
An artificial neural network was used for forecasting of long-term wind speed data (24 and 48 hours ahead) in 
La Serena City (Chile). In order to obtain a more effective correlation and prediction, a particle swarm algorithm 
was implemented to update the weights of the network. 43800 data points of wind speed were used (years 2003-
2007), and the past values of wind speed, relative humidity, and air temperature were used as input parameters, 
considering that these meteorogical parameters are more readily available around the globe. Several neural 
network architectures were studied, and the optimum architecture was determined by adding neurons in systematic 
form and evaluating the root mean square error (RMSE) during the learning process. The results show that the 
meteorological variables used as input parameters, have influential effects on the good training and predicting 
capabilities of the chosen network, and that the hybrid neural network can forecast the hourly wind speed with 
acceptable accuracy, such as: RMSE=0.81 [m·s−1], MSE=0.65 [m·s−1]2 and R2=0.97 for 24-hours-ahead wind 
speed prediction, and RMSE=0.78, MSE=0.634 [m·s−1]2 and R2=0.97 for 48-hours-ahead wind speed prediction.
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Long-term prediction of wind speed in La Serena City (Chile) using hybrid neural network-particle swarm algorithm

Predicción a largo plazo de la velocidad de viento en la ciudad de La Serena (Chile) utilizando un 

algoritmo híbrido de red neuronal-enjambre de partículas
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Una red neuronal artificial fue utilizada para la predicción de datos de la velocidad de viento a largo plazo (24 y 48 horas 
en adelanto) en la Ciudad de La Serena (Chile). Para obtener una efectiva correlación y predición, se implementó una 
optimización de enjambre de particulas para actualizar los pesos de la red. Se emplearon 43800 datos de velocidad de 
viento (años 2003-2007), y los valores pasados   de velocidad del viento, humedad relativa y temperatura del aire fueron 
utilizados como parámetros de entrada, considerando que estos parámetros meteorológicos se encuentran fácilmente 
disponibles en todo el mundo. Se estudiaron varias arquitecturas de redes neuronales y la arquitectura optima se 
determine añadiendo neuronas de forma sistemática y evaluando la raíz del error cuadrático medio (RMSE) durante 
el proceso de aprendizaje. Los resultados muestran que las variables meteorológicas utilizadas como parámetros de 
entrada, tienen un efecto positivo sobre el correcto entrenamiento y capacidades predictivas de la red, y que la red 
neural híbrida puede pronosticar la velocidad del viento horaria con una precisión aceptable, como un RMSE=0.81 
[m·s−1], MSE=0.65 [m·s−1]2 y R2=0.97 para la predicción de la velocidad del viento de 24 horas en adelanto, y un 
RMSE=0.78, MSE=0.634 [m·s−1]2 and R2=0.97 para la predicción de la velocidad del viento de 48 horas en adelanto.
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1. Introduction

Energy derived from wind has played a vital role in the history of 
mankind and is again receiving considerable attention because of its free and 
non-polluting character. With the development of wind energy technologies 
and the decrease of wind power production cost, wind power has rapidly 
developed around the world in recent years (Akdağ and Guler, 2011). As a 
clean energy source wind is considered an alternative to fossil fuels, which 
actually accelerate global warming. The first scientific research to utilize 
wind for generating electricity, was initiated by the Danish in the 1960s. 
The 1973 energetic crisis, forced many governments to realize the value 
of wind, as a renewable and independent energy source (Hanağasioğlu, 
1999). Electricity generation using wind energy has been well recognized as 
environmentally friendly, socially beneficial, and economically competitive 
for many applications (Monfared et al., 2009). Prediction of wind speed 
(WS) at the surface or near the surface, is essential in many areas of 
science and technology, e.g., wind energy generation, aviation, space vehicle 
launching, weather forecasting, and agro-meteorology (Kulkarni et al., 2008).

