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The retardation factor (Rd) is one of the main important solute transport parameters. Its value can vary significantly 
depending on the method used for its determination. In this paper, the sodium Rd is experimentally determined 
using undisturbed sandy soil columns to compare four methods of Rd determination and assess the impact of the 
chosen method on the prediction of sodium movement. Column experiments in undisturbed soil samples and 
analytical analysis were performed. The results showed that the soil has dual-porosity and preferential pathways. The 
breakthrough curves were in accordance with the soil’s physical characteristics. The Rd values ranged from 1.7 to 7.77 
depending on the initial concentration and on the method used. These differences arise from the conceptual model of 
each Rd determination method. The experimental and analytical analysis indicated that the higher the Rd, the slower 
the movement. The methods that best reproduced the laboratory sodium movement were Ogata and Banks’ (1961), 
Langmuir and Freundlich’s isotherms. The prediction models presented smaller errors with the increase of the initial 
concentration. In these cases, the predicted concentrations can be overestimated up to 22.5 % when using a not suitable 
method. These results suggest that the Rd determination method can strongly affect the prediction of the sodium 
movement. Because of that, it is of vital importance to evaluate each method and how they can be adequate for the soil 
under investigation when determining Rd.
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El factor de retardo (Rd) es uno de los principales parámetros para el transporte de solutos. Su valor puede variar 
significativamente dependiendo del método utilizado para su determinación. En este artículo, el Rd del sodio se 
determina experimentalmente utilizando columnas de suelo arenoso no perturbado, para comparar cuatro métodos de 
determinación de Rd y evaluar el impacto del método elegido en la predicción del movimiento de sodio. Se realizaron 
experimentos en muestras de suelo no perturbado y análisis analítico. Los resultados mostraron que el suelo tiene 
doble porosidad y caminos preferenciales. Las curvas de llegada estaban de acuerdo con las características físicas del 
suelo. Los valores de Rd variaron de 1.7 a 7.77 dependiendo de la concentración inicial y del método utilizado. Estas 
diferencias surgen del modelo conceptual de cada método de determinación de Rd. El análisis experimental y analítico 
indicó que cuanto mayor es la Rd, más lento es el movimiento. Los métodos que mejor reprodujeron el movimiento de 
sodio obtenido en el laboratorio fueron las isotermas de Ogata y Banks (1961), Langmuir y Freundlich. Los modelos 
de predicción presentaron errores más pequeños con el aumento de la concentración inicial. En estos casos, las 
concentraciones pronosticadas pueden sobreestimarse hasta un 22,5% cuando se utiliza un método no adecuado. Estos 
resultados sugieren que el método de determinación de Rd puede afectar fuertemente la predicción del movimiento de 
sodio. Debido a eso, al determinar Rd, es de vital importancia evaluar cada método y cómo pueden ser adecuados para 
el suelo bajo investigación.
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Introduction

Maintenance of groundwater resource quality depends on the 
knowledge of how solutes move in the aquifer to estimate the groundwater 
contamination and therefore to manage the health risks. As the processes 
associated with the groundwater flow and solute transport are complexes, 
numerical modeling is a powerful tool to perform predictions and base the 
decision-making processes. Numerical models require input parameters 
that must be determined reliably to guarantee the quality of the prediction.

One of the main input parameters in the modeling of reactive solute 
transport is the retardation factor (Rd) (Fetter, 1999). Because of the 
physical, biological and chemical mechanisms involved between a liquid 
solution and particle surfaces of the soil, the velocity of water percolation, 
v, differs from the velocity of the solute, vs  (Freeze and Cherry, 1979). The 
relationship between these two velocities is called retardation factor. When 
the solutes do not interact with the solid medium (are nonreactive), Rd  = 1, 
the percolation velocity of the solute and the water are equal. Solutes with 
Rd > 1 are called reactive solutes (Freeze and Cherry, 1979; Shackelford, 
1994). According to Jury, Gardner and Gardner (1991), retardation factors 
exceeding 3 indicate a high degree of solid particles-solute interaction and 
a very reactive solute.

