
Time series models are often used in hydrology and meteorology studies to model streamflows series in 
order to make forecasting and generate synthetic series which are inputs for the analysis of complex water 
resources systems. In this paper we introduce a new modeling approach for hydrologic and meteorological 
time series assuming a continuous distribution for the data, where both the conditional mean and 
conditional variance parameters are modeled. Bayesian methods using standard MCMC (Markov Chain 
Monte Carlo Methods) are used to simulate samples for the joint posterior distribution of interest. Two 
applications to real data sets illustrate the proposed methodology, assuming that the observations come 
from a normal, a gamma or a beta distribution. A first example is given by a time series of monthly 
averages of natural streamflows, measured in the year period ranging from 1931 to 2010 in Furnas 
hydroelectric dam, Brazil. A second example is given with a time series of 313 air humidity data measured 
in a weather station of Rio Claro, a Brazilian city located in southeastern of Brazil. These applications 
motivate us to introduce new classes of models to analyze hydrological and meteorological time series.
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Los modelos de series de tiempo se usan a menudo en estudios de hidrología y meteorología para modelar 
series de flujos a fin de hacer pronósticos y generar series sintéticas que son insumos para el análisis de 
sistemas complejos de recursos hídricos. En este artículo presentamos un nuevo enfoque de modelado 
para series de tiempo hidrológicas y meteorológicas asumiendo una distribución continua para los datos, 
donde se modelan los parámetros tanto de la media condicional como de la varianza condicional. Métodos 
bayesianos estándares que usan MCMC (Markov Chain Monte Carlo) son usados para simular muestras 
de la distribución  a posteriori conjunta de interés. Dos aplicaciones a conjuntos de datos reales ilustran la 
metodología propuesta,  asumiendo  que las observaciones provienen de una distribución normal,  gamma 
o beta. Un primer ejemplo está dado por una serie temporal de promedios mensuales de los caudales 
naturales, medidos en el período anual que va de 1931 a 2010 en la presa hidroeléctrica de Furnas, Brasil. 
Un segundo ejemplo considera una serie temporal de 313 datos de humedad del aire medidos en una estación 
meteorológica de Río Claro, una ciudad brasileña ubicada en el sureste de Brasil. Estas aplicaciones nos 
motivan a introducir nuevas clases de modelos para analizar series de tiempo hidrológicas y meteorológicas.
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1. Introduction

Time series models are often used in hydrology studies to model 
streamflow series in order to make predictions and to generate synthetic 
series which are inputs for the analysis of complex water resources 
systems (see, for example, Salas et al., 1980, 1982; Hosking, 1984; 
Hipel& McLeod, 1994; Montanari et al., 1997; Hasebe et al., 2000).  In 
many studies, hydrologists also use time series data to display the amount 
of rainfall that has fallen in a region for the past day, year or a period of 10 
years (see for example, Guimaraes& Santos, 2011, and Lee & Lee, 2000).

Modeling hydrological variability is very important in the planning 
and management of water resources. Many aspects of the hydrologic cycle 
could be described by time series data. Researchers, usually use time 
series data to evaluate the resources of a water basin. Important variables 
related to streamflow and watershed describes streamflow properties such 
as monthly flows or streamflow parameters.  Assuming a specified time 
series model, we usually could estimate the streamflow parameters using 
a classical or a Bayesian inference approach.

Different time series models as ARMA and higher orders of MA 
models have been used by some authors when considering hydrologic 
regionalization of watersheds (see for example, Chiang et al., 2002 a, b; 
Wang et al., 2015). Valipour et al.(2013) studied annual runoff time series 
in Dahuofang reservoir, in northeast China, using autoregressive integrated 
moving average (ARIMA) models coupled with ensemble empirical mode 
decomposition (Wu, Z., & Huang, N. E., 2009). Spectral analysis and 
forecasting of hydrological time series has also been considered (Marques 
et al., 2006), including geostatistical applications (Robin et al., 1993) and 
climate change investigations (Lall and Mann, 1995). 

Considering hydrological time series, the monthly streamflow 
series typically have a periodic behavior in the mean and variance and in 
general, periodic autoregressive models are used in de analysis of the data 
(see, for example, Modal & Wasimi, 2006). In this situation, usually it is 
assumed that the series flow has a normal or log-normal distribution (see 
for example, Tesfaye et al., 2006; Wang et al., 2009).

