
This paper investigates the potential of data mining techniques to predict daily soil temperatures at 5-100 cm 
depths for agricultural purposes. Climatic and soil temperature data from Isfahan province located in central 
Iran with a semi-arid climate was used for the modeling process. A subtractive clustering approach was used to 
identify the structure of the Adaptive Neuro-Fuzzy Inference System (ANFIS), and the result of the proposed 
approach was compared with artificial neural networks (ANNs) and an M5 tree model. Result suggests an 
improved performance using the ANFIS approach in predicting soil temperatures at various soil depths except at 
100 cm. The performance of the ANNs and M5 tree models were found to be similar. However, the M5 tree model 
provides a simple linear relation to predicting the soil temperature for the data ranges used in this study. Error 
analyses of the predicted values at various depths show that the estimation error tends to increase with the depth. 
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Este artículo investiga el potencial de las técnicas de búsqueda y procesamiento de datos para pronosticar las 
temperaturas diarias del suelo a profundidades que van de los 5 a los 100 cm con propósitos agrícolas. Se 
utilizó la información climática y de temperatura del suelo de la provincia Ishafan, ubicada en el centro de 
Irán y de clima semiárido, para el proceso de modelamiento. Se usó un enfoque de agrupamiento sustractivo 
para identificar la estructura del Sistema de Inferencia Neuronal Difuso Adaptado (ANFIS, del inglés 
Adaptive Neuro-Fuzzy Inference System) y el resultado del acercamiento propuesto se comparó con redes 
artificiales neuronales (ANN) y el modelo tipo árbol M5. Los resultados sugieren un desempeño mejorado 
al usar el enfoque ANFIS en la predicción de las temperaturas del suelo en varios puntos de profundidad, 
excepto en los 100 cm. El desempeño de las redes artificiales neuronales y los modelos de árbol M5 fueron 
similares. Sin embargo, el modelo tipo árbol M5 provee una relación linear simple para predecir los rangos 
de datos de la temperatura del suelo utilizados en este estudio. Los análisis de error de los valores predichos 
a varias profundidades muestran que la estimación de error tiende a incrementarse con la profundidad. 
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1. Introduction

Soil temperature prediction is important for various agricultural purposes, 
especially in arid and semi-arid regions, such as Iran. Temporal patterns of soil 
temperatures in these regions show large seasonal and daily fluctuations. These 
variations in soil temperature affect plant growth directly through their effect 
on physiological activities and indirectly through the effect on soil nutrient 
availability (Tuntiwaranurk et al., 2006). For example, root growth and biological 
soil activity are directly influenced by soil temperature (Kang et al., 2000). Soil 
temperature fluctuations affect various processes within the soil such as microbial 
decomposition, p and k absorption, soil-moisture content (Elshorbagy and 
Parasuraman, 2008) and soil respiration  (Gaumont-Guay et al., 2006). 

The success of seeding efforts depends greatly on the spatial and temporal 
distribution of soil temperature. Thus, the temperature predictions help to improve 
the understanding of the dynamics of vegetation (Kang et al., 2000). It also helps 
agronomists and engineers to decide the proper plantation date, design drainage 
and irrigation systems, and to optimize the application of pesticides and fertilizers 
to reduce chemical pollution of soils and groundwater. For these reasons, 
understanding of the variation in soil temperature is vital. However there are very 
few climatologic stations in arid and semi-arid regions where soil temperatures 
are recorded at various depths. It is usually quite difficult to measure temperature 
at depth. To aid in this measurement process, application of data-driven models 
are used to estimate daily soil temperatures in ungaged homogeneous regions. 

Temperatures in soil are influenced by a number of factors, such as 
meteorological conditions (i.e. solar radiation and air temperature), site 
topography, soil water content, and whether the surface is covered by litter and 
canopies of plants.  Many conceptual models have been proposed to model soil 
temperature based upon the meteorological parameters such as surface global 
radiation and air temperature (Kang et al., 2000; Shannon et al., 2000; Timlin et al., 
2002), soil physical parameters, such as water content and texture, topographical 
variables such as elevation, slope and aspect (Kang et al., 2000), and other surface 
characteristics such as leaf area index (LAI) and ground litter stores. Other models 
such as multiple regression and Fourier analysis have also been suggested with 
some modification. Most of these models are based on several assumptions and 
boundary conditions resulting in the limitations of their use in practice.  For 
instance, Kang et al. (2000) developed a hybrid soil temperature model based 
on heat transfer physics and a relationship between air and soil temperature to 
predict daily spatial patterns of soil temperature in a forested landscape. They 
incorporated the effects of topography, canopy and ground litter. 

