
This paper applies for cluster analysis and factor analysis theory to statistically analyze environmental isotope 
(δ18O,δ2H, 3H, 14C) and water chemistry (K+, Na+, Ca2+, Mg2+, HCO3

-, SO4
2-, Cl-) test data from different water bodies 

in the coal-mining exploring district. The result shows that groundwater can be clustered into four categories, namely 
GA, GB, GC and GD classes. Deep karst groundwater and spring were grouped into GA class, and the contour map 
of the second-factor scores shows that karst water and spring of the GA group is in the same area, indicating the same 
recharging source from the northern mountainous area. Deep fissure water was clustered into GC class with the lowest 
second-factor scores, and cation exchange plays a central role, then did not detect tritium with 14C of lower levels, 
indicating the late Pleistocene rainfall recharging. Shallow pore water and surface water were clustered into GB class 
with the high third factors scores, indicating surface water leakage recharging. The water samples of GD class have the 
highest three factors score, pointing out that the shallow pore water and surface water were polluted. The results of this 
study provide a scientific basis for assessing groundwater circulation mechanism in the coal-mining exploring district.

Este estudio utiliza la teoría del análisis de grupos y del análisis factorial para examinar estadísticamente 
la información de pruebas al isótopo ambiental (δ18O,δ2H, 3H, 14C) y a la química del agua (K+, Na+, 
Ca2+, Mg2+, HCO3

-, SO4
2-, Cl-) en diferentes cuerpos de agua en el distrito de exploración carbonífera. El 

resultado muestra que el agua subterránea puede ser agrupada en cuatro categorías, nombradas Clase GA, 
Clase GB, Clase GC y Clase GD. El agua subterránea del karst profundo y el agua de manantial fueron 
agrupadas en la Clase GA; el mapa topográfico de los marcadores de segundo factor muestra que el agua 
del karst y el agua de manantial del grupo GA se encuentran en la misma área, lo que indica que tienen 
la misma fuente de recarga, en la región montañosa al norte del distrito. El agua de las fisuras profundas 
fue agrupada en la Clase GC con los marcadores más bajos de segundo factor y donde el intercambio de 
cationes es determinante; no se detectó tritio con los bajos niveles de 14C, lo que indica una recarga por 
lluvia en el Pleistoceno tardío. El agua poco profunda y el agua superficial fueron agrupadas en la Clase GB, 
con los mayores marcadores de tercer factor, lo que indica una recarga por vertido superficial. Las muestras 
de agua de la Clase GD tienen los mayores marcadores de los tres factores, lo que señala que las aguas poco 
profundas y las superficiales están contaminadas. Los resultados de este estudio proveen una base científica 
para la evaluación del mecanismo de circulación del agua subterránea en el distrito de exploración carbonífera.
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1 Introduction

Over the last few decades, as China’s exploitation of underground 
coal has gone deeper and deeper, mine displacement also enhances 
gradually, the groundwater table assumes coming down in the successive 
years. For example, groundwater was already dredged trunk in some 
shallow aquifers in the coal-mining district of Jiaozuo, one of the famous 
karst mining areas in China, the result is of which amount of salinity 
was accumulated. On the other hand, besides part of pit groundwater 
was exploited by the factories, the majority of which were untreated and 
directly discharged to rivers. The paper beliefs that contaminated river 
supplies the shallow aquifer in the leakage area, and severely affects 
irrigation and domestic water. To provide a scientific basis for groundwater 
security assessment in coal-mining districts, it has become necessary to 
probe into the hydraulic connections between groundwater-surface water 
and the sources of groundwater recharge.

Several studies using hydrochemistry and stable isotopes of water 
have not only already been undertaken to characterize recharge processes 
in similar karst-dominated geological settings (Marifia et al., 2003; 
Long and Putnam, 2004; Barbieri et al., 2005; Aravena and Suzuki, 
1990; Harrington et al., 2002), but they have also determined the main 
mechanisms of the water cycle, through study of the dynamic processes of 
different water bodies, such as their formation, movement, mixture and so 
on, in coal-mining districts (Duan et al., 1994; Gui et al., 2005).

In this study, multivariate statistical methods have been used to solve 
the hydrochemical classification and evolutionary laws of the groundwater 
in the coal-mining district of Jiaozuo. Multivariate analyses have been 
established as efficient tools in the analysis of hydrochemical data. Examples 
of the successful use of multivariate statistical methods in hydrochemical 
studies are contained in Steinhorst and Williams (1985), Farnham et al. 
(2003), Farnham et al. (2000) and Steinhorst et al (2001). Multivariate 
statistical methods do not indicate cause-and-effect relationships but they 
do provide information from which such relationships can be inferred.