The determination of the Rd can be performed based on the direct 
evaluation of the experimental breakthrough curves (BTCs) from column 
experiments (Freeze and Cherry, 1979; van Genuchten and Parker, 1984; 
Godoy, Gómez-Hernández and Zuquette, 2018). The Rd can also be 
determined using inverse modeling by fitting the advection-dispersion 
equation (ADE) to the experimental data (Ogata and Banks, 1961; Markhali 
and Ehteshami, 2016). Solute transport experiments can be performed 
using undisturbed soil cores (Vanderborght, Timmerman, and Feyen, 2000; 
Logsdon Keller and Moorman, 2002; Jarvis, 2007; Jellali et al., 2010), 
however, in a more general way, disturbed soils columns are used (Dousset 
et al., 2007; Eberemu, Amadi, and Edeh, 2013; Delwiche, Lehmann and 
Walter, 2014; Liu et al., 2014; Internò, Lenti and Fidelibus, 2015; Silva et 
al., 2016). Batch tests, despite their limitations, are also used to determine 
sorption isotherms and then Rd (Brigham, Reed and Dew, 1961; Fagundes 
and Zuquette, 2011; Fonseca et al., 2011; Barbieri et al., 2012; Liu et 
al., 2014; Arthur et al., 2017). Sorption isotherms are efficient in the Rd 
determination but their determination must consider the soil heterogeneity.

The characteristics of the Rd determination methods may affect its 
quantification. The use of an inadequate method to determine Rd values may 
cause under or overestimation of the fate and solute transport, impairing the 
design of clean-up techniques and health risk analyses. This is especially 
important by considering that those who work with numerical modeling 
usually use the provided parameters with no concerns about the method 
used in its determination.

Studies which aim to compare Rd determination methods are rare 
and this paper intends to contribute to reduce this lack (Shackelford, 1995; 
Porfiri et al., 2015) (3. Additionally, the use of undisturbed soil samples to 
perform solute transport test and determine sorption isotherm have not been 
identified in the literature, and are also presented in this work.

 The objective of this study is twofold: (i) to compare four methods 
of Rd determination and (ii) to assess the impact of the chosen method 
in the prediction of sodium movement. In order to achieve that, first, the 
sodium Rd is experimentally determined using undisturbed sandy columns 
and then the Rd were determined based on the methods proposed by Freeze 
and Cherry (1979), by van Genuchten and Parker (1984), by the fit of the 
sorption isotherms models to the experimental data obtained from column 
experiments, and by fitting the analytical solution of the ADE to the 
experimental data. Second, the Rd obtained with all these methods were 
used as input parameter to reproduce the experimental BTC using the 
analytical solution of the ADE to evaluate the impact of a different Rd in the 
prediction of the sodium movement.

Data and methods

Soil sampling and characterization
The study was carried out in an experimental site located at the 

city of Cabrália Paulista (22°27′37″ S, 49°20′16″ W), State of São Paulo, 
Brazil. This area is constituted by the residual soil of sandstones from the 
Adamantina Formation, Bauru Group (K). The area was chosen because its 
geological materials are spread out at about 117,000 km² in the state of São 
Paulo (Paula e Silva, Kiang, and Caetano-chang, 2003) and incorporate the 
Guaraní Aquifer System and some of its aquifer unities such as the Lower 
and Medium Bauru unities. The soil samples were taken from an area quite 
close to one where salty wastewater from domestic sewage has been used 
for irrigation purpose. Because of the high sodium (Na+) concentration in 
the wastewater, this was the solute used in this study. 

We cautiously collected ten undisturbed samples from hand-excavated 
trenches using rigid PVC cylinders (150 mm length and 97.2 mm inner 
diameter). Undisturbed samples were used to conduct water flow and solute 
transport experiments in the laboratory and to analyze the soil porosity.  

