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This paper investigates the capability of acoustic Full Waveform Inversion (FWI) in building Marmousi velocity 
model, in time and frequency domain. FWI is an iterative minimization of misfit between observed and calculated 
data which is generally solved in three segments, i.e., forward modeling, which numerically solves the wave equation 
with an initial model, gradient computation of the objective function, and updating the model parameters, with a valid 
optimization method. FWI codes developed in MATLAB herein FWISIMAT (Full Waveform Inversion in Seismic 
Imaging using MATLAB) are successfully implemented using the Marmousi velocity model as the true model. An 
initial model is obtained by smoothing the true model to initiate FWI procedure. Smoothing ensures an adequate 
starting model for FWI, as the FWI procedure is known to be sensitive on the starting model. The final model is 
compared with the true model to review the amount of recovered velocities.
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Inversión de onda completa en el campo de frecuencia y tiempo del modelo de velocidad en imagenes sísmicas:  
el código Matlab FWISIMAT

ISSN 1794-6190 e-ISSN 2339-3459         
https://doi.org/10.15446/esrj.v22n4.59640

Este trabajo investiga la capacidad de la Inversión de Onda Completa (FWI, del inglés Full Waveform inversion) 
en la construcción del modelo de velocidad Marmousi, en el campo de frecuencia y tiempo. La Inversión de Onda 
Completa es una minimización repetitiva compleja entre la información observada y la calculada que generalmente se 
resuelve en tres segmentos: modelado directo, que numéricamente resuelve la ecuación de onda con un modelo inicial; 
la computación de gradiente de la función objetiva, y la actualización de los parámetros del modelo, con un método 
de optimización válido. Los códigos de la Inversión de Onda Completa desarrollados en Matlab (FWISIMAT) fueron 
implementados éxitosamente con el modelo de velocidad Marmousi como modelo verdadero. Se obtuvo un modelo 
inicial tras igualar el modelo verdadero para iniciar el procedimiento de Inversión de Onda Completa. La igualación 
asegura un modelo inicial adecuado para la Inversión de Onda Completa, mientras que este procedimiento se reconoce 
por ser sensitivo al modelo inicial. El modelo final se compara con el modelo verdadero para revisar el número de 
velocidades recuperadas. 
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1. Introduction

Exploration industries commonly use seismic imaging tools, which 
allow waves to propagate through subsurface rock structure and reveal 
possible crude oil and natural gas bearing formations. First arrival travel-
time tomography is a classical seismic imaging method that for many years 
has proven to be stable, gives good results, even in lateral heterogeneous 
media (Chabert, 2010). The data set for the inversion is small (consisting 
only first arrival travel times), so the method is fast and efficient. However, 
the first arrival travel times are only sensitive to the long wavelengths of 
the medium (Chabert, 2010) which limits the possible resolution of the 
final estimated model. Another disadvantage of the method is the picking 
of the first arrivals from the seismic data, which is both time consuming, 
and introduces the possibility of picking errors (Improta et al., 2002). On 
the other hand, FWI, uses amplitude, travel time and phase information 
simultaneously to invert the model parameters. FWI is an inverse method 
that generally employ the least squares objective function to minimize the 
difference between observed seismic data and synthetic seismic gathers by 
updating the initial model parameters until convergence (Margrave et al., 
2011). The model updates are generated by reverse time migration of the 
data residual. 

The main obstacles that have prevented FWI’s common application 
in exploration seismology are its computational cost and need for a good 
initial model (Ma, 2010). Various efforts from different perspectives have 
been developed to reduce the computational costs associated with gradient 
computation and seismic data generation. For example, Sirgue and Pratt 
(2004) and Operto et al. (2007) limited the number of frequencies in 
updating the model. Vigh and Starr (2008) used plane wave method for 
three-dimensional problems and Margrave et al. (2010) used Phase Shift 
Plus Interpolation one-way wave gradient calculations.

In this study, FWISIMAT is developed in both time and frequency 
domain based on acoustic wave equation. The frequency-domain inversion 
approach is equivalent to the time-domain inversion approach if all of the 
frequency data components are used in the inversion process (Hu et al., 
2009). FWISIMAT use Non-Linear Conjugate Gradient (NLCG) (Dai and 
Yuan, 1999; Hanger and Zhang, 2005) and Broyden-Fletcher-Glodfarb-
Shanno (BFGS) optimization procedure in time and frequency domain 
algorithms respectively. As to the forward modelling, second order finite 
difference method is employed due to its high efficiency. This discretization 
scheme includes absorbing boundary conditions applied on the edges of 
the velocity medium. However, in order to initiate any iterative scheme an 
initial model is required (Kanlı, 2009), and is derived from smoothing the 
true velocity model using a Gaussian kernel. 