Despite of the availability of different models to predict the soil 
temperature, these models are found to work well only for specific climatic 
and agronomic conditions under which they were originally developed. 
Over past decades, remote sensing techniques have also been utilized to 
measure and predict soil temperature over large areas but a major drawback 
of this approach is the availability of soil temperature data in the top few 
centimeters (Elshorbagy and Parasuraman, 2008). The temperature of the 
soil profile with increasing depth is difficult to predict so that the above-
mentioned techniques are limited to shallow soils (Tyronese et al., 2008).

Within the last decade, artificial intelligent (AI) systems such as fuzzy 
logic (FL) and artificial neural networks (ANNs) have effectively been used 
to model nonlinear and non-stationary process (Shiri and Kisi, 2011). ANNs 
are mathematical models consisting of a network of computation nodes 
called neurons with established connections between them. Fuzzy logic is 
an alternative technique capable of generating models that incorporate expert 
knowledge and available measurements for a system by using a set of easily 
comprehensible rules in the form of a fuzzy inference system (FIS) (Zadeh, 
1965). A FIS is a nonlinear mapping of a given input vector to an output 
using fuzzy logic based on a set of membership functions and rules. Improved 
performance can be obtained by integrating fuzzy systems and the ANN 
approach to deal with large and imprecisely defined complex systems. 

An adaptive neuro-fuzzy inference system (ANFIS) is one of the 
most successful schemes which combine the benefits of these two powerful 
paradigms into a single model. The goal of the ANFIS is to find a model or 
mapping that will correctly associate the inputs with the output. 

Data mining refers to the process of searching for and discovering various 
patterns in data and of summarizing a set of known values to obtain the most 
important information (Quinlan, 1992). Tree-based methods are one data 
mining technique and their output is a model having the structure of a tree with 
input and output data. The M5 model tree was introduced by Quinlan in 1992 
and is a subset of data mining methods. The M5 algorithm is the most common 
classification used in the family of decision-making tree models. A decision tree 
model is essentially a decision-making tree in which linear regression equations 
at the leaves replace terminal class values. Within the last decade, several 
studies reported the use of data mining techniques such as the M5 tree model for 
water resource issues applications (Solomantine and Dulal, 2003; Bhattacharya 
and Solomatine, 2005; Stravs and Brilly, 2007; Pal et al., 2012; Sattari et al., 
2013a; Sattari et al., 2013b; Sattari, et al., 2014; Esmailzadeh and Sattari, 2015; 
Biabani et al., 2016; Shortridge et al., 2016; Adnan et al., 2017; Sayagavi et 
al., 2016; Schnier, 2016). However to the best knowledge of the authors, there 
has not been an application of the M5 tree model to predict soil temperatures 
at various soil depths, especially in arid and semi-arid climates. Our primary 
motivation in this study is to simulate soil temperatures at various depths. In 
this manner, it is possible to predict future soil temperatures by simply acquiring 
the climatic data from the meteorological stations. This is particularly important 
when planning future agriculture practices. 

This study will evaluate the performance of various data mining 
techniques such as ANFIS, ANNs and the M5 tree model for estimating 
daily soil temperature at different depths in semi arid regions such as Iran.

2. Materials and methods

2.1 Study area and data used

Located in the central arid region of the country, the Isfahan province 
of Iran lies between 30o 42’ to 34o 30’N and 49o 36’ to 55o E (Figure 1). 
The altitude in this area varies from 707 to 4000 m. The significant change 
in altitude and its effect on climate provide various habitats and diverse 
plant species.