The tracer technique of isotope and water chemistry, combined 
with multivariate statistical analysis theory, not only can describe the 
impact of different water bodies, but also can assess the uncertainty of 
the mixed model and the relationship of hydrogeochemical data in time 
and space during hydrological processes. The method plays a key role 
in the assessment of surface water-groundwater interaction (Farnham et 
al., 2000; Farnham et al., 2003; Steinhorst et al., 2001; Steinhorst and 
Williams, 1985; Aruga et al., 1995; Ashley and Lloyd, 1978; Bengraı et 
al., 2003; Helena et al., 2000; Hernandez et al., 1991; Join et al., 1997; 
Liedholz and Schafmeister, 1998; Meng and Maynard, 2001; Seyhan et 
al., 1985; Wang et al., 2001).

The purpose of this study is that is reasonably assessed under the 
environment of coal mining being serious, and the groundwater circulation 
mechanisms of the main aquifers are reasonable judgment in the coal-
mining district of Jiaozuo.

2 Hydrogeological setting

The Jiaozuo coal-mining district is situated on the southeast edge of 
the Mount Taihang uplift in China. The district is part of the tectonic system 
of New China and Qinling Mountains and the east wing of the frontal arc 
of the epsilon-type structural system in northwest Henan Province (Fig. 1). 
Due to the control of the Mount Taihang uplift, this place has mainly fault 
structure, folded structures being less developed, and the overall tendency 
is a monoclinic structure from south to east. The fault structures are mainly 
high-angle normal faults, which develop into three groups with the trend of 
E–W, NW–SE and NE–SW.

Figure 1. Hydrogeological map of the Jiaozuo coal mining district, China;

The water samples correspond to location in the study area. The 
Jiaozuo coal-mining district is situated on the southeast edge of the Mount 
Taihang uplift in China. The district is part of the tectonic system of New 
China and Qinling Mountains and the east wing of the frontal arc of the 
epsilon-type structural system in northwest Henan Province.

According to the lithology, thickness, water features and burial 
conditions of the stratum, the main groundwater aquifers from top to 
bottom, can be divided into three categories. Firstly is the shallow pore 
aquifer, made up of the Quaternary sandstone, clay, the thickness of which 
is 10-15m with permeability (K) 0.1 - 0.3 m/d. Secondly is the deep fissure 
aquifer, consisting of the sandstone, siltstone, the thickness of which is 30 - 40m 
with the permeability of the aquifer is about 1 - 3 m/d. Thirdly is deep karst 
groundwater aquifer, made up of the Carboniferous limestone with thickness 8 - 
12m and the Ordovician limestone with thickness about 400m, the permeability 
of which is about 1 - 30 m/d. The aquifers have complex boundary position and 
conditions with heterogeneous spatial distribution, anisotropic characteristics 
and irregular. Pumping (injecting) water test can form complete and unified 
funnel. The karst groundwater with uniform flow field and similar water level 
dynamic. Karst water flow from north to south and from west to East in the 
mining area. The water level is 240 - 2000 m in the wet season, and water level 
is 130 -160m in the dry season. The amplitude of annual water level ranged 
from 10 to 12m.The main aquitard among the aquifers are composed of alluvial 
mudstone.

The sampling points in the coal-mining district were selected where 
groundwater leakage has been detected from the shallow pore aquifer, the 
deep fissure aquifer, and deep karst groundwater aquifer. 

The study area has a semi-arid and semi-continental monsoon climate, 
being located in the warm temperate zone, with average annual rainfall of 600 
mm, total average annual evaporation 2048 mm (data from 1952 to 2001). 
North of the coal-mining district is the southern foothill of Mount Taihang, 
which is a tectonic denudation landform of low mountains with monoclinic 
structure. Three rivers originate from the southern foothill of Mount Taihang, 
the source of which is spring, extending in northward and westward directions 
and basically vertical to the anticline of Mount Taihang (Fig 1).
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3 Materials and methods

3.1. Monitored parameters and analytical methods

71 groups of water samples were collected from the coal-mining district 
in 2008, 2010 and 2011, including surface water samples, spring samples of 
Mount Taihang, deep karst groundwater, deep fissure water and shallow pore 
water. Water chemical and isotopic of all water samples were analyzed for TDS, 
PH, Ca2+, Mg2+, Na+, K+, HCO3-, SO42-, Cl-, F-, δ18O, δ2H, 3H, 14C (Table 1).