Wind field prediction at the level of wind farm, is still a challenging 
problem. Different methods have been developed (Kallos et al., 2007); 
and several studies have been performed to estimate the wind potential 
in different parts of the world (Çam and Yildiz, 2006). There are various 
strategies for wind speed prediction that can be classified into two 
categories: (1) statistical methods that can be subdivided into numerical 
weather prediction (NWP) and persistence and (2) artificial intelligence 
techniques that have subdivisions such as artificial neural networks (ANN) 
and fuzzy logic (Monfared et al., 2009).

With the developments made in chaos theory, researchers have looked 
for the determinism in various seemingly chaotic-looking fluctuations from 
different disciplines such as physics, chemistry, hydrology, atmospheric 
sciences, etc (Karunasinghe and Liong, 2006). 

The time series prediction is one of the most important aspects in chaos 
theory. Time series contain much information about dynamic systems (Han 
and Wang, 2009). These systems are usually modeled by delay-differential 
equations. Some of them, for example, the Mackey–Glass equation (Mackey 
and Glass, 1977), the Ikeda equation (Ikeda, 1979), and equation for an 
electronic oscillator with delayed feedback (Chua et al., 1992), are standard 
examples of time-delay systems (Bezruchko et al., 2001).      

The main problem of the time series study consist of predicting the 
next value of a series known up to a specific time, using the known past 
values of the series. In time series prediction, this is usually first embedded 
in a state space using delay coordinates:  

where x(t) is the value of the time series at time t, τ a suitable time-
delay and d the order of the embedding. This embedded vector is then used 
to predict the next value of the series x(t + τ). Therefore, the non-linear 
dependence of the level of a series on previous data points is of interest, 
partly because of the possibility of producing a chaotic time series.  Note that 
short-term prediction for chaotic time series have been widely investigated by 
several techniques (Karunasinghe and Liong, 2006), however, the long-term 
prediction has not been widely studied in the literature.  

In this work, chaotic time series data taken from the Mackey–Glass 
differential equation were used to develop a neural network. In order to still 
obtain a more effective correlation and prediction, particle swarm algorithm has 
been introduced to update the weights of all layers of the network. Next, this 
hybrid algorithm was used in the long-term prediction of the next 24 and 48 
hours of the wind speed time series. To the best of the authors’ knowledge, there 
is no application for the prediction of the wind speed that includes the long-term 
prediction, such as the one presented here.

2. Computational method

A feed-forward neural network was used to represent non-linear 
relationships among variables. This ANN was implemented by replacing 
standard back-propagation algorithm with particle swarm optimization (PSO).

PSO is a population-based optimization tool, where the system 
is initialized with a population of random particles and the algorithm 
searches for optima by updating generations (Eberhart and Kennedy, 
1995). In each iteration, the velocity of each particle j is calculated 
according to the following formula (Lazzús, 2011):

where s and v denote a particle position and its corresponding velocity 
in a search space, respectively. k is the current step number, ω is the inertia 
weight, c1 and c2 are the acceleration constants, and r1, r2 are elements from 
two random sequences in the range (0,1). k

js  is the current position of the 
particle, ψ

k
jy  is the best one of the solutions that this particle has reached, 

and ψg is the best solutions that all the particles have reached. In general, 
the value of each component in v can be clamped to the range [–vmax ,vmax] 
control excessive roaming of particles outside the search space (Kennedy et 
al., 2001). After calculating the velocity, the new position of each particle is:

The total steps to calculate the output values, using the input values of 
the network were as follows (Lazzús et al., 2014): 

where Xi is the input variables i, 
min
iX and 

max
iX are the smallest and 

largest value of the data, thus the input data are normalized using this equation. 
Next, the net inputs (N) are calculated for the hidden neurons coming from the 
inputs neurons. For a hidden neuron:

where pi is the vector of the inputs of the training, ,
h
i jw is the weight 

of the connection among the input neurons with the hidden layer h, and 
the term ,

h
i jb corresponds to the bias of the neuron of the hidden layer h, 

reached in its activation (Freeman and Skapura, 1991). The PSO algorithm 
is very different from any of the traditional methods of training (Lazzús, 2011). 
Each neuron contains a position and velocity. The position corresponds to the 
weight of a neuron  while the velocity is used to update the weight 

 . Starting from these inputs, the outputs (yi) of the hidden neurons 
are calculated, using a transfer function f h associated with the neurons of 
this layer (Freeman and Skapura, 1991).

