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ABSTRACT

New models using scale analysis and perturbation methods were derivated starting from the shallow
water equations based on barotropic fluids. In the paper, to discuss the irregular topography with different
magnitudes, especially considering the condition of the vast terrain, some modified quasi-geostrophic
barotropic models were obtained. The unsteady terrain is more suitable to describe the motion of the fluid
state of the earth because of the change of global climate and environment, so the modified models are
more rational potential vorticity equations. If we do not consider the influence of topography and other
factors, the models degenerate to the general quasi-geostrophic barotropic equations in the previous studies.

Keywords:  Quasi-geostrophic; Potential vorticity;
Scale analysis; Topography.

Modelos Semigeostroficos Barotropicos Modificados con Base en Topografia Inestable

RESUMEN

Este trabajo deduce nuevos modelos con el uso de los métodos de andlisis a escala y de perturbacion a partir de las
ecuaciones de aguas poco profundas con base en fluidos barotropicos. En este articulo se obtuvieron algunos
modelos semigeostroficos barotropicos para aplicar en zonas de topografia inestable con diferentes magnitudes y
considerar especialmente la condicion del extenso terreno. La topografia inestable es més propicia para describir el
movimiento del estado fluido de la tierra debido al cambio del clima y ambiente, por lo tanto los modelos modificados
son ecuaciones de vorticidad potenciales mas razonables. Si no se considera la influencia de la topografia y otros
factores, los modelos se reducirian a las ecuaciones generales semigeostroficas barotropicas de estudios anteriores.
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1. Introduction

In recent decades, many scholars have conducted extensive research
on large-scale atmospheric and oceanic dynamics. Among them, the
topographic effect has great influences on the dynamic mechanism of potential
vorticity equations (Pedlosky, 1974; Collings, 1980; Pedlosky, 1980; Treguier,
1989). In the atmosphere, the topographic height plays an importance role in
atmospheric cyclone and anticyclone changes. Luo (1990) pointed out the
topographic effect was also an important factor of forming atmospheric blocking,
and the global atmospheric circulation would even get affected by the topographic
effect. Lu (1987) discussed the effects of topographic height and shaped on
Rossby wave activation and the influences of topographic south-north and
east-west slopes on waveform and energy propagation. Chen (1998) and Jiang
(2000) derived the quasi-geostrophic potential vorticity equation with large-scale
topography, friction, and heating under the barotropic model, and the large-scale
effects of Qinghai-Tibet Plateau on atmosphere were discussed. In addition, the
oceanic topography is very complex, such as The North West Shelf of Australia
(Holloway, 1997), Portugal Shelf Sea Area (Sherwin, 2002), etc. The relationship
between topography and ocean circulation was pointed out in the literature
(Roslee et al., 2017b; Kamsani, 2017; La, 1990; Marshall, 1995; Alvarez, 1994;
Sou, 1996). Cessi (1986) discussed the important role of topography in ocean
circulation. Holloway (1992) introduced the interaction of eddies with seafloor
topography and argued that ocean circulations would be significant interaction
between turbulent vortices and topography rather than gravity wave drag. Then,
general expressions for the eddy-topographic force, eddy viscosity, and stochastic
backscatter, as well as a residual Jacobian term, are derived for barotropic flow
over mean topography by Frederiksen (1999). All the above researches, Actually
the topography height also changes with time in the earth fluid. Changes in
topography can lead to tsunamis, floods and natural disasters(Abdullah, 2017,
Elfithri, 2017; Rahim, 2017). Yang (2011,2012) and Song (2012, 2013) discussed
topography changes over time discussed topography changes over time t,
the influence of the nonlinear long wave amplitude and waveform. Da (2013)
discussed the shallow water equation forms when underlying surface slowly
changes with time and obtained the vorticity equation with an underlying surface.
This model considered the actual circumstances that the topography changes
with time-space (Erfen et al., 2017; Roslee, 2017a) . In this paper, we discuss
different magnitude topography under spatial-temporal variable and obtain some
modified models, which have important effects on the future discussion about the
waveform changes of nonlinear long waves.