The behavior of meteorological time series is similar to the behavior 
of hydrological time series. In this case, given that the relative air humidity 
is a random variable with values given in the open interval (0, 1), we 
could assume a beta distribution to analyze the data. Another possibility 
to analyze the data set is to consider a transformation of the data and to 
assume a normal distribution for the transformed data. As a special case, 
we could assume a logistic transformation.

In this paper, a more general model is considered in the analysis 
of the hydrological or meteorological time series conditional to the 
historical available information: it is assumed that the data is generated 
from a normal, a gamma or a beta distribution, with conditional mean 
and variance, given respectively, by E [Yt|Yt-1] and V [Yt| Yt-1], where the 
index tis related to time. Thus a general model is proposed to analyze 
hydrological or meteorological time series, assuming that the observations 
are generated from a continuous biparametric exponential family of 
distributions.

As an illustration and motivation for the use of the proposed models, 
we first consider as a first example, a data set consisting of the time 
series of monthly averages of natural streamflows, measured in the year 
period ranging from 1931 to 2010, in Furnas hydroelectric dam, located 
in southeastern Brazil. This time series is shown in Figure 1. From this 
Figure, we observe that the streamflow series have a periodic behavior in 
the mean and variance and in this case, general periodic autoregressive 
models are usually assumed in the analysis of the time series data (Modal 
& Wasimi, 2006).

To take into account the heteroscedasticity in the time series 
of streamflows showed in this first example, we propose a new model 
which assumes seasonal and autoregressive terms in the modeling of 
the mean and variance parameters. In this way, we propose a periodic 
and heteroscedastic model, in which the variance also presents an 
autoregressive structure.

As a second example, we consider another time series with behavior 
similar to the assumed hydrological time series presented in the first 
example, consisting of a meteorological time series given by weekly 
averages of air humidity, measured in the city of Rio Claro, São Paulo 
state, Brazil (Figure 2).  In this case, given that the relative air humidity 
is a random variable with values in the open interval (0, 1), it is assumed 
a beta distribution in the analysis of the data. In this case, we propose a 
jointly modeling for the mean and for the variance of the data considering 
beta regression models, including seasonal and autoregressive terms in 
both regression models

Figure 1. Time series of monthly averages of natural streamflows. 

Figure 2. Air humidity time series data.

The paper is structured as follows: in section 2, it is introduced 
the seasonality analysis of the time series. In section 3, it is proposed 
seasonal autoregressive models. In section 4, it is presented the results of 
the analysis of the hydrological time series obtained using the proposed 
models assuming normal and gamma distributions. In section 5, it is 
presented the results of the analysis of air humidity time series. Finally, 
in section 6 it is presented some conclusions and future research topics.
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2. A period model

In this section, we introduce a new modeling approach including 
seasonality terms in the model which better describes time series of 
monthly averages of natural stream flows, denoted by Yt. In the first 
case, we consider the time series data related to the monthly averages of 
natural streamflows in Furnas hydroelectric dam (Figure 1). A preliminary 
spectral analysis is developed for this time series to determine the time 
periods to be considered in the mean and variance model formulations. 
Thus, if in the spectral analysis, the number of observations is  T = 2q 
+ 1, where q is a positive integer number, the Fourier time series model 
given by:

is to be fitted by the data, where fi = i/T is the ith harmonic of the 
fundamental frequency 1/T and, α1,i and α2,i, i = 1,...,q, are the related 
coefficients and et  is an error term assumed to have the first and second 
moments given respectively by E(et) = 0, E (et

2) = σ2 and to be uncorrelated, 
that is,   E(et et+k) = 0 for k ≠ 0.

