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The forecast of wind energy is closely linked to the prediction of the variation of winds over very short 
time intervals. Four wind towers located in the Inner Mongolia were selected to understand wind power 
resources in the compound plateau region. The mesoscale weather research and forecasting combining 
Yonsei University scheme and Noah land surface model (WRF/YSU/Noah) with 1-km horizontal 
resolution and 10-min time resolution were used to be as the wind numerical weather prediction (NWP) 
model. Three statistical techniques, persistence, back-propagation artificial neural network (BP-ANN), 
and least square support vector machine (LS-SVM) were used to improve the wind speed forecasts at 
a typical wind turbine hub height (70 m) along with the WRF/YSU/Noah output. The current physical-
statistical forecasting techniques exhibit good skill in three different time scales: (1) short-term (day-
ahead); (2) immediate-short-term (6-h ahead); and (3) nowcasting (1-h ahead). The forecast method, 
which combined WRF/YSU/Noah outputs, persistence, and LS-SVM methods, increases the forecast 
skill by 26.3-49.4% compared to the direct outputs of numerical WRF/YSU/Noah model. Also, this 
approach captures well the diurnal cycle and seasonal variability of wind speeds, as well as wind direction.

La estimación de la energía eólica está relacionada con la predicción en la variación de los vientos en pequeños 
intervalos de tiempo. Se seleccionaron cuatro torres eólicas ubicadas al interior de Mongolia para estudiar los recursos 
eólicos en la complejidad de un altiplano. Se utilizó la investigación climática a mesoscala y la combinación del 
esquema de la Universidad Yonsei con el Modelo de Superficie Terrestre Noah (WRF/YSU/Noah), con resolución 
de 1km horizontal y 10 minutos, como el modelo numérico de predicción meteorológica (NWP, del inglés 
Numerical Weather Prediction). Se utilizaron tres técnicas estadísticas, persistencia, propagación hacia atrás en redes 
neuronales artificiales y máquina de vectores de soporte-mínimos cuadrados (LS-SVM, del inglés Least Square 
Support Vector Machine), para mejorar la predicción de la velocidad del viento en una turbina con la altura del eje a 
70 metros y se complementó con los resultados del WRF/YSU/Noah. Las técnicas de predicción físico-estadísticas 
actuales tienen un buen desempeo en tres escalas de tiempo: (1) corto plazo, un día en adelante; (2) mediano plazo, 
de seis días en adelante; (3) cercano, una hora en adelante. Este método de predicción, que combina los resultados 
WRF/YSU/Noah con los métodos de persistencia y LS-SVM incrementa la precisión de predicción entre 26,3 
y 49,4 por ciento, comparado con los resultados directos del modelo numérico WRF/YSU/Noah. Además, este 
método diferencia la variabilidad de las estaciones y el ciclo diurno en la velocidad y la dirección del viento.
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1. Introduction

The introduction of significant amounts of wind energy into power systems 
makes accurate wind power forecasting as a crucial element of modern electrical 
grids. Power systems require forecasts with temporal scales of tens of minutes to 
a few days at wind farm locations. Traditionally these forecasts predict the wind 
at turbine hub heights, and then they are converted into power output predictions 
at wind farms. Since the available wind power is proportional to the wind speed 
cubed, even small wind forecast errors result in significant power prediction 
errors. Accurate wind forecasts with high temporal scales and spatial resolution 
at the location of wind farms are significant and essential components in the 
integration of wind power into power systems. 