3.2 Cluster analysis

Cluster analysis theory studies how the object has been a comprehensive 
classification in accordance with many aspects characteristics, which can 
effectively solve the classification about the multi-factor study, the multi-

index, which has extensive application in Earth science (Steinhorst and 
Williams, 1985; Schot and Wal, 1992; Ribeiro and Macedo, 1995). In 
practical applications, hierarchical clustering (HCA) is the most commonly 
used (Steinhorst and Hodge, 2001), by which all samples were clustered 
in this paper. In the clustering process, all parameters of the samples were 
normalized by Z-Score method and sample spacing was defined by the 
Euclidean distance. The Euclidean distance usually gives the similarity 
between two samples and a distance can be represented by the difference 
between analytical values from the samples (Otto, 1998). Samples were 
classified according to square sum of deviations (Wards method). The 
Ward’s method uses an analysis of variance approach to evaluate the 
distances between clusters in an attempt to minimize the sum of squares 
(SS) of any two clusters that can be formed at each step. The results are 
displayed with clustering pedigree chart (McKenna, 2003).

Table 1. Chemical and isotopic composition of all water samples in the study area
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3.3 Factor analysis

Factor analysis method is a multivariate statistical analysis technique, 
which is used to concentrate the data , study dependencies between the 
variables, and explore the basic structure of the observational data which 
are expressed by several factors that can reflect main message which most 
of the observed variables contain, and that explain the interdependent 
relationship between these observed variables (Brown, 1998).In this paper, 
factor analysis method is applied by principal component analysis technique, 
which is the most commonly used (Welch and Lico, 1998; Ashley and Lloyd, 
1978; Tao, 1998). When the eigen value is usually greater than 1 and the 
cumulative contribution rate is as large as possible, the common factors can 
be determined. Actual meaning of common factors is determined according 
to the loading of the observations which represent the correlations coefficient 
between analysis variables and the common factors.

4 Results 

4.1 Hierarchical clustering results

Pedigree Fig 2 shows that the water samples were clustered into four 
categories (GA, GB, GC and GD groups), they can be clearly distinguished. 
Water chemistry types are classified by the Shug Kalev method (Wang, 1995). 
The Euclidean distance in the GA group which is made of spring and deep 
karst water with Ca-Mg-HCO3 type is the shortest. The GB group is mainly 
composed of surface water and shallow pore water. The SO4

2- concentrations of 

water samples up to average 114.7 mg / L in the GB group with Ca-Mg-HCO3-
SO4 type are more than the other groups. The GC group with Na-HCO3 type 
which has high Na + concentration, low Ca2 + concentration is mainly composed 
of deep fissure water. The TDS, Cl-and SO4

2- contents of the GD group including 
three water samples (16 #, 18 # and 37 #) are significantly high. Water chemical 
type is Na-Cl-SO4 in the GD group. 16# and 18# water samples from shallow 
pore water are polluted by nearby factories, yet # 37 water samples from surface 
water is serious by man-made pollution.

Figure 2. Dendrogam for the groundwater samples, showing the division into four 
clusters and the median concentration Stiff diagram of each cluster
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The Euclidean distance in the GA group, which is made of spring and 
deep karst water with Ca-Mg-HCO3 type is the shortest. The GB group is mainly 
composed of surface water and shallow pore water. The SO4

2- concentrations 
of water samples up to average 114.7 mg / L in the  GB group with Ca-Mg-
HCO3-SO4 type. The GC group with Na-HCO3 type is mainly composed of 
deep fissure water. The TDS, Cl-and SO4

2- contents of the GD group including 
three water samples (16 #, 18 # and 37 #) are significantly high. 

4.2 Statistical characteristics

Standard deviation such as TDS, HCO3-, Na+, Cl- of water samples is 
greater than 70, reflecting the obvious differences of water quality characteristics 
(Table 1). Box and whisker plots show the median of water quality parameters 
in the four clusters (GA  GB  GC  GD) (Fig 3).It shows that ions concentrations 
of the GD group are significantly higher than the others, reflecting the pollution 
characteristics, yet the Na+, Ca2+, Cl- concentrations of the GC group reflects the 
characteristics of the cation exchange.

Figure 3. Box and whisker plots show the median of water quality parameters in 
the four clusters (GA  GB  GC  GD).