To minimize the error, the transfer function f should be differentiable. 
In the ANN, the hyperbolic tangent function (tansig) was used as

All the neurons of the ANN have an associated activation value for a 
given input pattern; the algorithm continues finding the error that is presented 
for each neuron, except those of the input layer. After finding the output values, 

1 1k+ k k+
j j js = s +v
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the weights of all layers of the network are actualized   by PSO, 
using equations 2 and 3 (Lazzús et al., 2014).

The velocity is used to control how much the position is updated. On 
each step, PSO compares each weight using the data set. The network with the 
highest fit ness is considered the global best. The other weights are updated 
based on the global best network rather than on their personal error or fitness 
(Pérez Ponce et al., 2012; Lazzús et al., 2014). In this article, we used the mean 
square error (MSE) to determine network fitness for the entire training set:

where Yi is the output value obtained from the normalized output (yi) 
of the network. This process was repeated for the total number of patterns to 
training. For a successful process the objective of the algorithm is to modernize 
all the weights by minimizing the total root mean squared error (RMSE):

Figure 1 presents a block diagram of the ANN+PSO algorithm developed 
in this study. In PSO, the inertial weight ω, the constant  c1 and c2, the number of 
particles Npart and the maximum speed of particle summarizes the parameters 
to synchronize for their application in a given problem. An exhaustive trial-and-
error procedure was applied for tuning the PSO parameters. Table 1 shows the 
selected parameters for this hybrid algorithm.

3. Simulations

3.1. Mackey-Glass time series
To evaluate the capability of the proposed hybrid algorithm in the 

long-term prediction, the Mackey–Glass time series was used. Thus, a set of 
data points were generated from the Mackey–Glass time-delay differential 
equation (Mackey and Glass, 1977; Farmer, 1982) which is defined by:

(11) 

where t is a variable, x is a function of t, and τ is the time delay. The 
initial values of the time series are α = 0.2, β = 0.1, and x(0)=1.2. If τ ≥ 17, 
the time series show the chaotic behaviour (Farmer, 1982; Mirzaee, 2009).

The goal of the task is to use known values of the time series up to 
the point x=t to predict the value at some point in the future x=t+T. The 
standard method for this type of prediction is to create a mapping from d 
points of the time series spaced      apart, that is                                            , 
to a predicted future value x(t+T).

In order to solve the Mackey–Glass equation, the fourth-order 
Runge–Kutta method was applied to find the numerical solution. The time 
series was obtained evaluating the solution of eq. (11) at each integer points. 
Step size of 0.1 was used to generate a time series, and x(t) is thus derived 
for                           with x(t)=0 for t <0 in the integration. Four non consecutive 
points in the time series are given to generate each input vector Xi (where i=1, 
2, …, n) of the input matrix X, as: 

(12)

A similar criterion was used to create the output matrix, as:

(13)

Figure 1.  Flow diagram for training of the ANN using PSO algorithm

Table 1.  Parameters used in the hybrid ANN+PSO algorithm.
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Then, the ANN+PSO method was used in the long-term prediction. 
This hybrid algorithm was trained to predict the future value x(t+84) from 
the current value x(t) and the past values, using the standard form applied 
in the literature, for d=4 and ∆=T=6 (Chng et al., 1996; Mirzaee, 2009).

(14)

One thousand data points of the above format were collected. The 
first 500 were used for training while the others were used for testing 
the ANN+PSO method. Then, the following case was simulated with α 
= 0.2, β = 0.1, x(0) = 1.2 and τ = 17. From this case, several network 
architectures were tested.