Numerous efforts have been undertaken to predict the wind at a hub height 
of large wind farms using numerical weather prediction (NWP) models (Asis 
et al., 2017; Giebel et al. 2011) or statistical models. NWP models focus on the 
thermodynamic characteristics of the atmosphere coupling with the complex 
topography and land cover, which have the temporal scale of a few minutes 
to a day and horizontal spatial scale of a few kilometers to several hundred 
kilometers (Lindang, 2017; Pielke, 2002). However, NWP models systematic 
errors arise from errors in the initial conditions or parameterization. The statistical 
approach is based on training with measurement data and uses the difference 
between the predicted and the actual wind speeds in immediate past to tune 
model parameters, which are more economical regarding computer resources. 
Usually, statistical methods forecast for lead times shorter than 6 hours and the 
mathematical relationships should be formulated from the past observation as 
long as possible. Therefore, NWP model and statistical post-processing models 
can be combined to accurately forecast the hub-height winds at wind farms in 
complex terrain (Landberg 2001). The physical models try to use environmental 
considerations as long as possible to reach the best possible estimate of the local 
wind speed. Statistical models try to find the relationships between NWP results 
and observations to reduce the remaining error.

The physical methods (NWP model) differ widely in their model 
formulations, spatial and temporal resolutions, and parameterizations. 
Since wind turbines are situated in the planetary boundary layer (PBL), 
physics options including the PBL scheme and land surface model taking 
the variation of the wind with height into account are proposed. Wind 
power statistical models, such as Calman filter algorithm, artificial neural 
network (ANN, Carolin and Fernandez 2007; Li et al. 2009) and support 
vector machine (SVM, Yang et al. 2009; Zhang and Zeng 2010) models, 
have been shown to outperform the conventional statistical models as 
artificial intelligence methods. The combined statistical models, including 
2 or more statistical models, overcomes the limitations of one statistical 
model and improve the accuracy effectively (Peng et al. 2011). Then, 
which mesoscale NWP model should be proposed to predict the hub-height 
winds, how to set up the NWP model, and which post-processing statistical 
modules could correct the errors, are significant problems and need more study.

This study aims to accurately predict the hub heights (70 m) winds at a 
wind farm on a plateau located in the Inner Mongolia using a hybrid approach, 
which combines physical and statistical approach. The Weather Research and 
Forecasting (WRF) model was used as the mesoscale NWP because WRF is 
evidenced to have the ability to simulate the near-surface wind even in complex 
terrain (Lai et al., 2017; Shimada et al. 2011; Deppe et al. 2012). The most 
widely used planetary boundary layer (PBL) schemes, the Yonsei University 
scheme (YSU), and the Noah land surface model were combined with the WRF 
model. The statistical post-processing models were selected to accurate the 
NWP model output, including persistence (P), back-propagation artificial neural 
network (BP-ANN) and least square support vector machine (LS-SVM) models. 
The short-term forecasting (day-ahead), immediate-short-term forecasting (6-h 
ahead) and nowcasting (1-h ahead) were selected to verify the above dynamical-
statistical forecast. This work contributes to a better understanding of the wind 
conditions and the predictability of the hub-height winds for wind farms.

In section 2, we describe the wind data, the WRF/YSU/Noah, 
and the statistical models. Section 3 presents the results, which are 

summarized and discussed in section 4.

2. Data and methodology

2.1. Data

The wind observations are taken from the four meteorological towers 
(05009, 05010, 05011, 05012; see Table A2) on a wind farm in Inner 
Mongolia at different height (10 m, 30 m, 50 m, 70 m, and 100 m) with a 
10-min time step from 2 January to 31 December in 2010. Based on the 
homogeneity test, the observations from 2 January to 22 March in 05010 
and from 17 March to 22 March in 05011 are removed (Li et al. 2015).

Table 1. The four meteorological towers used in this study.

2.2. WRF /YSU /Noah

The mesoscale model used in this study is the non-hydrostatic WRF 
model version 3.3.1 (Skamarock et al. 2008). There are 34 vertical levels 
with higher resolution in PBL. The top of the model is 50 hPa, and the lowest 
is 10 m above ground level (AGL). There are 12 levels in the lowest 1 km 
AGL to improve the vertical resolution in PBL. WRF model is configured 
with four two-way nested domains with horizontal grid spacing of 27 km 
(D1), 9 km (D2), 3 km (D3), and 1 km (D4), respectively (Fig. B1). The 
outermost domain covers the most of China, the South China Sea and some 
parts of the Pacific Ocean, which provides the background circulation for 
the inner grid. The private domain covers the research region to simulate the 
local circulation system (Yu & Rahim, 2017). 