2. FWISIMAT for Time Domain
Full Waveform Inversion is an iterative minimization technique to 

update the initial model parameters, which is described at kth iteration as 
follows: 

m m Pk k k k+ = +1      (1)

where, m is the model parameter, P is the direction of update and  
is the step length.

FWI is composed of forward modelling computation, gradient 
computation, and valid optimization technique (Cao and Liao, 2013)

2.1 Forward Modelling
Forward modelling is a necessary step for solving any inverse problem. 

The governing equation for time domain FWI is non-homogeneous 2D 
acoustic wave equation (Eq. 2).
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In Equation 2, u(x, z, t) is the source wave-field, v(x, z, t) is the 
velocity, f(t) is the source time function and (xs, zs) is the source location 
in space. 

Let un m
l
,  be the wave-field at the time l t∆  and spatial position 

n x m z∆ ∆,( ) , vn m,   be the velocity at n x m z∆ ∆,( )  then Equation 2 can be 
discretized using central difference scheme as follows:
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with the initial conditions

u � un m n m, ,,− = =1 00 0     (4)

The numerical stability conditions for Equations 3 and 4 is as follows:
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The unsuitable choice of time and spatial steps may cause severe 
dispersion and wave distortion in wave simulation. In order to suppress 
numerical dispersion, it is usually required that there are 10 sampling points 
per wavelength in Equation 2,

min ,∆ ∆x z
f
min
max

( ) < v
10     (6)

For the same frequency, the numerical dispersion increases as the 
spatial steps increase. However, the dispersion can be depressed if the 
higher point approximation schemes are used. 

In numerical computations, the computational domain is usually 
truncated to a finite region. So, absorbing boundary conditions (ABCs) are 
included in order to reduce reflection from the edges of the grid. The absorbing 
boundary conditions are constructed from paraxial approximations of the 
wave equation (Clayton and Enquist, 1977). Figure 1 illustrates the effect 
of boundary conditions when the wave-field hits the edges of the medium. 
Wave-fields are recorded for each time at each receiver positions per source. 
These records are called as synthetic seismograms (Fig. 2). 

2.2 Gradient Computation: Reverse Time Migration
The objective function O v( )( ) that would be minimized is given as 

follows:

O v d d( ) = −1
2

2
obs cal     (7)

where, dobs is the observed data and dcal  is the calculated data. The 
gradient of the objective function is given as follows:

∇ ( ) = − ( ) ( )∑∫O v q us s0

0

0
s

T

ttx z t x z t dt, , , ,,   (8)

where, qs represents the back-propagated wave-field from receivers 
to source. qs can be computed from Equation 9 backward in time (Demanet, 
2015).
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In Equation 9, r is the residual field (Eq. 10).

r d dx t x t x tobs cal, , , , , ,( ) = ( ) − ( ) ( ) = ( ) − ( )( )r x t d x t d x tobs cal 8   (10)

The sum over  in Equation 10 is sometimes called a stack (Fig. 3). 
Stack uses the redundancy in the data to bring out the information and 
reveal more details (Demanet, 2015). 

A systematic way for solving back-propagated wave-field (Eq. 9) 
is to follow the following sequence of three steps: (1) time reverse the 
data residual r x t,( ) at each receiver position, (2) solve the wave equation 
forward in time with this new right hand side, and (3) time reverse the result 
at each receiver position in x. 

2.3 Optimization: Non-Linear Conjugate Gradient Method
Conjugate gradient optimization method updates the velocity model 

according to the descent direction Pk  (Eq. 11). 

v v Pk k k k+ = +1      (11)

Figure 1. Effect of boundary conditions. (a) Wave-field at time 0.17 sec., (b) wave-field at time  t = 0.42 sec (no boundary condition is used), (c) wave-field at time t = 0.42 
sec (absorbing boundary conditions is used).

Figure 2. Synthetic shot data for true model at shot location (a) x=50-m (b) x=360-m (c) x= 670-m.
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According to Pica et al., (1990) step length  is estimated as follows: 

k
k k obs cal
k k k k

= −J P d d
J P J P

,
,

�     (12)

where, Jk  stands for Jacobian matrix and .,. denotes inner product. 
For computing the direction Pk , NLCG optimization process is used 

(Hanger and Zhang, 2005), which decreases the objective function along 
the conjugate gradient direction (Eq. 13). 
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In Equation 13, k  k is computed according to Equation 14
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This provides an automatic direction reset while over-correction of k 
in conjugate gradient iterations. It reduces to steepest descent method when 
the subsequent search directions lose conjugacy. 

2.4 Numerical Computation: Marmousi Velocity Model
The Marmousi Velocity model is a benchmark model for testing 

the ability of migration or inversion methods (Zhang, 2009). The original 
velocity model is shown in Figure 4. However, for this study a resampled 
velocity model (true velocity model) is used as illustrated in Figure 5. 