The most basic architecture normally used for the analysis of 
chaotic time series involves a neural network consisting of three or 
four layers (Lazzús et al., 2014). The input layer contains one neuron 
for each input parameter: x(t), x(t–6), x(t–12), and x(t–16). The 
output layer has one node generating the scaled estimated value of the 
chaotic time series x(t+84). The number of hidden neurons needs to be 
sufficient to ensure that the information contained in the data utilized 
for training the network is adequately represented (Lazzús et al., 2014). 
There is no specific approach to determine the number of neurons of the 
hidden layer, many alternative combinations are possible. The optimum 
number of neurons was determined by adding neurons in systematic 
form and evaluating the MSE and RMSE of the sets during the learning 
process (Pérez Ponce et al., 2012; Lazzús et al., 2014). For our case the 
optimum architecture was 4-12-1. 

The results obtained with the ANN+PSO method present 
a MSE=0.000063 and RMSE=0.0079 for training set, and 
MSE=0.000065 and RMSE=0.0080 for prediction set. These results 
show that the ANN+PSO model can be accurately trained and that the 
chosen architectures can predict the long-term x(t+84) with acceptable 
accuracy. Table 2 shows a comparison between some computational 
methods found in the literature (Martinetz et al., 1993; Whitehead and 
Choate, 1996; Bersini et al., 1997; Awad et al., 2009) and the result 
obtained with the ANN+PSO method. This comparison was made using 
the normalized root mean squared error (NRMSE), defined as:

(15)

Table 2. Comparison between computational methods found
 in the literature for the long-term prediction.

3.2. Wind speed time series
Once the capability of the hybrid algorithm was proved, it was 

used to forecast the long-term of wind speed time series.
This study is based in data collected from a meteorological 

stations located on the semi-arid Norte Chico of Chile (29º54’ S; 
71º15’ W; 10 m), located at south of the hyper-arid Atacama Desert. 
The region is characterized by complex topography with altitudes 
varying from sea level until 5000 m at the high Andes Cordillera. The 
climatic characteristics are influenced by the south-eastern Pacific 
subtropical anticyclone and the cold Humbolt Current which results 
in low precipitation rates (Kalthoff et al., 2002). The zone is one of 
the most sensitive areas in South America (Kalthoff et al., 2006), and 
recent studies of oceanic and atmospheric variability have confirmed the 
implications of the dynamics of El Niño-Southern Oscillation (ENSO) 
cycle on the local climate of this zone (Meinen and McPhaden, 2009). 

43800 data points (years 2003-2007) were used. The future values 
of wind speed was predicted using the past values of the time series of 
wind speed WS(m·s−1), relative humidity RH(%), and air temperature 
T(K). Figure 2 shows the time series of the selected meteorological data 
used. The data ranges and the properties of interest are listed in Table 3. 
As seen in this Table, hourly WS cover wide ranges, going from ≈0 to 
10 (m·s−1). Other wide range for the input parameters are: T from 270 to 
305 (K), and RH from 2 to ≈100 (%).

The influence of the selected meteorological data in this study (T, 
RH, and WS) over the climate of the semi-arid zone of the Atacama 
Desert has been revised and evaluated in other communications (Kalthoff 
et al., 2002; Kalthoff et al., 2006). Figure 3 shows WS as a function of the 
selected meteorological data: T and RH. Fig. 3a shows WS as a function 
of T with a coefficient of linear correlation (R2) of 0.5979. Fig. 3b shows 
WS as a function of RH with R2 of 0.2757. Note that the coefficient of 
linear correlation in this figure shows a non-linear relationship between 

Table 3 Summary of data used in this study.

Figure 2. Time series of the meteorological data used in this study. (a) wind 
speed WS/ms-1, (b) air temperature T/K, and (c) relative humidity RH/%.
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WS and the input parameters for this climate zone. Then, the relationship 
between WS and these meteorological data is highly non-linear, and 
consequently an ANN is the best alternative to model the hourly WS.