Model physics options include the WRF Single-Moment 5-class 
(WSM5) scheme for microphysical parameterization (Hong et al. 2004), 
the Kain-Fritsch cumulus scheme (Kain 2004) only for the utmost two 
domains, the Dudhia (1989) shortwave radiation scheme, and the Rapid 
Radioactive Transfer Model (RRTM) for radiation (Mlawer et al. 1997). 
We found PBL schemes and land surface models are important for the 
reasonable prediction of the near-surface winds. Then the YSU PBL 
parameterization with the Monin-Obukhow surface layer scheme (Hong 
et al. 2006) and Noah land surface model (EK et al. 2003) were selected 
after some examinations (Li et al. 2015).

Table 2. Root Mean Square error (RMSE) for different prediction methods    
and different forecast lengths to 10 day test period from the 20th to 30th of 

each month in 2010. (Unit: m·s-1)



39Prediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical Forecast 

The National Centers for Environmental prediction (NCEP) final 
operational global analysis (FNL) data on 1.0 ×1.0 grids at every six hours 
are used to initialize the WRF model, which are available on the surface 
and at 26 pressure levels from 1000 to 10 hPa. The moderate-resolution 
imaging spectroradiometer (MODIS) land data is adopted which is more 
close to the actual land surface features. The WRF output is archived at 10-
min intervals for analysis. D1, D2, D3, and D4 are activated at 0000 UTC, 
1200 UTC, 1800 UTC, and 0000 UTC in the next day, respectively. Then 
the model integral time of D1, D2, D3, and D4 are 48 h, 36 h, 30 h, and 
24 h, respectively. The first 24 h of D1 runs as a spin-up period. The finest 
domain simulations are used to forecast the turbine hub winds. This forecast 
experiment covered the time from 2 January to 31 December in 2010. 

Figure 1. The 3 km and 4 km model domains and topography 
(shaded, unit: m) used in this study, with a black dot showing the

 location of four meteorological towers.

2.3. Statistical models

(a) Persistence method

Persistence is one of the simplest prediction models and most 
frequently used in wind energy forecasting. In this model, the forecast 
for all times ahead is set to the value it has now. The mean relative 
errors of persistence model for the four sites in 1-hour forecast horizon 
are shown as Figure B2, which were calculated from the observed 70-m 
winds during 2 January to 31 December in 2010. The results indicate 
persistence has a good forecast in a few minutes to several hours ahead. 
This is because the dominant time scales of large synoptic scale changes 
in the atmosphere are in several days; then the pressure systems and winds 
would be changed on the same time scales. Because the relative error of 
forecast winds is required to be smaller than 20%, the persistence model 
was used in immediate short-term forecasting and nowcasting.

(b) BP-ANN

The back-propagation algorithm is the most common artificial 
neural network (ANN), and the learning algorithm is the steepest descent 
algorithm that minimizes the errors between the produced output and 
the desired output by adjusting the weights. BP-ANN is based on the 
error back-propagation learning algorithm, which has the distributed 
information storage and processing structure, and is suited for short-
term forecasting (Carolin and Fernandez 2007; Li et al. 2009). Three-
layered BP-ANN can approximate any nonlinear function and shows 
good performance on handling complex nonlinear problems. Two normalized 
functions were used in this paper. One is premnmx, which is mainly used to 
normalize the training set, and another is tramnmx, which is used to normalize 
the prediction set. The anti-normalized function used in this paper is postmnmx.

Table 3. RMSE of wind speeds intervals associated with different forecast 
methods and different forecast lengths to 10 day test period from the 20th to 

30th of each month in 2010. (Unit: m·s-1).