Considering the n observations of the time series, the least square 
estimates of the coefficients α0  and  (α1,i ,α2,i),  i = 1,...q, are obtained from 
the equations:

Based on these estimates, the intensity of each frequency is 
calculated by:

Observe that the highest frequency is 0.5 cycle per month (time 
interval) since the smallest period is 2 months. This preliminary 
analysis of the intensities of frequencies allows us to reduce the 
number of harmonics considered in the time series included in 
the model, considering only those frequencies that have higher 
intensities (Marques et al., 2006). For a series consisting of 80 years 
of observations (that is 960 months) we would have 480 harmonics, 
but considering this preliminary analysis, we could reduce the 
number of harmonics to three or four. Usually, in the case of monthly 
time series, these periods are given by periods of 6 and 12 months. 
These periods will be discussed in Section 4, where the specification 
of the parameters related to the periods is made simultaneously with 
the specification of the parameters for the autoregressive models 

assumed for the mean and variance in the time series formulations to 
be introduced in Section 3.  If some of these parameters show to be not 
significant after a preliminary statistical analysis, the terms related to 
these parameters are deleted from the model to develop a further analysis. 
The final decision on which harmonics should be included in the model 
must be made considering some criteria for model selection or hypothesis 
test on the fitted coefficients α1,i and α2,i.

3. The proposed seasonal autoregressive model

In hydrological or meteorological time series, we usually assume 
that the observations of interest are generated from a conditional 
continuous probability distribution function. As special cases, we could 
assume that the observations are generated from standard normal, gamma, 
beta or exponential conditional density functions, denoted by f (yt│Ht-1 ), 
t = 1,2,...,T , where Ht-1 is  the  available information up to time t - 1 and 
thus Yt has conditional means and variances given respectively by µt = E 
(Yt |Ht-1) and ht = Var(Yt |Ht-1),  following the models:

where β = {α0, α1,1 ,..., α1,q  ,α2,1,..., α2,q , ϕ1,...,ϕp ,}, is the vector  of 
parameters for the mean model and γ = {λ0, λ1,1,..., λ1,s  ,λ2,1 ,..., λ2,s, θ1,...,θr} 
is the vector of the parameters for the variance model, fi = i/T the ith 
harmonic of the fundamental  frequency 1/T. In this paper, the parameters 
of the proposed models are estimated under a Bayesian approach.

In order to illustrate the proposed methodology, we also include the 
regression equations relating the mean and variance parameters to the 
assumed covariates assuming gamma and beta distributions for the data.  
In this way, we have, the following modeling steps:

1.	 If Yt, t = 1,2,...,T, follows a gamma conditional distribution 
G(pt , qt), where G(p,q) denotes a gamma distribution with 
mean pq and variance  pq2,  the conditional mean and variance 
are related to the original parameters by the equations µt= pt qt 
and  ht = µt qt.

2.	 If Yt, t = 1,2,...,T, follows a beta distribution function B(pt,qt), 
we consider a reparameterization of the beta distribution 
density as a function  of the  mean and  precision,  ϕt = pt + 
qt, which results to be appropriate in order to define the joint 
mean and precision beta regression models as introduced by 
Cepeda (2001). This reparameterization, where ϕ = p + q, 
p = µϕ and q = ϕ(1 - µ),  has been extensively used in the 
literature following the joint modeling approach for the 
mean and precision beta parameters introduced by Cepeda 
(2001) and Cepeda and Gamerman (2005), under a Bayesian 
approach. It is important to point out that Ferrari and Cribari-
Neto (2004) also introduced a beta modeling approach for the 
mean but assuming constant precision parameters, under a 
classical approach.  In all of these cases, ϕ can be interpreted 
as a precision parameter in the sense that, for fixed values 
of µ, larger values of ϕ correspond to smaller values for the 
variance of Y. This interpretation could be not so simple.  In 
this paper, we use the mean and variance reparameterization of 
the probability beta distribution in the definition of joint mean 
and variance beta regression models (Cepeda-Cuervo, 2015), 
taking into account that  µ(1 - µ) > σ2; in this way, samples of 
the joint posterior distribution for the regression parameters 
should be simulated in the subspace of parameters that satisfy 
this property. Although this reparameterization results in a 



86 Edilberto Cepeda Cuervo, Jorge Alberto Achcar, Marinho G. Andrade

complex expression for the beta distribution, it leads to a best 
and more easily interpretation for the statistical analysis results 
in the applications.

(8)

(10)

(11)

(9)

In this reparameterization, where the autoregressive seasonal beta 
regression models have the conditional mean and variance model given 
by the equations (6) and (7).

Special cases of this model could be easily obtained from this general 
model.  A first model is given by a seasonal regression mean model, 
with mean given by (6) and autoregressive variance not considering the 
presence of seasonal terms. A second model, also a seasonal mean model, 
is given assuming the mean given by (6) and a seasonal variance model not 
considering the presence of autoregressive terms. A third model, is given 
by an autoregressive mean model and a variance model, not considering 
the presence of seasonal terms in the mean and in the variance. A fourth 
model, is given by an autoregressive model, with constant variance.