Porosity analysis by mercury intrusion (MIP) was performed in three 
samples (Washburn, 1921). MIP is based on the penetration of mercury into 
the soil pores, which occurs only under pressure since the mercury is a non-
wetting fluid. The mercury penetration pressure should be higher the smaller 
the pore diameter, according to

P T
D
s= −4 cos      (1)

where Ts is the surface tension; α is the contact angle between the liquid 
and the surface of the solid; P is the applied pressure; and, D is the pore diameter. 
During the test, as the pressure is increased, the volumes of mercury inserted 
into the sample are monitored. Using Equation 1 the dV/dD differentials were 
obtained, which allowed obtaining the pore distribution of the sample. The 
apparatus used in these tests was the “Pore size 9320 - Micromeritics Instrument 
Corporation”, with a maximum pressure of 30 000 psi.

Disturbed samples were taken to characterize, in three replicates, the 
physical, chemical, mineralogical and physicochemical properties of the 
soil (Godoy and Zuqutte, 2013). The mineralogical analysis was performed 
using X-ray diffraction(XRD) (Azaroff and Buerger, 1953), particle size 
analysis was performed according to ASTM D422-63. The density of the 
solids was determined according to ASTM D854-10. We also determined in 
three replicates the pH in H2O and in KCl, reduction potential (Eh), electrical 
conductivity (EC) (Donagema and Campos, 2011), delta pH (pHKCl – pHH2O) 
(Mekaru and Uehara, 1972), point of zero charge (PZC) (2pHKCl – pHH2O) 
(Keng and Uehara, 1974), and organic matter content according to ASTM 
D2974 – 00. The arithmetic mean of the three replicates was used as the 
value of the measured parameter. The methylene blue adsorption test using 
the filter paper method described by Pejon (1992) was used to determine 
CEC in one replicate from each soil sample. 

In order to visually analyze the soil fabric characteristics as well as 
its capacity to retain solute, a solution of methylene blue (adsorbing dye) 
was percolated through the soil, a traditional method used to visualize flow 
pathways (Zehe and Flühler, 2001; Dousset et al., 2007). First, the filter 
paper was placed across the base of an unsaturated and undisturbed soil 
column, so that the preferential paths would be marked in the cross-sectional 
area of the column. Second, a volume of 1.5E-03 m³ of a methylene blue 
solution at a concentration of 3 kgm-3 was percolated through the soil. The 
soil was set aside to allow the excess solution to drain. Third, the soil sample 
was removed from the PVC cylinder and longitudinally cut to observe the 
methylene blue pathways and visually analyze the retention and the flow 
through the pores.
Column experiments

The PVC cylinders used for collecting the undisturbed soil samples 
were used as rigid-wall permeameters, in which column experiments were 
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conducted. The soil columns were first slowly saturated from the bottom 
with distilled water to remove entrapped air. To ensure complete saturation, 
the distilled water was allowed to overflow 1 cm on the soil surface for two 
days. After column saturation, the flow was reversed, and the tests were 
performed under a constant hydraulic gradient of 1.5.

Once the steady-state condition was verified, that is, when flux (Q) 
variations were below 5% in a week, the following water flow parameters 
were obtained from each column: the saturated hydraulic conductivity, K 
(Darcy, 1856); Darcy velocity, q (Darcy, 1856)and average linear velocity, 
v (Freeze and Cherry, 1979). The mean effective porosity, ne, which is used 
in the calculation of v, was adopted as the percentage of pores larger than 10 
µm based on the MIP results (Ahuja et al., 1984). 

Three undisturbed soil columns were percolated with NaCl and 
the effluent was collected at each pore volume (Godoy, Zuquette and 
Napa García, 2015). The concentrations of the initial solution inserted in 
the columns 1, 2 and 3 were, respectively, 50, 90 and 117 mg.L-1 based 
on previous studies (Patterson, 1997; Medeiros et al., 2005; Silva et al., 
2012). Solute displacement tests were carried out under isothermal (20 °C) 
conditions. The pH and electrical conductivity, both of the input solution 
and of the percolated effluent solution, were monitored throughout the 
test. The Na+ concentrations were determined in three replicates using a 
MICRONAL B26 flame photometer at a 1:21 dilution ratio. The column 
experiments design was also described by Godoy, Zuquette and Napa 
Garcia (2015).