(c) LS-SVM

Support vector machine (SVM) is a statistical learning theory 
system based on the Structural Risk Minimization principle and Vapnik-
Chervonenkis Dimension theory (Vapnik 1995), which is to map the input 
data into a higher-dimensional feature space via a kernel function and to 
construct the optimal hyperplane for classification and regression. LS-
SVM works with a sum squared error cost function, uses the equality 
constraints instead of inequality constraints in conventional SVM and 
transforms the quadratic programming problem into linear equations, 
which simplifies and speeds up the calculation and enhances the accuracy 
of convergence. In this paper, intelligent search of genetic algorithm 
was employed in the process of choosing parameters of LS-SVM, and 
to find the optimal model parameters of LS-SVM for different data sets. 
Compared with the exhaustive search, the performance is improved with 
less searching times in larger parameter space (Rahim & Usli, 2017).

2.4. hybrid structure

BP-ANN and LS-SVM were used in this paper as statistical 
correction model for short-term forecasting. Persistence combined 
with BP-ANN and persistence combined with LS-SVM were used 
for immediate short-term forecasting (referred to P6-BP and P6-
SVM, respectively) and nowcasting (referred to P1-BP and P1-SVM, 
respectively). To eliminate the seasonal variation of wind speeds, 
the statistical relationships are trained for each month. Thus the each 
monthly wind speeds are divided into training (the first 2/3 time series) 
and validation sets (the last 1/3 time series). The statistical models are 
trained using the first 2/3 data to learn the relationship between the 
NWP output wind speeds, and the observations, then use the model 
parameters to forecast the 70 m winds for the last 10 or 11 days with 
a time step of 10 min (updates every 10 min). During the training 
processes, the training vectors are the WRF output wind speeds and the 
target vectors are the observations, which are both from the 1st to 20th 
days in each month with a time step of 10 min and the sample number is 
2880. During the predicting processes, the testing and target vectors are 
from the WRF outputs and observations during the 20th to 30th/31th 
of each month in 1440 sample-numbers, respectively. The combined 
technique focuses on the variable weight coefficient, which is chosen 
based on the lowest root mean square error (RMSE) of prediction.



40 Hua Deng, Yan Li, Yingchao Zhang, Hou Zhou, Peipei Cheng, Jia Wang and Muhammad Aqeel Ashraf

Figure 2. The mean relative error (%) of persistence model for the four 
meteorological towers, which calculated from the observed 70-m winds 

during 2 January to 31 December in 2010.

Figure 3. A 10-day time series at 1-hour increments (first 20 days not show 
due to use as statistical training sets) of annual average wind speed (m·s-1) at 

four sites associated with seven forecast approaches compared to observa-
tional data. (a) 05009, (b) 05010, (c) 05011, (d) 05012

3. Evaluation of 70 m wind forecasts

To test the hybrid approach for 70 m wind forecasts, the WRF/
YSU/Noah wind output, the short-term forecasting (including BP-ANN, 
LS-SVM), the immediate short-term forecasting (including P6-BP, P6-
SVM), as well as the nowcasting (including P1-BP, P1-SVM) were 
compared using the RMSE as the error measure. Four bias-correction 
approaches were examined: one based on wind speed only, one using 
wind speed along with the direction, one based on the diurnal cycle 
of wind speeds, and the last examine the seasonal variability of wind 
speeds. The test set using only the validation sets from the 20th to 30th 
of each month in 2010 was used to determine which bias-correction 
approach resulted in the lowest RMSE.