The Initial model is generated by smoothing the true model using a 
Gaussian kernel (Fig. 6). 

There were total 31 sources at a depth of 10-m and 720 receivers at a 
depth of 2-m equally spaced in the medium. Absorbing boundary condition 

Figure 3. An example of gradient computation using reverse time migration method, where (a) is a theoretical model (b) is initial model and (c) is migrated image.
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is applied over all four edges of the medium. Grid spacing is kept at ∆ ∆x z� =( )  
=0.01-m, sampling is taken over ∆t = 0 0014.  with number of sample point 
set as Nt=890. To save computational, we use the whole frequency band 
(0-20Hz) for the inversion (in frequency domain, this implementation is 
different). In practice, multiscaling approach is employed to reconstruct the 
model from low to high frequency fashion (as discussed later in the paper). 
This implementation generally cause the difference of the resolution in 
different inversion algorithms. However, the time-domain FWI is still able 
to provide good estimation of the acoustic parameter without sacrificing the 
high resolution. Figure 7 and Figure 8 represent the inversion result after 
200 iterations and the value of the objective function after each iteration. 

A more qualified analysis of the velocities is easier when looking at 
the velocity profiles in Fig. 9. Velocity logs at three different locations are 
extracted (at 200, 400 and 600 m) from true, initial and final model. In 
all three logs, the final velocities from FWI result matches with the true 
velocities very well.

3. FWISIMAT in Frequency Domain
Frequency domain Waveform Inversion, which includes solving the 

wave equation forward modelling and inversion, is similar to time domain 
waveform inversion. The efficiency of frequency domain FWI depends on 
the number of frequencies used for the inversion and is independent of the 
number of sources used for inversion.

3.1 ForwardModelling
For frequency domain forward modelling Equation 2 must be 

converted into frequency domain (Eq. 16). 
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Figure 4. Original Marmousi model.

Figure 5. True model.

Figure 6. Initial Velocity model for inversion

Figure 7. Inversion result after 200 iteration

Figure 8. Objective function value in logarithmic scale at each iteration.

Figure 9. Velocity log extracted at horizontal distance x = (a) 200 m (b) 400 m (c) 600 m
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In Equation 16,  is the frequency, v x z,( ) is the velocity in the 
medium, u x z, , ( ) is the source wave-field, and s x z, , ( ) is source in 
freuency domain (Fourier-transform of time-domain source wavelet). The 
boundary condition in frequency domain is given as follows:



u
n

u− ( ) =ih x y, 0     (17)

where, nn is the outward normal of the boundary, h x z= ( ) / ,v , and 
i is the imaginary unit (Erlangga, 2008; Zhang and Dai, 2013). By means 
of the finite difference technology along with the boundary condition, the 
wave equation (Eq. 16 and 17) can be recast into matrix form as follows:

Au s=      (18)

In Equation 18, A is a complex-valued, nx x nz (discretization along 
xx and z direction) order impedance matrix and it depends on frequency, 
medium properties, finite difference format, and boundary conditions 
(Wang et al., 2012). Solving the linear system in Equation 18 wave-field can 
be obtained (Fig. 10). Wave-fields are recorded for each frequency at each 
receiver positions per source. In FWISIMAT the above mentioned process 
is implementation as follows:

D r * A Q= ( )′ \      (19)

In Equation 19, D =( )dcal , \ is the matrix inversion operator and r´ is 
the transpose of the vector consisting receivers at spatial positions and Q is 
the source vector. Figure 11 illustrate the data obtained from a same source 
but for different frequencies.

3.2 Gradient Computation: Reverse Time Migration
The gradient of the objective function in frequency domain is given 

as follows,

∇ ( ) = − ( ) ( )∫O v q u0
2

02π ω ω ω ω

R

s sx z x z d� �, , , ,,   (20)

where, u0, , ,s x z ( ) represent the complex conjugate operator (Demanent, 
2015). The integral in  in above equation is over R and should be truncated 
to the number of frequencies used in the process. Equation 20 represents the 
frequency domain version of Equation 10. In FWISIMAT the back-propagated 
wave-field qs x z , , ( ) is computed as follows:

Figure 10. Wave-field recorded at frequency (a) 5 Hz (b) 12 Hz (c) 20 Hz.
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Figure 11. Frequency data for true model at, (a) 5 Hz frequency component, real (b) 5 Hz frequency component, imaginary (c) 12 Hz frequency component, real (d) 12 Hz 
frequency component, imaginary (e) 20 Hz frequency component, real (f) 20 Hz frequency component, imaginary 
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Figure 14 shows the velocity comparison among the final, true model 
and initial model at different horizontal distances. After frequency domain 
waveform inversion algorithm, the final result is obtained close to the true 
velocity model, especially that the near-surface speed is almost identical 
to the theoretical model. The results confirm the validity of the algorithm.