Determination of retardation factors 
The Rd values were determined by four methods. First, Rd was 

determined inversely by fitting the analytical solution of the ADE (Ogata 
and Banks, 1961) to the experimental BTC, 
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where C is the concentration [ML-1], Dh is the longitudinal dispersion 
coefficient [L2T-1], v is the linear velocity of the fluid through a column [LT-1],  
and Rd is the retardation factor.

The analytical solution of the Equation 2 was proposed by Ogata 
and Banks (1961) and Lapidus and Amudson (1952) and was used to solve 
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Second, Rd was determined using the method proposed by van 
Genuchten and Parker (1984) where the Rd is the area above the BTC; 
Third, the Rd determination was performed by using the method proposed 
by Freeze and Cherry (1979) where the Rd is equal to the pore volume when 
the relative concentration (C/C0) is 0.5; and Fourth, the Rd was found by 
fitting the sorption isotherms, obtained through column test, to the linear, 
Freundlich and Langmuir isotherm models (Freeze and Cherry, 1979; 
Garga and O’Shaughnessy, 1994; Fetter, 1999; Asgari et al., 2014). The 
ADE and the isotherms models’ fits were performed using Mathematica 9.0.  
Table 1 shows the equations that were used to determine the Rd from 

different sorption isotherms.
Lastly, the Rd obtained with the aforementioned methods were directly 

used to predict the experimental BTC using the analytical solution of the 
ADE. The coefficient of determination R2 was computed and used to assess 
the goodness of the Rd to explain the experimental data. The simulated 
BTCs were used to assess the impact of the Rd determination method in the 
sodium movement prediction.

Results and discussion
Soil characterization and flow parameters

Texturally, the soil is clayey silty sand and consists of 79.4% sand, 
10.5% clay and 10.1% silt particles. The specific weight of the solids was 
consistent with sandy soil values (26.4 kNm-³). The main minerals are 
quartz, kaolinite, and gibbsite and the results of the XRD are showed in 
Figure 1.

Table 1. Equations used to determine Rd from sorption isotherms

Eq. 3 Eq. 4 Eq. 5
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Where n represents the porosity [ ]; k  is the Henry coefficient for linear isotherm [ ]; b1 is the Freundlich coefficient [ML-3(-b2)-1]; b2 is the Freundlich exponent 
[ ]; k1 is the Langmuir sorption coefficient[];  k2 is an exponential coefficient [L3M-1]; Ce is the equilibrium concentration [ML-3].
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Table 2 summarizes the soil physicochemical parameters. The soil 
presented values of 5.23 and 4.20 for pH in H2O and in KCl, respectively, 
and contains a small amount of organic matter (1.18%). With these results, it 
is possible to note that there was an indication of the electrostatic adsorption 
due to the negative delta pH (-1.03) and PZC lower than the pHH2O (4.18). 

According to the MIP, the distribution of pore sizes is: 5% macropores, 
50% mesopores and 45% micropores (Koorevaar, Menelik and Dirksen, 
1983). According to Godoy (2015), the soil also contains macropores larger 
than 100 µm that cannot be identified in the porosimetry analysis due to 
characteristics of the test. These pores are up to 4 mm in diameter and were 
presumably important in determining the movement of the sodium in the soil.

Table 3 shows the flow parameters obtained from column experiments. 
The average K coefficient is in the typical range of sandy soils (Zuquette 
and Palma, 2006). The mean v can be considered high, most probably due 
to the presence of preferential pathways caused by macropores (McMahon 
and Thomas, 1974; Dousset et al., 2007; Delwiche, Lehmann and Walter, 
2014; Silva et al., 2016).

Analysis of breakthrough curves
Figure 3 shows the BTCs of the Na+ plotted using the relative 

concentration measured in the leachate (C/C0) vs. the number of eluted 
pore volumes and Table 4 summarizes the results obtained from column 
experiments. With the increase of the initial concentration there is 
a displacement of the BTC to the left, indicating that the higher the 
concentration of the initial solution, the faster the solute is identified in the 
effluent solution. This can be related to the limited sorption sites in the soil 
as well as to the soil physical heterogeneities.