Figure 4. A 24-hour time series of RMSE (unit: m·s-1) for wind speed at 70 m 
AGL associated with different forecast approaches, which calculated from the 
20th to 30th of each month in 2010. (a) 05009, (b) 05010, (c) 05011, (d) 05012

3.1. Wind speed evolution

Figure B3 shows the 10 day time series at 1 hour increments of 
annual average wind speed which were calculated from the 20th to 
30th of each month in 2010 based on the WRF/YSU/Noah, BP-ANN, 
and LS-SVM for short-term forecasting, P6-BP and P6-SVM for 
immediate short-term forecasting, as well as P1-BP and P1-SVM for 
nowcasting. The six forecast approaches were found to have under-
prediction of the wind speed, and the accuracy of wind speed prediction 
was decreasing along with prediction time. The WRF/YSU/Noah 
outputs without any post-processing show the lowest average 70-m 
wind speeds, which indicates that the NWP model outputs combined 
with statistical techniques are necessary for wind speed forecast. The 
six hybrid approaches, BP-ANN, LS-SVM, P6-BP, P6-SVM, P1-BP, 
and P1-SVM, forecast the 70-m wind speeds in the RMSE of 2.89, 
2.46, 2.76, 2.43, 1.75, 1.67, respectively (Table A2). The quality of 
short-term forecasting, including BP-ANN and LS-SVM, is better than 
the WRF/YSU/Noah model outputs, which improved the day-ahead forecast 
in RMSE of 12.3% and 26.3%, respectively. The immediate short-term 
forecasting shows a 16.3% and 26.9% improvement over NWP output in 70-m 
wind speed prediction using P6-BP and P6-SVM methods respectively. The 
nowcasting approaches using P1-BP and P1-SVM exhibits a significant degree 
of improvement in 70-m wind speed forecasting over the other approaches 
tested, and the lowest RMSE is 1.75 and 1.67 m·s-1 respectively. It is noted 
that the LS-SVM technique predicts much better than BP-ANN after they were 
combined with persistence model for the three kinds of 70-m wind forecasting.

The available wind power is proportional to the wind speed cubed, hence 
the power curve is non-linearity. The available wind speed for a turbine is 
between the cut-in and rated wind speed (3-25 m·s-1). When the wind speed 
is in the range of 3-8 m·s-1 the wind turbine is gradually running, and the 
production power rises slowly; when it reaches 8-14 m·s-1, the production 
power increases rapidly; and if it reaches 14-25 m·s-1, the wind energy is stable. 
Therefore, to understand the different issues involved in 70-m wind forecasting 
it is useful to divide the wind speed into three distinct groups: (1) 3-8 m·s-1; (2) 
8-14 m·s-1; (3) 14-25 m·s-1. Table A3 shows the RMSE of wind speed groups 
associated with different forecast methods and different forecast lengths, which 
indicates the RMSE of wind speed prediction is increasing along with stronger 
wind speed. The improvement in RMSE of the 70-m wind speed forecast is 
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in the range of 9.4% to 32.6% in short-term forecasting, 12.8% to 33.9% in 
immediate short-term forecasting, and 39.7% to 53.7% in nowcasting. It 
should be noted that such forecast technique significantly improves the 

wind speed forecast in the range of 8-14 m·s-1, which is just associated 
with the fastest growth of turbine output along with the wind speed.

Figure 5. The monthly RMSE (unit: m·s-1) for wind speeds at 70 m AGL associated with different forecast approaches, which calculated from the 20th to 30th 
of each month in 2010. (a) 05009, (b) 05010, (c) 05011, (d) 05012

Figure 6. Wind roses of hourly winds (unit: m·s-1) at 70 m AGL at four 
sites associated with different forecast approaches, which calculated from 
the 20th to 30th of each month in 2010. The wind speed interval is 5 m·s-