   
 The ions concentrations of the GD group are significantly higher than 

the others, yet the Na+, Ca2+, Cl- concentrations of the GC group reflects the 
characteristics of the cation exchange.

4.3 Factor analysis results

 R factor analysis was executed to all parameters of the water samples. Use 
principal component analysis to estimate the factor loadings matrix to obtain factors 
eigen values of more than 1. The cumulative contribution rate of the first four 
factors which can explain the most original data information is 84.04% (Table 2).

Table 2. Principal component loadings and explained variance for the fore components 

Extraction Method: Principal Component Analysis. Rotation 
Method: Varimax with Kaiser Normalization. Bold values: loadings>0.6.

 So the extracted four factors (factor 1, factor 2, factor 3 and factor 4) 
are more scientific and reasonable. Table 2 shows that HCO3

-, Na+ load of the 
first factor is more than 0.6 , reflecting groundwater alkalinity distribution, 
which is defined as the “alkalinity” factor (Fig 4). The δ2H and δ18O load of 
the second factor is more than 0.9, indicating the information of groundwater 
recharging source. The third factor has high positive load of Ca2+ and Mg2+, 
reflecting groundwater hardness distribution, which is defined as “hardness” 
factor. The fourth factor has only high correlation coefficient with PH which 
explains the distribution characteristics of groundwater acidic and alkaline. 
The actual means of the above four factors are very clear; therefore, all 
factor scores can be used to analyze groundwater space evolution.

Figure 4. The loadings for the first and third factors with Varimax normalized rotation.
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    The factor 1 is defined as the “alkalinity” factor. The factor 3 has 
high positive load of Ca2+ and Mg2+, reflecting groundwater hardness 
distribution which is defined as “hardness” factor.

5 Discussion

5.1 Groundwater level and water quality changing in the coal-mining 
exploring district

The variation range of local annual rainfall is stable (450~660mm), 
yet coal mine displacement has increased year by year since 1966. Shallow 
porous aquifer is the state of dewatering or dewatering in half. The buried 
depths of groundwater are more than 30m and deep karst water level also 
decrease in the mining district, indicating that the mine drainage leads to 
decreasing continuously groundwater level (Fig 5 ). 

0

20

40

60

80

100

120

1 31 61 91 121 151 181 211 241 271
Months 1964-1986

l
e
v
e
l
（
m
）

0

100

200

300

400

500

600

700

r
a
i
n
f
a
l
l
（
m
m
）
a
n
d

d
i
s
p
l
a
c
e
m
e
n
t
（
m
3
/
m
i
n
）

rainfall karst level  displacement

Figure 5. The relationship among the mine displacement, rainfall and deep 
karst water level in the coal-mining district.

    
The variation range of local annual rainfall is stable (450 ~ 660mm), 

yet coal mine displacement has increased year by year since 1966. Shallow 
porous aquifer is the state of dewatering or dewatering in half. The buried 
depths of groundwater are more than 30m and deep karst water level also 
decrease in the mining district.
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Figure 6. The Cl- contents and hardness of karst groundwater and shallow pore 
groundwater changing characteristic in the coal mining district.

   
 Cl- concentrations and total hardness of shallow pore water and deep 

karst water had increased year by year. From 1995 to 2002 years, the Cl- 
contents of shallow pore water had increased from 13mg / L to 2135mg / L, and 
the Cl- contents of deep karst water had increased from 12mg / L to 112 mg / L, 
yet the total hardness had increased from 303mg / L to 403 mg / L.

Cl- concentrations and total hardness of shallow pore water and deep 
karst water had increased year by year. From 1995 to 2002 years, the Cl- 

contents of shallow pore water had increased from 13mg / L to 2135mg / L, 
and the Cl- contents of deep karst water had increased from 12mg / L to 112 mg 
/ L, yet the total hardness had increased from 303mg / L to 403 mg / L (Fig 6).

The above data shows that the shallow and deep groundwater quality 
has become worse in the mining district, especially the Cl- contents of 
shallow pore water have increased significantly. The coal mining has 
brought about that the groundwater balance has been severely broken and 
the condition of groundwater recharging, runoff and excretion has changed.

5.2 Groundwater circulation mechanism in the coal-mining exploring district

From Mount Taihang to coal mining district, the first factor scores, 
the third factor scores and Cl- contents of karst water which belongs to 
the GA group increases gradually (Fig 7), indicating salt accumulating 
gradually and groundwater lateral recharging process.