The BTCs have the appearance of a continuous flow of initial 
solution. The tails show that in the beginning, the solute speedily left the 
soil column and after that, there was a slow transport and a significant 
tailing occurred. This can indicates physical nonequilibrium and the 
presence of heterogeneous adsorption sites in the soil, caused by small-
scale heterogeneity (Gerritse, 1996; Vanderborght, Timmerman and Feyen, 
2000; Dousset et al., 2007; Jarvis, 2007). 

The small-scale heterogeneity may be due to the dual-porosity 
characteristic of the soil. The dual-porosity affects the timing and shape of 
the BTC as mentioned by Rezanezhad et al. (2012). That occurs because 
part of the solutes can move fast due to advection in large pores and part 
of them can be trapped in immobile regions due to percolation through 
micropores and non-interconnected pores, behavior also stated by others 
(van Genuchten and Wierenga, 1976; Jarvis, 2007; Silva et al., 2016). 

Visual analysis of the dye transport
The visual analysis of the dye transport pathways indicated that, 

although the methylene blue solution was equally distributed in the upper 
part of the column, there was a greater flow in one location than in the rest 
of the column and it is evident in Figure 4 which shows the location where 
preferential flow occurred (labeled in the photo). 

As only water was observed in the effluent, the methylene blue is 
believed to have been subject to physical retardation in macropores, which 
do not connect to the bottom of the soil sample (Figure 5), and chemical 
retardation due to the soil and solute chemical characteristics.

Table 2. Physico-chemical parameters of the soil used in the column experiments

pH
ΔpH PCZ

Eh C.E CTC M.O

pH(H20) pH(KCl) (mV) (mS) meq/100g (%)

5.23 4.20 -1.03 4.18 264 55.70 0.152 1.18
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Figure 2. Porosimetry tests results - total volume of mercury versus pore diameter

Table 3. Flow parameters obtained from column experiments

 Column1 Column2 Column3

ksat(m/s)a 3.060 x 10-05 3.50 x 10-05 4.43 x 10-05

ib 1.5 1.5 1.5

q (m/s)c 4.59 x 10-05 5.25 x10-05 6.65 x 10-05

v(m/s)d 2.18 x 10-04 2.50 x10-04 3.16 x 10-04

a: saturated hydraulic conductivity; b: hydraulic gradient; c: Darcy velocity;  
d: average linear velocity

Figure 3. Breakthrough curves of the Na+

Table 4. Results obtained from column experiments

Column 1 Colum 2 Colum 3

Pore volume C/C0 C/C0 C/C0

0 0.00 0.00 0.00

0.395 0.00 0.11 0.09

1.185 0.10 0.36 0.38

1.975 0.40 0.56 0.66

2.765 0.50 0.72 0.77

3.555 0.60 0.78 0.83

5.135 0.70 0.83 0.91

6.715 0.80 0.86 0.94

9.085 0.85 0.91 0.96

11.455 0.95 0.96 0.98
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A similar result was found by Dousset et al. (2007) who verified 
physical retardation of a dye tracer in non-connected pores. Even after 
introducing three pore volumes of the solution, the methylene blue 
remained in the surface portion of the column. The retention of methylene 
blue indicates that the soil has very significant cation sorption, contrary to 
what is expected for sandy soils since the mineralogy of these soils is not 
composed by reactive clay minerals.
Sodium sorption isotherm

The sodium sorption isotherm is shown in Figure 6. There is an 
increase in sorption over time and saturation is reached when no additional 
sorption of Na+ occurs. Different results were obtained by Müller (2005) and 
Humenick and Mattox (1978). The maximum Na+ sorption value (0.1 gg-1)  
did not exceed the maximum soil sorption (0.5 gg-1) obtained by the 
CEC analysis. Thus, the sorption values probably are primarily related to 
physical mechanisms such as retention in micropores which represent 45% 
of the total porosity. With this result, it is possible to suppose that chemical 
and electrical mechanisms were probably of minor importance in the Na+ 
retardation. It is important to mention that four points may not be sufficient 
to define the isotherm accurately but can show the trend of the sorption 
behavior as obtained by Önal et al. (2007).