1. (a) 05009, (b) 05010, (c) 05011, (d) 05012

3.2. Diurnal cycle of wind speeds

Figure B4 shows a 24-hour time series of RMS for wind speed at 70 m 
AGL associated with different forecast approaches in the training sets. The 
mountainous terrain of the Inner Mongolia Plateau is complex with a strong 
turbulence, then the daily variation of the wind speed is different for different 
sites. But even that, all physical-statistical approaches exhibit a significant 
improvement in wind forecast and present the similar error in the diurnal 
cycle. The WRF/YSU/Noah outputs have the largest error in RMSE, and 
the nowcasting have the lowest. For the short-term forecasting, WRF/YSU/
Noah coupling BP-ANN and LS-SVM has the similar bias-correction on the 
station 05009, and 05010, whose error curve in RMSE is consistent with the 
cure of WRF/YSU/Noah output. But for the station 05011 and 05012, the 
forecast ability of WRF/YSU/Noah coupling LS-SVM is better than coupling 
BP-ANN obviously. The immediate short-term wind speed forecastings also 
develop the forecast error compared to the short-term forecasting, and the two 
error cures (P6-BP, P6-SVM) are almost the same.

3.3. Seasonal variability of wind speeds

To test the forecast skill on seasonal variability, the monthly RMSE for 
70-m wind speeds of different forecast approaches is shown in Figure B5. 
What the results also agree with the conclusion that the accuracy of wind 
speed prediction is decreasing along with prediction time and the now casting 
is better than other time-scale forecasts (Shuib, et al., 2017). The three time-
scale wind speed prediction in RMSE is between 1.2 to 4.9 m·s-1. Also, the 
accuracy of wind speed prediction is smaller in autumn and larger in spring 
and summer. The relative largest RMSE is in July and the smallest in October. 
Furthermore, for the same time-scale forecasts, the method using LS-SVM 
forecast wind speed is better than that using BP-ANN.
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3.4. Wind speed rose diagram

The wind direction is an important factor to be considered in wind power 
generation. The observation and forecast wind data were averaged over the 15-
day test period to generate the wind speed rose, plotted at a 22.5-degree angular 
resolution and in 5 m·s-1 intervals in wind speed, illustrated in Figure B6. The 
value represents the average wind speed in the 16 different wind directions. 
As can be seen that all the wind speed roses illustrate a valley in the about 
northerly direction. The WRF/YSU/Noah outputs exhibit the lower 70-m wind 
speed at the four sites than other forecasts (Roslee, et al., 2017; Ridzuan et 
al., 2017). The three time-scale forecasting successfully forecast the westerly 
(from SSW to NNW) speed at 05012, and the nowcasting shows a significant 
degree of improvement in wind speed forecasting at all four sites. The error 
of immediate short-term forecasting is between nowcasting and short-term 
forecasting. Although the different approaches have different improvement 
on the different stations, the hybrid forecasting with physical forecasting and 
statistical postprocessing could predict the wind much better.

4. Summary

The wind energy forecasting problem is closely linked to the problem 
of forecasting the variation of winds over very short time intervals because the 
wind is variable and intermittent over various time-scales. To understand the 
different issues involved in 70-m wind forecasting, the four wind towers in 
the Inner Mongolia were used to represent the complex plateau terrain, and it 
was useful to divide the problem into three difference time scales: short-term, 
immediate-short-term, and nowcasting. The mesoscale WRF/Noah/YSU as the 
NWP model performed 24-h wind forecast with 1-km horizontal resolution 
and 10-min time resolution. BP-ANN and LS-SVM were used to short-term 
forecasting. Persistence method was combined with BP-ANN and LS-SVM to 
forecast the immediate short-term forecasting and nowcasting, respectively. The 
results indicate that the current forecasting techniques exhibit considerable skill 
in short-term, immediate-short-term, and nowcasting forecasting. Short-term 
forecasts typically outperform an NWP forecast by 12% to 26%; nowcasting 
forecasts usually outperform NWP forecasts by 47% to 50%.