This paper is organized as follows: In Section 2, starting from the
rotating shallow water equation set, we give the bottom topography
which is not smooth boundary and simplify the equation set with
unsteady topography. Section 3 is given scale analysis and perturbation
methods; then we obtain new equation set by topographic conditions
with different magnitudes. Later we derive the equations with different
orders and get some modified models in Section 4. Finally, make the
relevant conclusions in Section 5.

2. Basic equations

Assuming the static equilibrium condition, the fluid can be regarded
as barotropic, incompressible, frictionless state. The upper boundary
_dh _&h o &h

oo ety free surface pressure
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height is h(x,y,t), and w =¥|..
intensity 2, =P|.., =P, is constant. The basic equation set can be

written as (Pedlosky, 1987)
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especially, the bottom topography is about spatial-temporal variable
hy =h (X, y,t)
the coriolis parameter is
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first of all, we integrate Eq. (1c)
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Egs. (5) and (6) indicate that the horizontal pressure gradient
under the barotropic model can be expressed by the gradient of the free
surface gravitational potential (Taharin & Roslee, 2017).

We assume that the preliminary horizontal velocity is independent
of the Z , Egs. (1a) and (1b) can be rewritten as
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then integrate continuity Eq. (1d) from z =h,(x,y,t) to the free
surface Z = h(X, Y,t), we can get
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assuming that the free surface height H is constant when the fluid is
static (Pedlosky, 1987).

W, p,)=H+h h<<H (8)

the barotropic equation set with unsteady topography can be written as
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the equation set can be written as
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3. Scale analysis, perturbation methods

Making dimensionless analysis on the Egs. (11a), (11b) and (11¢), for
the large-scale motions
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where | is an undetermined parameter.
Substituting Eq. (12) into Egs. (11a), (11b) and (11c¢), then
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4. Derive the barotropic models
Making classified discussion on the magnitude of A.
4.1. A~ 1 magnitude

The scale of the ¢B is consistent with the small amplitude
function ¢, most of the topography parameters following with this
situation in the real world.

Ro’ order approximation
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Ro' order approximation

axl ay 1 ayl

after calculation, the dimensionless vorticity equation is derived
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XR is the Rossby radius of deformation, Eq. (25) is a modified model.

4.2. A~ 10 magnitude
Large-scale atmospheric motion of large topography is suitable for such
conditions (L ~ 10°m, U ~ 10m/s, fo~ 10*s ). For example, a case study
of Tibetan Plateau topography, the height is 3 4 x10°m approximately which
is suit for the situation.
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in order to get the results, we should consider the magnitude of r
L} g+, according to the Eq. (18¢), M can be considered as a parameter.
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Eqgs. (30a), (30b) and (30c) can be transformed into the vorticity equations
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Eq. (35) is a modified model.

4.3. L <10 " magnitude

According to (18c), it is observed that the magnitude of topography
expression form A is too small, which approximately ignores the influences
of topographic effect.

Now we can observe that the Eqs. (25), (35) are two quasi-
geost[ophic barotropic models under variable topographic conditions with
time *. If the topographic effect is independent of time, equations degrade
into the following forms.

Under the stable topography, Eq. (35) degenerates into
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the model (25) under the stable topography can be written as
(Pedlosky,1987)
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otherwise, if we don’t consider the topographic effect and the
divergence of the fluid, Eqgs. (36) and (38) degenerate into (Liu, 1991)

v\ . By + Vi) =0 (40)
ol

Eq. (40) is a classics dynamics model used by the large-scale
atmospheric and oceanic motions.

5. Conclusion

(a). Under the unsteady topography, some new modified models
(25), (35) are derived. These models meet the general rule that the
topography changes with time in reality. When the topography has
nothing to do with the time, Eq. (35) degenerates into a dynamics model
(36), Eq. (25) degenerates into Eq. (38) which is a quasi-geostrophic barotropic
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model under the spatial topography.

(b). The modified models under the topographic effect with different
magnitudes are presented, we can see the pattern under the condition of large
terrain, which is the improvement of the model. After the above-modified
models are given, we will also derive the mathematical model for Rossby
wave in the further study, and the further exploration of the large-scale factual
influences of topography on atmosphere and ocean are required.
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