The experimentally obtained daily soil temperature and other 
meteorological parameters were measured at the weather station of Isfahan 
from 1992 to 2005. The soil temperature data were obtained for soil profiles 
at various depths (i.e. 5, 10, 20, 30, 50 and 100 cm). Meteorological 
parameters including: daily mean, minimum and maximum air temperature 
(Ave T, Min T, Max T), evaporation (EV), daily sunshine hours (SunH) and 
radiation (Ra) were also considered as inputs.

Figure 1. Location of the study area
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 The descriptive statistics Min, Max, Mean, standard deviation, 
coefficient of skewness (Cs), coefficient of kurtosis (Ck) and coefficient 

of variation (CV) of the soil temperature and meteorological data time 
series, are provided in Table 1.

Table 1. Descriptive statistics of the soil temperature data

The available data were split into two parts. The first part consists of 3028 
samples between June 1992 and October 2004 and was used to train different 
models.  The second part, consisting of 335 samples between October 2004 
and December 2005 was used for testing. The coefficient of determination 
(R2) and root mean square error (RMSE) statistics were used to compare the 
performance of various modeling approaches used in this study. 

It is often useful to scale the input and output parameters before 
using them with ANNs. In the present work, input and output data were 
scaled to a range from -1 to +1, which is preferable when tan-sigmoid 
activation functions are used with the neural network. The following 
normalization equation was used 

                                                                                                      (1)                                                                                              

where Z is standardized input values lying in the range of [-1, 
+1], and Xmin and Xmax are minimum and maximum input values, 
respectively.

2.2 Adaptive Neuro-Fuzzy Inference System (ANFIS)

Fuzzy logic represents knowledge using IF–THEN rules in the 
form of “if X and Y then Z” (Zadeh, 1965). FIS mainly consists of fuzzy 
rules and membership functions and fuzzification and de-fuzzification 
operations (Jang, 1993). Figure 2 shows a typical architecture of an 
ANFIS. In this figure, circles represents fixed nodes, whereas squares 
indicate adaptive nodes. The input and output nodes represent the 
meteorological parameters and soil temperature, respectively. The nodes 
in the hidden layers act as membership functions (MFs) and rules. For 
simplicity, it is assumed that the examined FIS has two inputs and one 
output. For a first-order Sugeno fuzzy model, a typical rule set with two 
fuzzy ‘‘if-then’’ rules can be expressed as follows: 

                                   
                                               (2)                                                                                                

                 (3)            

where x and y are two crisp inputs, and Ai and Bi are the linguistic 
labels associated with the node function. The ANFIS has the multiple 
layers, as displayed in Figure 2. 

 

Figure 2. Architecture of the ANFIS

Layer 1: All the nodes in this layer are adaptive nodes which 
mean that the outputs of the nodes depend on the parameters pertaining 
to these nodes. Each node corresponds to a linguistic label which has a 
membership function that may be Gaussian or any other MF.

Layer 2: Every node in this layer is a fixed node labeled as II, 
representing the firing strength of each rule.

Layer 3: Every node in this layer is a fixed node labeled as N, 
representing the normalized firing strength of each rule.

Layer 4: Every node i in this layer is an adaptive node with a node 
function defined as:

               (4)                                                                                    

Where Oi4 is node output, wi is the normalizing firing strength from 
layer 3 and {pi, qi, ri} are the parameter set of this node.

Layer 5: The single node in this layer is a fixed node labeled Σ which 
computes the overall output by summing all incoming signals and is the 
last step of the ANFIS. The output of the system is calculated as:

                     (5)                                                                                                 

where O15( node output), is the weighted sum of right hand side 
polynomials in Equation 5. 

The implementation of ANFIS consists of two major phases; the 
structure identification phase and the parameter identification phase. 
The ANFIS parameter estimation  can be carried out by training the 
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ANFIS system by using a hybrid learning algorithm. The hybrid learning 
algorithm of ANFIS consists of the two parts: (a) the learning of the 
premise parameters by back-propagation and (b) the learning of the 
consequence parameters by least-squares estimation. 

In the forward pass of the hybrid learning algorithm, functional 
signals move forward to layer 4 to calculate each node output. The premise 
parameters in layer 2 remain fixed in this pass. The consequent parameters are 
then identified by the least-squares estimate. In the backward pass, the error 
rates propagate backward from the output towards the input, and the premise 
parameters are updated by the gradient descent (Shu, et al., 2008). 