Table 5 presents the fit of the experimental data to the mathematical 
models of the Langmuir, Freundlich, and linear isotherms. The Langmuir 
and Freundlich models fitted well to the experimental data (R2 = 0.99). 
According to Önal et al. (2007), the Langmuir model can be successfully 
applied to many real sorption processes. The linear model had the worst fit 
(R2 = 0.84) indicating the nonlinearity of the experimental isotherm.

Retardation factor and its impact on the sodium movement prediction
In this section, the Rd values obtained with different methods are 

shown and discussed. Table 6 shows the retardation factors obtained 
using the methods proposed by Freeze and Cherry (1979), van Genuchten 
and Parker (1984), Ogata and Banks (1691) and by the fit of the sorption 
isotherms.

Figure 4. A water spot on the filter paper indicating the location where preferential 
flow occurred

Figure 5. Visual analysis of the dye transport pathways: retardation in connected 
macropores that are not connected to the bottom of the soil sample

Figure 6. Sorption isotherm of Na+

Table 5. Parameters obtained by fitting mathematical sorption models to 
experimental data

Model Parameters fitted

Langmuir

R2 0.99

k1 12.42

k2 112.1

Freundlich

R2 0.99

b1 0.14

b2 0.14

Linear
R2 0.84

k 3.17

Table 6. Retardation factors obtained with different methods

Method

Retardation Factor

Column 1 Column 2 Column 3

(50 mg.L-1) (90 mg.L-1) (117 mg.L-1)

Freeze and Cherry (1979) 2.75 1.75 1.51

Ogata and Banks (1691) 7.8 4.18 3.84

van Genuchten and Parker 
(1984) 4.42 3 2.17

Linear Isotherm 4.2 4.2 4.2

Freundlich Isotherm 7.78 4.5 3.63

Langmuir Isotherm 7.69 4.51 3.6
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The Rd values can be considered very high, except for the one obtained 
with the Freeze and Cherry (1979) method  (Jury, Gardner, and Gardner, 
1991). Rd values were higher even when compared to results obtained in 
compacted kaolin at low flow rates, which has a high retardation factor 
since they are used as liners (Shackelford and Redmond, 1995). Using the 
linear isotherm model, Garga and O’Shaughnessy (1994) found sodium 
retardation factor ranging from 2.22 to 3.6 in clay soil columns with high 
CEC. The high values of Rd obtained are in accordance with the results 
obtained with the sorption isotherm and with the dye transport. The sorption 
isotherm yields values of Rd smaller than those obtained by the CEC from 
the blue methylene adsorption test suggesting a physical dependence 
originated by e.g. preferential pathways which were also evidenced in the 
dye transport pathway.

Given that high average linear velocity values were observed during 
the experiments (Table 3), small values of Rd can be expected because of 
the reduction of the contact time between the solute and soil particles, as 
observed by Hoag and Price (1997). The soil sorption and physical-chemical 
characteristics did not indicate that Rd values would be high. However, the 
physical characteristics played a key role in the Rd quantification, as was 
also noticed by Rezanezhad et al. (2012).

There is a trend to decrease Rd with increasing initial concentration. 
This behavior is in accordance with the limited sorption sites in the soil but 
could also reflects soil heterogeneities between the columns, since they are 
natural soil cores and do not have the same pore configuration, as observed 
by Dousset et al. (2007).

The coefficients of determination (R2) of the prediction of the BTC 
using the analytical solution of the ADE are shown in Table 7. Figure 7 
shows the fit of the experimental BTC to the analytical equation using Rd 
obtained with the methods used in this study. 

In Figure 7, it can be observed that the higher the Rd, the slower the 
movement and the BTC displace to the left, as mentioned by other authors 
(Freeze and Cherry, 1979; Shackelford, 1991; Malusis and Shackelford, 2002).

