15 Comparison of the non-isostatically corrected VMM Moho solution 
(NIE-VMM) with: (a) EuCRUST-07, (b) CRUST1.0, and (c) TibXS13 Moho 

models (in km).