2.2.1 Subtractive clustering

Subtractive clustering is an automated data-driven approach to 
generate primary fuzzy models. The subtractive clustering algorithm is 
used in case the number of clusters is not clear. This algorithm depends 
on the structure of the data and can be used as a dimensionality reduction 
tool. This algorithm can also be used to generate a fuzzy system with 
the minimum number of rules required to distinguish the fuzzy qualities 
associated with each of the clusters. Subtractive clustering is based on a 
measure of the density of data points in the feature space. The idea here 
is to find regions in the feature space with high densities of data points. 
Consider a collection of n data points {x1,…,xn}, subtractive clustering 
algorithm assumes each data point as a potential cluster center. A density 
measure at a data point xi is then defined as:

      (6)

where Di is the density measure and the cluster radius rα is a positive 
constant (rα > 0) defining the neighborhood radius for each cluster center. 
Thus, a data point that has many neighboring data points will have a high 
potential of being a cluster center. Data points existing outside of this 
radius have little or no effect on the density measure. 

The choice of rα is crucial in determining the cluster numbers. Large 
value of rα will generate a limited number of clusters, while small values of 
rα will generate a large number of clusters. After calculation of the potential 
of each vector, the one with the highest potential is selected as the first cluster 
center. Suppose xc1 is the point selected and Dc1 is its density measure. The 
density measure for each data point xi is revised by the formula:

      (7)                       

where rb is a positive constant (rb > 0) that represents the radius of 
the neighborhood for which considerable potential reduction will happen 
in density measure. In order to avoid obtaining closely spaced cluster 
centers, the constant rb is usually 1.5 times that of rα. Finally, the clusters’ 
information is used to determine the initial number of rules and antecedent 
membership function that is used for identifying the FIS (Chiu, 1994).

2.3. Artificial Neural Networks (ANNs)

The ANNs are alternative artificial intelligent (AI) methods and 
employed in this study to predict soil temperature. A number of network and 
training algorithms are reported in the literature. The Multi-Layer Perceptron 
(MLP) is one of the mostly used ANN in many research areas. This study uses 
MLP possessing a three-layer learning network consisting of an input layer, one 
hidden layer, and one output layer. The input layer accepts values of the input 
variables and the output layer provides estimations. The hidden layer which lies 
between the input and output layers contains the processing elements called as 
neurons. The hidden layer and nodes play very important roles for successful 
application of the neural network. The nodes in the hidden layer allow neural 

networks to detect the feature, to capture the pattern in the data, and to perform 
complicated non-linear mapping between input and output variables. 

It has been suggested that only one hidden layer is sufficient for ANNs 
to approximate any complex nonlinear function within desired degree of 
accuracy. In the case of the hidden layer, many studies suggest "2m+1" 
(Hecht-Nielsen, 1990; Lippmann, 1987), "2m" (Wong, 1991) and "m" (Tang 
and Fishwick, 1993) hidden neurons for better forecasting accuracy, where 
m is the number of input nodes. In the current study, a large number of trials 
were carried out to select the optimal number of nodes in the hidden layer. 
The transfer functions used in this study include the tan-sigmoid in the hidden 
layer and the linear transfer function in the output layer. The Levenberg-
Marquardt training algorithm was used for the ANN models because this 
technique is more powerful and faster than the gradient descent algorithm.

2.4 M5 model tree

Model trees generalize the concepts of regression trees and are 
analogous to piece-wise linear functions. A M5 model tree is a binary 
decision tree having linear regression function at the terminal nodes, 
which can predict continuous numerical attributes (Quinlan, 1992). The 
M5 model tree is an algorithm for making numerical predictions, and the 
selected tree nodes have the attribute of maximum expected error that is 
a function of the standard deviation in the output parameters. A model 
tree based regression approach works in two different stages. In the first 
stage, a splitting criterion is used to create a decision tree. The splitting 
criterion for the M5 model tree algorithm is based on treating the standard 
deviation of the class values that reach a node as a measure of the error at 
that node and calculating the expected reduction in this error as a result of 
testing each attribute at that node. The formula for computing the standard 
deviation reduction (SDR) is:

                                                                                                
      (8)

      (9)

and T is a set of samples entering each node. The symbol Ti represents a 
subset of the samples that have the ith result of the potentiality test, Sd  is the 
standard deviation, yi is the numerical value of the target attribute of sample 
i, and N the total number of data points (Alberg et al., 2012). The splitting 
process allows the data in child nodes to have a lower standard deviation 
compared to their parent node and can be considered as more pure. 