4. Hydrological time series

In this section we consider an analysis of the Furnas dam 
hydroelectric hydrological time series dataset, introduced in Section 1, 
assuming seasonal autoregressive conditional heteroscedastic models.

The first step in the proposed analysis is to determine the period 
for the harmonics of higher intensity in the spectral analysis of the 
streamflows data. In this way, we note in Figure 3 that the harmonics of 
higher intensity (I) corresponds to the cycle (1/fi) of 6 and 12 months, 
given that the periodogram shows that this time series contains two cosine-
sine peaks at these frequencies. There are other very small peaks in this 
periodogram, possibly caused by noise components. Thus, the seasonal 
terms to be included in the mean equation model of the streamflow 
series are given by cos(2πt/6), sin(2πt/6), cos(2πt/12) and sin(2πt/12). 
The periodogram of a time series can be obtained using the R-function 
periodogram (x, method,..) of the library "GeneCycle" (Ahdesmaki et al., 
2012). Other statistical software can be used to estimate the periodogram 
of a seasonal time series, for example, MathLab or the statistical software 
Excel-XLStat.

Figure 3. Periodogram  of natural streamflows time series.

Many autoregressive models could be assumed to analyze this 
data set. As special cases, we will assume, in section 4.1, a seasonal 
conditional normal distribution for the data and, in section 4.2, a seasonal 
conditional gamma distribution for the data. In order to apply the Bayesian 
methodology, independent normal prior distributions N(0,10k), with k = 2,  
are  assumed for the regression parameters associated with the seasonal 
terms. For the other parameters of the model, we assume independent 
normal prior distributions  N(0,10k), with k = 5. It is important, to point 
out that non-informative prior could be used (see, for example, Geman, 
2006), but in our case, the obtained results are very similar.

Since we are using the free available software WinBugs to simulate 
samples for the joint posterior distribution of interest in all assumed 
models, which only requires the introduction of the joint distribution 
for the data and the prior distributions for all parameters of the model, 
we will not present in this paper the required full conditional posterior 
distributions for all parameters needed in the Gibbs sampling or the 
Metropolis-Hastings algorithms.

4.1. Normal seasonal time series
In this section, we present the results of the Bayesian analysis for 

the time series of monthly averages of natural streamflows, measured in 
the period ranging from 1931 to 2010, considering the dataset related to 
a hydroelectric dam introduced in Section 1, assuming jointly modeling 
for the mean and variance, assuming a normal model for the data. From 
the model given by equations (6) and (7), many autoregressive models 
were considered in the analysis of the data, and the model with smallest 
DIC (deviance information criterion, introduced by Spiegelhalter et al, 
2002) value was given by the heteroscedastic normal regression model 
with conditional mean and variance structures given respectively by,

Samples of the joint posterior distribution of interest were simulated 
using standard MCMC (Markov Chain Monte Carlo) methods and the 
free available WinBugssoftware (Spiegelhalter et al, 2003). In each of 
the cases, many samples were generated starting from different initial 
values. All of them showed the same behavior, after a small burn-in 
period consisting of 3,000 or 5,000 generated samples. Convergence of 
the simulation algorithm was observed from trace plots of the generated 
Gibbs samples.

For the model given by equations (10) and (11), the value of the 
logarithm of the likelihood function evaluated at the obtained estimates 
for the parameters of the model was given by −2logL=10479.200 and 
the obtained DIC value was DIC=10876.500. Monte Carlo estimates of 
the posterior means for each parameter based on the generated Gibbs 
samples and their respective standard deviations are given in Tables 1 
and 2, including both autoregressive and seasonal terms in the conditional 
mean and variance terms.

Table 1. Normal model: Bayesian estimates for the mean parameters.

Table 2. Bayesian estimates of the variance parameters.
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Figure 5. Normal fitted squared root of the expected volatility.

Figure 6. Monthly averages of natural streamflow.

Figure 4. Monthly averages of natural streamflow and normal fitted mean 
estimates.