This paper also demonstrates that the approaches using LS-SVM 
model is more accurate than the approaches using BP-ANN model over the 
different time-scales tested. The possible reasons are as follows: 1, SVM is 
proposed for problems with limited samples to obtain the global optimum 
solution. 2, SVM algorithm can transform the problem into a quadratic 
programming problem to obtain the global optimum solution which BP-
ANN cannot achieve. 3, SVM uses the nonlinear transformation to map 
the original variables to the higher dimensional feature space to construct 
the linear classification function, thus ensuring the good generalization 
ability of the model, and then avoids the Curse of Dimensionality.

Acknowledgments

This work is supported by National Natural Science Foundation of 
China (40805039, 20110138, 41575056, and 41675156), Key Laboratory 
of Meteorological Disaster of Ministry of Education Program (KLME1303) 
in Nanjing University of Information Science and Technology, the Research 
Innovation Program for College Graduates of Jiangsu Province under Grant 
No. SJZZ16_0155 and SJZZ16_0156, National public welfare industry 
(meteorological) scientific research, No. GYHY20110604, the open research 
fund of Chongqing meteorological bureau, and the priority academic program 
development of Jiangsu higher education institutions (PAPD).

References

Asis, J., Tahir, S. H., Rahim, A. R., Konjing, Z., Kob, R. C., & Tjia, H.D. (2017). 
Smaller benthic foraminifera Analysis of Kudat Formation, Kudat, 
Sabah: Preliminary Interpretation. Geological Behavior, 1(1) 27-29.

Carolin, M. M., & Fernandez, E. (2008). Analysis of wind power generation 
and prediction using ANN: A case study. Renewable Energy, 33(5), 
986-992. DOI: http://doi.org/10.1016/j.renene.2007.06.013

Deppe, A. J., Gallus, W. A., & Takle, E. S. (2013). A WRF Ensemble for 
Improved Wind Speed Forecasts at Turbine Height. Weather and 
Forecasting, 28, 212–228. DOI: 10.1175/WAF-D-11-00112.1

Dudhia, J. (1989). Numerical study of Convection Observed during the 
Winter Monsoon Experiment Using a Mesoscale Two-Dimensional 
Model. Journal of the Atmospheric Sciences, 46(20), 3077–3107.

Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., 
Gayno, G., & Tarpley, J. D. (2003). Implementation of Noah land-
surface model advances in the National Centers for Environmental 
Prediction operational mesoscale Eta model. Journal of Geophysical 
Research, 108, 8851. DOI:10.1029/2002JD003296. 

Giebel, G., Brownsword, R., Kariniotakis, G., & Denhard, D. C. (2011). 
The state of the art in short-term prediction of wind power: A 
literature overview. 2nd edition. Project report for the ANEMOS 
and SafeWind projects, Ris, DTU.

Hong, S. Y., & Noh, Y. (2006). A New Vertical Diffusion Package with an Explicit 
Treatment of Entrainment Processes. Monthly Weather Review, 134, 
2318–2341. DOI: http://dx.doi.org/10.1175/MWR3199.1

Hong, S. Y., Dudhia, J., Chen, S. H. (2004). A Revised Approach to Ice 
Microphysical Processes for the Bulk Parameterization of Clouds and 
Precipitation. Monthly Weather Review, 132, 103–120. DOI: http://
dx.doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2

Kain, J.S. (2004). The Kain-Fritsch convective parameterization: An 
update. Journal of Applied Meteorology, 43, 170–181. DOI: 
10.1029/2009WR007704.

Lai, G. T., Razib, A. M., Mazlan, N. A., Rafek, A. G., Serasa, A. S., … 
& Mohamed, T. R. (2017). Rock slope stability assessment of 
limestone hills in Northern Kinta valley, Ipoh, Perak, Malaysia. 
Geological Behavior, 1(1), 22-26

Landberg, L.Short-term prediction of local wind conditions Journal of Wind 
Engineering and Industrial Aerodynamics, 89(3-4), 235–245. DOI: 
http://doi.org/10.1016/S0167-6105(00)00079-9