After examining all the possible splits, M5 chooses the one that 
maximizes the expected error reduction. The division of training data with 
a M5 model tree produces a large tree-like structure which may cause 
overfitting of the data. A pruning algorithm is used to prune back the tree, for 
example by replacing a sub tree with a leaf in order to remove the problem 
of overfitting. Thus, the second stage in the design of the model tree involves 
pruning the overgrown tree and replacing the sub trees with linear regression 
functions. This technique of generating the model tree splits the parameter 
space into areas (subspaces) and builds in each of them a linear regression 
model. For further details of M5 model tree, readers are referred to related 
studies (Pal and Surinder, 2009; Quinlan, 1992).

3. Results and discussion

Analysis of Table 1 suggests a noticeable change in coefficient of 
variation (CV) value of soil temperature from the surface to the depth of 
100 cm. The highest value of the coefficient of variation was observed at 
a 5 cm soil depth with a continuous decline in its value with increasing 
depth of the soil. Other statistical properties such as the maximum and 
mean soil temperatures are also decreasing with increasing soil depth. 
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It can be observed that the variability in thermal behavior of the soil 
profile can be a cause of this change. The higher values of coefficients 
of variation in the surface layers indicate that higher variability of the 
soil temperature at this level is possibly due to the variety of causal 
mechanisms influencing soil temperature. Figure 3 shows the variation of 
soil temperature at different soil depths in the study area. As can be seen 
from the figure, a wide range of fluctuations exists for the surface layers 
which decreases with increasing depth.  
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Figure 3. Time series of observed soil temperatures at different soil 
depths (5-100 cm)

The three modeling techniques; ANFIS, ANN and M5 tree model were 
used to predict the soil temperature at varying depths. To obtain optimal network 
architecture in ANNs, the number of neurons in the hidden layer was determined 
by trial and error. Based on the number of input neurons (m = 6 input nodes 
are included here), the number of hidden nodes were varied from 1 to 2m+1 to 
find optimal number of nodes in hidden layer. The network was trained for 300 
epochs using the Levenberg-Marquardt training algorithm. Based on a trial and 
error process (by exploring 1 to 2m+1 hidden neurons), hidden layers with 3, 4, 5, 
4, 5 and 3 neurons were found to be optimal for the 5, 10, 20, 30, 50 and 100 cm 
soil depths, respectively (see Table 2 for the 10 and 50 cm soil depths). 

Table 2. Tested model structures and RMSE values of the ANNs models.

The parameters of the subtractive clustering algorithm should be 
specified in ANFIS models to predict soil temperatures at various depths. 
The clustering radius (ra) is the most important parameter in the subtractive 
clustering algorithm and is optimally determined through a trial-and-error 
procedure. The values of ra ranging between 0.2 and 1 with a step size 
of 0.01 were examined to minimize the root mean squared error (Table 
3). For the values below 0.2, network training was found to be difficult 
and for the values above 1, no remarkable change in RMSE values was 
achieved. Clustering radius rb was selected as 1.5ra and default values of 
the other parameters given in the MATLAB were used.

Table 3. Resulting model structures and RMSE values of the ANFIS models.

   *Shows optimal Clustering radius (ra)
Gaussian membership functions were used for each fuzzy set in the 

fuzzy system. The number of membership functions and fuzzy rules required 
for a particular ANFIS model were determined through the subtractive 
clustering algorithm. Parameters of the Gaussian membership function were 
optimally determined using the hybrid learning algorithm. Each ANFIS 
model was trained for 100 epochs. The test results of the ANNs, ANFIS and 
M5 model trees are compared with respect to R2 and RMSE in Table 4.