As an illustration of the performance of the proposed model, Figure 
4 shows the agreement between monthly averages of natural streamflows 
and the fitted mean estimate. At the same time, Figure 5, depicting of 
the fitted squared root of the expected volatility shows periods of high 
volatility around of the months 200, 400, 600 and 800, as observed in the 
data behavior.

4.2 Gamma seasonal time series   
In this section we present the results of the Bayesian analysis for the time 

series for monthly averages of natural streamflows, measured in the period 
1931 to 2010, in Furnas hydroelectric dam, assuming joint modeling for the 
mean and variance autoregressive gamma models, that  is, we assume that the 
observations of the interest are  generated from a conditional gamma density 
function given by f (yt |Ht-1), where Ht-1)  is the information up to time t − 1  
and  Yt   has conditional mean and conditional variance given respectively by 
µt = E(Yt | Ht-1) and σt

2 = Var(Yt | Ht-1), and defined by (10) and (11). For this 
model, the logarithm of the likelihood function evaluated at the estimates for 
the parameters of interest is given by −2logL=10649 and the DIC value is given 
by 10862.300. Using the DIC criterion to discriminate the two models (normal 
seasonal time series and gamma seasonal time series), we observe better fit of 
the data for the gamma seasonal time series model, since we have smaller DIC 
value for this model.

The Bayesian estimates of the posterior means for the parameters 
together with the corresponding standard deviations are given in Tables 3 and 4.

Table 3. Gamma model: Bayesian estimates for the mean parameters.

Table 4. Gamma model: Bayesian estimates for the variance parameters.

Although the mean parameter estimates given in Tables 1 and 3, and 
variance parameter estimates given in Tables 2 and 4, show some agreement 
between conditional normal and conditional gamma regression parameter 
estimates, the DIC value of the conditional gamma model is smaller than that 
of the conditional normal heteroscedastic models, showing that the class of 
gamma models is better to fit the monthly averages of natural streamflow data. 

In order to determine the forecasting performance of the proposed Gamma 
seasonal  model, we fit this model to the  first 910 observed values of the Furnas 
dam  hydrological time series, in order to predict the temporal behavior over 
the 50 last months. The parameter estimates agree with those reported in tables 
3 and 4.  Figure 6 shows that this model has good performance in predicting 
monthly averages of natural streamflows. This figure shows the 90% prediction 
interval for the variable of interest in these last weeks in dashed lines, and the 
observed values of natural streamflows in black points.

5. Beta mean and variance seasonal models applied to air humidity
time series

In this section it is assumed that the time series data are generated 
from a beta distribution, B(pi ,qi), with conditional mean and variance given, 
respectively, by (6) and (7). To illustrate the application of the proposed model 
to be fitted by the data set, we consider the time series of weekly averages air 
humidity, measured in Rio Claro city, located in southeastern of Brazil, from 
18/10/2002 to 08/10/2008. This time series, introduced in section 1, is shown 
in Figure 2.

As in Section 4, the first step in the proposed analysis is to determine 
the period of harmonics of higher intensity in the spectral analysis of the 
humidity data. From the corresponding periodogram, Figure 7, we note that the 
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harmonics of higher intensity corresponds to the cycle (1/fi) of 26 and 52 days. 
As in the analysis of streamflow data, the periodogram shows  that this time 
series  contains two cosine-sine peaks at these frequencies, two larger peaks, 
and  other very small peaks, possibly caused by noise components. Thus, the 
seasonal term to be included in the mean equation model of the streamflow 
series are given by: cos(2πt/26), sin(2πt/26), cos(2πt/52) and sin(2πt/52).

Figure 8. Air humidity time series data (continuous line) and fitted mean (diseased 
line) for double seasonal model.

Figure 9. Fitted conditional variance time series.

5.1. Seasonal mean and conditional variance models
In this section, double seasonal beta repression models are proposed to 

analyze the air humidity time series data introduced in Section 1. In this way, we 
conclude that the best beta seasonal mean and variance model is the one where 
the mean and dispersion regression structures are given by:

(12)

(13)

Assuming independent normal prior distributions N(0,100) for the 
regression parameters α0 and α1,i, for i = 1,2  and  for λ0 and λ2,i, for i = 1,2. To fit 
the model 20,000 samples of the joint posterior distribution for the parameters 
of the model were also generated using the MCMC methods and the WinBugs 
software (Spiegelhalter et al, 2003).  Monte Carlo estimates for the posterior 
means of each parameter were obtained from the final simulated Gibbs sample, 
after an initial burn-in sample period of 2000 samples. This “burn-in sample” 
was discarded to eliminate the effect of the initial values in the iterative 
procedure. After this “burn-in sample” period we simulated another 20,000 
Gibbs samples choosing every 20 iteration to get approximately non-correlated 
samples, which gives a final sample of size 1,000 used to get the posterior 
summaries of interest. The posterior summaries of interest are given in Table 5, 
for the mean regression parameters, and in Table 6, for the variance regression 
parameters.