Two new cases were studied with this methodology, the long-term 

prediction of the next 24 hours WS(t+24) and the long-term prediction 
of the next 48 hour WS(t+48). To select the best input parameters for 
solving the problem, the hourly data from the current value to 23 past 
hours (t-23, t-22, t-21,… , t), were considered. Then, the sum of absolute 
values of weights (SAVW) was used (Lazzús, 2013). Figure 4 shows the 
input with more contribution for the prediction of future values of WS. This 
Figure shows the great significance of the past values (t-18), (t-12), (t-6), 
and the current value (t) on the three meteorological data (WS, T, and RH).                                                        

Figure 3. Experimental data of WS from 2003 to 2007 
as a function of the selected Meteorological parameters.
 a) WS vs T →R2=0.5979; (b) WS vs RH →R2=0.2757.

Thus, the optimum input vector was:

(16)

where τ is the future value to predict: 24 and 48 for the long-term prediction.

Figure 4. Influence of several points of time series on prediction of 
future values of wind speed. Bars represent the sumsof absolute 

values of weights (SAVW) of the ANN+PSO.

The leave-20%-out cross-validation method was used to estimate 
the predictive capabilities of the model. 34996 data points were used in 
the training set, and 8760 data points (not used in the training step) were 
used in the prediction set.

4. Results and Discussion
Several network architectures were tested for the long-term wind 

speed prediction (T(t+24) and T(t+48), separately). The optimum 
architecture was checked using the objective function (Eq. 10). Figure 
5 shows MSE found in correlating the WS as function of the number of 
neurons in the hidden layer (NN). Fig. 5a shows the best topology found 
for the prediction of the WS for the next 24 hours T(t+24) with a network 
architecture 12-28-1. Fig. 5b shows the prediction of the WS for the next 48 
hours T(t+48) with an optimum network architecture of 12-42-1. Once the best 
architectures were determined, the optimum weights and biases required to 
carry out the estimate of future values of WS were obtained.

Figure 6 shows a comparison between real data (black line) and 
calculated values (points) of long-term prediction of WS(t+24). Fig. 6a 
shows the forecasting of WS(t+24) with a correlation coefficient (R2) of 
0.974 for the training set (years 2003-2006) with a slope of the curve (m) 
of 0.965 (expected to be 1.0), and with RMSE=0.787 [m·s−1] (MSE=0.620 
[m·s−1]2 and MSEmax=10.028 [m·s-1]2). Fig. 6b shows the forecasting 
of WS(t+24) with R2=0.973 during the prediction step (year 2007) 
with m=0.963 (also expected to be 1.0), and with RMSE=0.807 [m·s−1] 
(MSE=0.651 [m·s−1]2 and MSEmax=7.110 [m·s−1]2).

Figure 5. Deviations found in the correlation of wind speed as a function 
of the number of neurons in the hidden layer for: (a) long-term prediction 

WS(t+24), and (b) long-term prediction WS(t+48). In both graphics,
 training step (■) and prediction step (○).
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Figure 6. Comparison between real and calculated values of WS(t+24) 
using the proposed ANN+PSO model. (a) Training set, period 2003-2006; 

and (b) Prediction set, period 2007.

Figure 7 shows a comparison between real data (black line) and 
calculated values (points) of long-term prediction of WS(t+48). Fig. 6a 
shows the forecasting of WS(t+48) with R2=0.970 for the training set 
with m=0.963, and with RMSE=0.788 [m·s−1] (MSE=0.622 [m·s−1]2 and 
MSEmax=9.386 [m·s−1]2). Fig. 6b shows the forecasting of WS(t+48) with 
R2=0.969 for the prediction set with m=0.962, and with RMSE=0.796 
(MSE=0.634 [m·s−1]2 and MSEmax=8.210 [m·s−1]2).