Table 4. The test results of the optimal ANNs, ANFIS and M5 model trees.
 

Results indicates a high correlation (R2  value changes from 0.98 at 
5 cm depth to 0.80 at 100 cm depth) between the actual and predicted soil 
temperatures suggesting that all three models achieved acceptable results 
in predicting the soil temperatures at varying depths. Time variation 
and scatterplots of the test results obtained by M5 tree model, ANN and 
ANFIS models are illustrated in Figures 4-6. 
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Plot of observed and predicted soil temperature values  suggests that all three models are suitable in modeling soil temperatures. 

Figure 5. Performance of ANN model at soil depths; 5 cm and 100 cm, with test data set
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As can be seen from the Table 4, the RMSE values also increase 
with the increasing depth. The lowest and highest RMSE values 
achieved  by the ANFIS, ANN and M5 tree model are 1.86, 1.95, 1.97 
(observed at 5 cm soil depths) and 2.39, 2.44, 2.37 (observed at 100 
cm soil depths) respectively. The plots of actual and predicted soil 
temperature in Figures 4, 5 and 6 as well as Table 4 suggest a slightly 

improved performance by ANFIS in predicting soil temperature in 
comparison to ANN and M5 models except at the depth of 100 cm. 
A comparison of results from Table 4 also suggests that both the 
ANN and ANFIS perform better than the M5 model tree approach in 
predicting the surface soil temperature, however at depth of 100 cm, 
M5 tree model seems to be most robust. 

Figure 6. Performance of M5 model tree at soil depths; 5 cm and 100 cm, with test data set

These figures depict good agreement between the actual and predicted 
soil temperature values of the surface layers in comparison to the layers at 
increasing depths. All three models tend to provide less biased estimates for 
the surface layers in comparison to the predictions for deeper layers (Figure 7).

 
Figure 7. RMSE values of the evaluated models for different soil depths

Analysis of predicted soil temperature values by different modeling 
approaches (Figure 7) shows increasing values of RMSE with increasing 
soil depth, thus indicates that the soil temperatures predicted by ANFIS, 
ANN and M5 models are more accurate for the surface temperatures. The 
reason for increasing RMSE value with increasing depth may be mainly 
due to the reduction in correlation between the input climatic variables and 
the soil temperature at increasing depth. 

The superior performance of the ANFIS and ANN in modeling 
the surface soil temperatures may be attributed to the increase in the 
network nonlinearity and the better correlation between input and output 
values (Gao et al., 2007). Moreover it may be noted that a trial-and-
error procedure has to be adopted to select suitable user-defined parameters for 
the ANN model; this process is time consuming. On the other hand, no such 
procedure is required to develop an ANFIS model. Although error analysis of 
predicted values confirmed better performance for ANFIS and ANN approaches 
for the surface soil temperatures, the M5 model tree had slightly better results 
with increasing depth. It is worth noting that M5 model trees being analogous 
to piecewise linear functions, provides a simple linear relation to model the soil 
temperatures, as described mathematically in Figure 8. 
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Figure 8. Linear functions for predicting temperature at 5 cm soil depth based on M5 tree model.

4. Conclusions
The ANFIS, ANNs and M5 tree model approaches have been used 

to predict the daily soil temperature with increasing depth in this study. 
The results presented here are quite encouraging and confirm that all 
three approaches work well in predicting soil temperatures at different 
depths. A comparison among the models indicates that the ANFIS model 
provides more accurate estimates of soil temperature than the ANNs 
and M5 tree model. The results also suggests that both ANN and M5 
tree model approaches work well in predicting daily soil temperatures, 
however, M5 tree model has simple linear relations that can be easily 
used to predict the daily soil temperature data by field engineers. Error 
analysis of temperature predictions at different soil depths indicates that 
all three models perform well in predicting surface soil temperature data 
rather than at deeper depths. The reason behind this may be the fact that 
there is a strong relationship between climatic parameters and surface 
soil temperature.  The results of the present study demonstrate that the 
proposed ANFIS model is quite efficient in predicting soil temperature for 
the surface layers however further investigation is needed with different 
data sets to compare proposed approach and other mathematical methods 
such as time series modeling to model soil temperatures in deeper layers.
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