The Rd values obtained with the method of Freeze and Cherry (1979) 
were the smallest. This method can be suitable for soils with no preferential 
pathways, but when there is a dual-porosity, part of the solute will appear 

faster in the effluent solution, and part will be retained in micropores 
(Rezanezhad et al., 2012). Thereby, half of the initial concentration (C/C0) 
= 0.5, can be detected too fast in the effluent solution, not representing the 
solute that still is retained and that is also very important in the determination 
of the correct Rd. According to Shakelford (1994), this method can be 
adequate when pure advection occurs, i.e., without dispersion/diffusion. It is 
suitable when high ( > 50) Péclet numbers are achieved (only advection) but 
is not appropriate when there is dispersion. Moreover, this method is based 
on the sigmoidal BTC of homogeneous soils, which was not observed in the 
results. Therefore, this method is not adequate to determine the retardation 
factor of the sodium in the studied soil. The method of Freeze and Cherry 
(1979) also overestimated Na+ movement prediction once the fitted BTC 
is displaced to the left in comparison to the experimental curve (Figure 
7). The R2 obtained with this method were the smallest but increased with 
increasing concentration of the initial solution.

The method proposed by Ogata and Banks (1961) resulted in higher Rd 
values for all columns. This method is suitable for homogeneous soils, with 
linear sorption, characteristics not suitable for the studied soil. However, 
the R2 was 0.99 for all initial concentrations, indicating that the ADE model 
explained the experimental BTC. Therefore, it is possible that the ADE can 
be adequate to reproduce BTC in heterogeneous materials for small-scale 
studies, in which the macrodispersion has no place.

The method proposed by van Genuchten and Parker (1984), besides 
being based on the Ogata and Banks (1691) transport equation, considers the 
mass balance of the solute in the soil and can so be capable of capturing the 
mass of solute retained in the soil regardless of whether there is equilibrium 
or nonequilibrium transport. The relatively good suitability of this method 
was verified with R2 ranging from 0.78 to 0.91. However, in Figure 7 it is 
noticeable that the sodium movement is overestimated. It is important to 
mention that the correct use of this method depends on whether the solute 
had reached inflow concentration, which can sometimes take a long time. In 
this research, the inflow concentration was not reached in any column test 
and to use this method, an extrapolation was made, which can explain the 
errors in the Na+ movement prediction.

Column 1 - 50 mg/L Column 2 - 90 mg/L Column 3 - 117 mg/L

Times [minutes] Times [minutes] Times [minutes]

C
/C

0

C
/C

0

C
/C

0

Experimental BTC

Langmuir Isotherm

Freundlich Isotherm

Linear Isotherm

van Gen. and Parker

Ogata and Banks

Freeze and Cherry

Experimental BTC

Langmuir Isotherm

Freundlich Isotherm

Linear Isotherm

van Gen. and Parker

Ogata and Banks

Freeze and Cherry

Experimental BTC

Langmuir Isotherm

Freundlich Isotherm

Linear Isotherm

van Gen. and Parker

Ogata and Banks

Freeze and Cherry

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0             60             120           180           240           300           360 0             60             120           180           240           300           360 0             60             120           180           240           300           360

Figure 7. Fit of the experimental BTC to the analytical solution of the ADE using Rd obtained with all the methods used in this study work
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Conclusion
Aiming to compare four methods of sodium Rd determination 

and assess the impact of the chosen method in the prediction of sodium 
movement, we did laboratory tests and used the analytical solution of the 
ADE to perform solute transport predictions. With the presented study, it 
was possible to highlight some conclusions. In columns containing natural 
and completely weathered soils, with preferential paths and dual-porosity, 
the solute transport parameters obtained using some of the most common 
methods found in the literature may result in non-representative Rd values 
mainly due to the natural heterogeneity of the soil column. The suitability 
of the method used for determining Rd depended on the concentration of the 
initial solution. The higher the initial concentration, the smaller the errors in 
the prediction of sodium movement. For the conditions studied, the method 
proposed by Ogata and Banks (1961) and by the fit of the Freundlich 
and Langmuir isotherms models resulted in the best reproduction of the 
experimental breakthrough curve. Differently, the method proposed 
by Freeze and Cherry (1979) resulted in the worst result. The fit of the 
experimental BTC to the ADE analytical models showed that the predicted 
concentration can be overestimated up to 22.5% when using a not suitable 
method. With this study, we conclude that the Rd determination method 
can significantly affect the prediction of the sodium movement. Because 
of that, it is important to evaluate carefully when a method can be adequate 
to determine the Rd for the soil under investigation and when cannot be 
adequate.
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