Table 5. Beta model: Bayesian estimates for mean parameters.

Table 6. Beta model: Bayesian estimates for the variance parameter. 

The logarithm of the likelihood function evaluated at the obtained 
estimates for the parameters of the model is given by log L = −853.082 and the 
DIC criterion has a value equals to −825.525.   In Figure 8, we observe a good 
agreement between data and the fitted mean, showing the good performance of 
the proposed model to analyze this data set. Figure 9, revels a good agreement 
for the variances, where smaller means are accompanied by smaller variance. 
This behavior also was observed in the original time series. That is, we conclude 
that this model  fits by the time series data very well.

To determine the forecasting performance of the proposed models, we 
fit the seasonal beta autoregressive model to the first 282 observed values of 
the air humidity time series data, in order to predict the time behavior in the 30 
last weeks. Figure 10 shows the 90% prediction interval for these last weeks, 
in dotted lines and the observed values of natural streamflows in black points.

Figure 7. Periodogram of humidity Times series.
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Figure 10. Forecasting humidity time series.

6. Concluding Remarks

In this paper, we introduce a new class of time series models assuming 
continuous random variables within the exponential family applied to 
hydrological and meteorological data.  Special cases of this proposed 
methodology were considered assuming, normal, gamma and beta distributions. 
These new models could be of great interest to analyze hydrological and 
meteorological data, since the original data usually could not be fitted assuming 
the standard   modeling approach for the means of the data or assuming standard 
distribution assumptions for time series data. Other important practical point:  
in practical work, usually it is required to model simultaneously the mean and 
the variance depending on a vector of parameters to get better predictions 
and to discover the real behavior of a hydrological or a meteorological time 
series. With this modeling approach, we could get better inferences as it was 
observed in the illustrations introduced in this paper. This approach usually is 
not considered by hydrological or meteorological researchers using standard 
available software for hydrology or meteorology time series. In this way, the 
use of Bayesian methods is a good alternative to get accurate inferences and 
predictions, especially using MCMC methods, since these inference methods 
are not based on asymptotical results as its common with standard existing 
classical approaches based on maximum likelihood estimation procedures. 
Other important   point:   under the use of a Bayesian approach, we could 
consider informative prior distributions when is available prior opinion of 
experts in hydrology and meteorology. This means, better predictions. It is also 
important, to point out that the computational work needed in the simulation 
of samples of the joint posterior distribution to get the posterior summaries of 
interest is greatly simplified using standard existing softwares like the WinBugs 
software.The proposed methodology was illustrated considering two Brazilian 
data sets:  a hydro- logical time series and a meteorological time series. A final 
point of relevance for the results of this paper: new statistical models for time 
series to model climatic variables leading to better inferences and predictions 
based on data from hydrology and meteorology can be of great practical 
interest, especially with the large climate changes that have been observed in 
the world in recent decades.

To determine the performance of the proposed models, an extensive 
comparison with other models proposed in the literature should be developed. 
However, in order to compare the performance of the gamma seasonal models 
with in a model without a seasonal component, we fit the autoregressive model 
Ar(3), for which the DIC value was 11990, bigger than  the DIC value of the 
fitted gamma seasonal model. The sum of square residuals obtained from 
applying the AR(3) model is  also bigger than that for the proposed models. For 
the AR(3) model, the sum of square residuals is 65679347 and for the proposed 
model it is  52976950.  Finally, we fit the Ar(3) model to the humidity data, for 
which the DIC value was -774.550, bigger than −825.525, the BIC value of the 
fitted  beta seasonal model. The sum of square residuals obtained from applying 

the AR(3) model to the humidity data is 17.1565, larger than the DIC value 
(1.3786) of the proposed models.
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