4. Conclusions
The Full Waveform Inversion method and its capabilities, when 

applied to a complex geological model, have been presented in this study. 
The FWISIMAT algorithm used in the study, performs an iterative search 
for a velocity model that minimizes the residuals between the data computed 
in the velocity model and the observed data, i.e. the final result is a “best fit” 
model. The whole wave-field, including both waveform and phase, is being 
used as data. FWISIMAT computes in the time and frequency domain. 
Comparing with the frequency domain inversion method, the time domain 
method has the advantage of high efficiency in forward modelling as the 
wave modelling in frequency domain requires solving a large-scale system 
at each iteration which is time consuming for large scale problems. Apart 
from this, time domain modelling provides the most flexible framework 
to apply time windowing of arbitrary geometry.  In the frequency domain, 
the computational cost is only proportional to the number of frequencies 
used in the inversion, and not the number of sources. If the seismic data 
contains wide angle components, there will be a redundancy in the wave 
number spectrum present in the data, such a redundancy can be exploited 
in the frequency domain FWI by inverting fewer frequencies (and hence 
save computational costs) because it is possible to invert for single, discrete 
frequencies one at the time. Another great advantage with the frequency 
domain implementation is the ease and efficiency when adding multiple 
sources. The method is very sensitive to the non-linearity of the problem, 

V A r* D r * A sobs= − ( )( )′ ′\ ( \    (21)

where, V ( )= qs
  is back-propagated wave-field. Dobs  can be obtained 

from Equation 19 if applied on true model.

3.3 Optimization: Broyden-Fletcher-Goldfarb-Shanno (BFGS)
In time domain FWI, NLCG optimization method is used. NLCG 

consumes a substantial time to converge. According to Zhang and Luo 
(2013), the BFGS based method has higher inversion accuracy and converge 
faster than the conjugate gradient based algorithm because the later uses the 
second order derivative information in computation. 

The BFGS method is a quasi-Newton method which proposed 
dependently by Broyden (1970), Fletcher (1970), Goldfarb (1970), Shanno 
(1970). Let Hk is the inverse hessian approximation then the next iterate will 
be given as follows:
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where, b m mk k k= −+1  and g O m O mk k k= ∇ ( ) − ∇ ( )+1 . For k = 1, H1 
can be approximated by an identity matrix. The next update on the model 
parameter is given as follows:

m m Pk k k k+ = +1      (23)

where,
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   (24)

BFGS method does not require exact line search in order to converge, 
therefore, Wolfe line search algorithm (Wolfe, 1969; 1971) is acquired to 
find step length k. The strong Wolfe line search algorithm requires the 
following conditions to be satisfied. 

O O c Ok k k k k k
T

km P m m P+( ) ≤ ( ) + ∇ ( ) 1   (25)

∇ +( ) ≤ ∇ ( )O c Ok k k
T

k k
T

km P P m P 2   (26)

In Equation 26 0 11 2< < <c c .

3.4 Numerical Computation: Marmousi Velocity Model
True and initial velocity model for frequency domain FWISIMAT 

are kept same as Figure 5 and Figure 6 respectively (ensuring 10 grid-
points per wavelength). The number of sources and receivers are 30 and 90 
which are equally spaced in the medium at a depth of 20-m. The absorbing 
boundary conditions are applied on all edges of the medium. The inversion 
result after 25 iterations is shown in Figure 12. The inversion is from low 
to high frequency, and choice of which is usually related to the model. 
The low frequencies are more linear related to the model perturbations 
than the high frequencies (Sirgue, 2003). Therefore, the inversion process 
should start with the low frequency components and progressively add 
higher frequencies. This will help mitigate some of the non-linearity of the 
problem, hence increasing the chances of finding the global minimum. It 
also ensures that progressively higher wavenumbers are recovered (Ravaut 
et al., 2004). 

According to the experience and experiments, twelve frequencies are 
selected, not only to obtain good results, but also for faster computation. 
The twelve frequencies from low towards high are 1.00    2.73    4.45    6.18    
7.91    9.64   11.36   13.09   14.82   16.55   18.27   20.00. Figure 13 shows the 
objective function value in logarithmic scale during the inversion process.

Figure 12. Inversion result

Figure 13. Objective function value in logarithmic scale at each iteration.
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and proper input parameters, such as an accurate starting model and an 
initial frequency as low as possible, is important for obtaining optimum 
results. In this work, it is shown that Full Waveform inversion has a great 
potential for estimating complex velocity models such as Marmousi 
Velocity Model when the acquisition parameters are as optimal as possible. 
For the future, applying FWI to real data from more complex geological 
medium and developing a migration tool and test the effect of FWI on a 
migrated image, are interesting challenges.
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