Groundwater lies the starting end of runoff evolution, which is 
often considered as recharging source (Lloyd and Heathcoat, 1985). The 
contour map of the second factor scores shows that karst water and spring 
of the GA group is at the same area, indicating that karst water mainly 
accept recharging from spring (Fig 8 (b)).The euclidean distance in the 
GA group clustering is the shortest, indicating that deep karst water and 
spring experienced the roughly same hydrogeochemical environment. Fig 
9 (a) shows that the correlation coefficients of about Cl, Na, F and between 
Mg to HCO3 are more than 0.5, indicating that the rock salt and dolomite 
dissolving are the dominant groundwater evolution process in the GA 
group. The Durov diagram shows that HCO3

-and Ca2+ are dominations in 
the GA group, further confirming the above conclusions (Fig 10).

Figure 7. The loadings of the first and third factors for the four clusters 
(GA, GB, GC, GD).

From Mount Taihang to coal mining district, the first factor scores, 
the third factor scores of karst water which belongs to the A group 
increases gradually (Fig 7).

The second factor scores variation ranges of shallow pore water in 
the GB group are from -0.3 to -0.9, and the dominant anion and cation 
gradually become obvious along the X-axis direction in Figure 10, 
indicating the groundwater mixing process. Shallow pore water has the 
high second factor scores in the GB group, indicating that the δ18O and δ2H 
values are more positive, which reflect surface water recharging characteristic. 
There are excellent correlations among K, Na, Ca,18O (Fig 9 (b)), indicating 
that the runoff process of shallow pore water in the GB group, because the FeS 
oxidized of Carboniferous-Permian coal seams bring about large amounts of 
sulfuric acid which take part in dissoluting carbonate rock.    
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Figure 8. Regional distribution of factors scores of water samples for (a), (b) with 
the geology shown in background. Plot (a) shows the first factor scores contour 

map. Plot (b) shows the second factor scores contour map.

Figure 9. Correlation between the ionic species in the GA, GB, GC, GD clusters.

The correlation coefficients of about Cl, Na, F and between Mg to 
HCO3 are more than 0.5, indicating that the rock salt and dolomite dissolving 
are the dominant groundwater evolution process in the GA group. 

The first and second factor scores of deep fissure water in the GC 
group are the lowest in the coal mining district (Fig 8(a) and Fig 8(b)). The 
tritium was not detected and 14C contents were low in all deep fissure water 
samples, indicating the late Pleistocene rainfall recharging characteristic. Fig 
9 (c) shows that there are good correlations about HCO3, Na, Ca, Mg, δ18O 
and no correlations between Ca, Na in the GC group, indicating that the Ca2+, 
Na+ exchanging interaction play a key role, leading the balance equation of 
carbonate dissolving to increasing HCO3

- direction pan. The correlation 

coefficients of about Mg2+, HCO3
-, SO4

2-, F- are more than 0.5, indicating that 
sulfuric acid may take part in the dissolution action in the GD group (Fig 9 (d)).

Figure 10. The Durov diagram shows that HCO3-and Ca2+ 
are dominant ions in the GA group

The dominant anion and cation gradually become obvious along the 
X-axis direction in the GB group, indicating the groundwater mixing process.

5.3 Conceptual model

In the coal-mining exploring district, runoff recharging path of 
groundwater can be described by conceptual model (Fig 11). Shallow 
pore water to be contaminated in a certain range accepts surface water 
leakage recharging in the coal mining district. The deep karst water is 
mainly supplied from Mount Taihang. Deep fissure water accepted rainfall 
recharging in the late Pleistocene.

Figure 11. Conceptual model of groundwater flow path in the study area.

The shallow pore water to be contaminated in a certain range accepts 
surface water leakage recharging in the coal mining district. The deep karst 
water in coal mining district mainly originates from the recharge of groundwater 
from northern mountainous area. The deep fissure water a mainly originates 
from the recharge of rainfall in the late Pleistocene.
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6 Conclusions

Coal mining has destroyed groundwater equilibrium states, so 
groundwater quality became worse and water inrush accident occurred 
more frequently. Based on mathematical statistical analysis theory, this 
paper studies groundwater isotope hydrogeochemical evolution in the coal-
mining exploring district to determine shallow pore water, deep fissure 
water and deep karst water recharging process and evolution mechanism 
in order to assess water quality and water inrush prevention providing 
scientific basis in the coal mining district.
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