A comparison was made with a neural network with standard 
back-propagation (BPNN) algorithm (Hagan and Menhaj, 1994), and 
similar architecture and database. This BPNN show results of MSE 
higher than 1 [m·s−1]2 and R2 lower 0.8 for the forecasting of  WS(t+24) 
and WS(t+48). And other comparison was made with a multiple linear 
regression (MLR) method, and similar database. The MLR method 
shows MSE higher than 4 [m·s−1]2 and R2 lower 0.7 for both cases. 
Note that, the predictions with the proposed ANN+ PSO method shows 
MSE a little higher than 0.6 [m·s−1]2 and R2 higher than 0.97. Table 4 
summarizes the deviations obtained in the long-term prediction using 
the proposed method versus BPNN and MLR methods. These results 
show that the ANN+PSO can be accurately trained and that the chosen 
topologies can estimate the future values of WS with acceptable 
accuracy. These results represent a tremendous increase in accuracy for 
forecasting this important meteorological property and show that not 
only the optimum architecture obtained was crucial, also the appropriate 
selection of the independent parameters (T and RH). This is important 
because air temperature and relative humidity are commonly available 
parameters. Note that the coefficients of linear correlation of these 
parameters show a non-linear relationship with the WS for the climate 
of several geographic zones. Then, the relationship between WS and 
these meteorological data is highly non-linear, and consequently the 
ANN+PSO is a good tool for modeling WS for several applications.

Figure 6.  Comparison between real and calculated values of WS(t+48) 
using the proposed ANN+PSO model. (a) Training set, period 2003-2006; 

and (b) Prediction set, period 2007.

The results obtained by other models and other sites can be usefully 
compared with our results. Zhang et al. (2012) shows the performance 
analysis of four modified approaches for wind speed forecasting for four 
observation sites in Gansu (China), with MSE higher than 2 [m·s−1]2. Liu 
et al. (2013) shows the forecasting models for wind speed using wavelet, 
wavelet packet, time series and artificial neural networks with MSE higher 
than 1 [m·s−1]2. For Spain, the wind speed estimation was made using 
a multilayer perceptron with MSE higher than 1 [m·s−1]2 and R2  below 
0.75 (Velo et al., 2014). Recently, Wang et al. (2014) shows the mean 
hourly wind speed prediction in the Hexi Corridor of China based on 
the seasonal adjustment method (SAM), exponential smoothing method 
(ESM), and radial basis function neural network (RBFN), with RSME 
higher than 0.7 [m·s−1]. It must be mentioned that these results were 
obtained from different sites and based on different weather conditions, 
and the results cannot be compared directly with one another. However, 
results from the different methods show that the accuracy of ANN+PSO 
model employed in this study is good.

5. Conclusions
In this work, a neural network was used for the forecasting of long-

term wind speed time series. In order to obtain a more effective correlation 
and prediction, particle swarm algorithm has been introduced to update 
the weights of all layers of the network. 43800 data points (years 2003-

Table 4. Summary of the deviations obtained with the ANN+PSO algorithm 
for the long-term prediction of wind speed..
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2007) of wind speed were used. To distinguish between the different 
values of hourly data considered in this study, so that the network can 
discriminate and learn in optimum form, the following past values of the 
time series of meteorological data were used as input parameters: wind 
speed WS(m·s-1), relative humidity RH(%), and air temperature T(K).

Based on the results and discussion presented in this study, the 
following main conclusions are obtained: i) The results show that the 
proposed ANN+PSO can be properly trained for predicting the hourly 
wind speed, with acceptable accuracy; ii) the meteorological variables 
used (WS, T, and RH), have influential effects, on the good training and 
predicting capabilities, of the chosen network; iii) The low deviations 
found with the proposed ANN+PSO method indicate that it can predict 
the future values of WS with better accuracy than other methods; and 
iv) The values obtained with the proposed method are believed to be 
sufficiently accurate for engineering calculations, among other uses.
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