Li, Y., Cheng, P., Lu, Y., & Song, Y. (2015). Wind power forecasting over 
the gypical complex terrains (in Chinese). Plateau meteorology,  
34(2), 413–425. DOI: 10.7522/j.issn.1000-0534.2013.00181

Li, X., Liu, Y., & Xin, W. (2009). Wind speed prediction based on genetic neural 
network. IEEE Conference on Industrial Electronics and Applications, 
Beijing-China. 2448–2451. DOI: 10.1109/ICIEA.2009.5138642

Lindang, H. U., Tarmudi, Z. H., & Jawan, A. (2017).  Assessing Water 
Quality Index in River Basin: Fuzzy Inference System Approach. 
Malaysian Journal of Geosciences, 1(1) 27-31. 

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. 
A. (1997). Radiative transfer for inhomogeneous atmospheres: 
RRTM, a validated correlated-k model for the longwave. Journal of 
Geophysical Research, 102, 16663–16682. DOI: 10.1029/97JD00237

Peng, H., Liu, F., & Yang, X. (2011). Short term wind speed forecast based on 
combined frediction. Acta Energiae Solaris Sinica, 32(4), 543–547.

Pielke, R.A.S. (2002). Mesoscale Meteorological Modeling. Volume 78 of 
International Geophysics Series. Academic Press, 2nd edition, 676 pags.

Rahim, I.  A., & Usli, M. N. R. (2017). Slope Stability Study Around 
Kampung Kuala Abai, Kota Belud, Sabah, Malaysia. Malaysian 
Journal of Geosciences, 1(1), 38-42.

Ridzuan, A. A., Zahar, U. A., Noor, N. A. (2017). Association of 
Evacuation Dimensions towards Risk Perception of the 
Malaysian students who studied at Jakarta, Medan, and Acheh in 
Indonesia. Malaysian Journal of Geosciences, 1(1) (2017) 06-11

Roslee, R., Simon, N., Tongkul, F., Norhisham, M. N., & Taharin, M. R. 
(2017). Landslide Susceptibility Analysis (LSA) using Deterministic 
Model (Infinite Slope) (DESSISM) in the Kota Kinabalu Area, 
Sabah, Malaysia. Geological Behavior, 1(1) 06-09.



43Prediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical Forecast 

Shimada, S., Oshawa, T., Chikaoka, S. (2011). Accuracy of the Wind 
Speed Profile in the Lower PBL as simulated by the WRF model. 
Sola, 7, 109–112. DOI: http://doi.org/10.2151/sola.2011-028

Shuib, M. K., Manap, M. A., Tongkul, F., Rahim, I. B., Jamaludin, T. A., 
Surip, N., … Ahmad, Z. (2017). Active Faults in Peninsular Malaysia 
with Emphasis on Active Geomorphic Features of Bukit Tinggi 
Region. Malaysian Journal of Geosciences, 1(1), 12-24.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, M. G., 
Duda, X. Y., Huang, D. M., Wang, W., & Powers, J. G. (2008).  A 
description of the Advanced Research WRF version 3. Technical 
report, NCAR Tech Notes-475+STR. 

Vapnik, V.N. (1995). The Nature of Statistical Learning Theory. New 
York, Springer-Verlag, 1995, 138–170.

Yang, X., Cui, Y., Zhang, H., & Tang, N. (2009). Research on modeling 
of wind turbine based on LS-SVM. International Conference on 
Sustainable Power Generation and Supply, Nanjing, China, 1–6.
DOI: 10.1109/SUPERGEN.2009.5348180

Yu., L. K., & Rahim, I. A. (2017).  Application of GIS system for slope 
stability studies on selected slopes of the crocker formation in 
Kota Kinabalu area, Sabah. Geological Behavior, 1(1) 10-12

Zhang, H., & Zeng, J. (2010). Wind speed forecasting model study based on 
support vector machine. Acta Energiae Solaris Sinica, 31(7), 928–932.


