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The popularity of Artificial Neural Network (ANN) methodology has been growing in a wide variety of areas in 
geodesy and geospatial sciences. Its ability to perform coordinate transformation between different data has been 
well documented in literature. In the application of the ANN methods for the coordinate transformation, only the 
train-test (hold-out cross-validation) approach has usually been used to evaluate their performance. Here, the data 
set is divided into two disjoint subsets thus, training (model building) and testing (model validation) respectively. 
However, one major drawback in the hold-out cross-validation procedure is inappropriate data partitioning. Improper 
split of the data could lead to a high variance and bias in the results generated. Besides, in a sparse dataset situation, 
the hold-out cross-validation is not suitable. For these reasons, the K-fold cross-validation approach has been 
recommended. Consequently, this study, for the first time, explored the potential of using K-fold cross-validation 
method in the performance assessment of radial basis function neural network and Bursa-Wolf model under data-
insufficient situation in Ghana geodetic reference network. The statistical analysis of the results revealed that incorrect 
data partition could lead to a false reportage on the predictive performance of the transformation model. The findings 
revealed that the RBFNN and Bursa-Wolf model produced a root mean square horizontal positional error of 0.797 m 
and 1.182 m, respectively. The RBFNN model results per the cadastral surveying and plan production requirement set 
by the Ghana Survey and Mapping Division are applicable. This study will contribute to the usage of K-fold cross-
validation approach in developing countries having the same sparse dataset situation like Ghana and in the geodetic 
sciences where ANN users seldom apply the statistical resampling technique.

ABSTRACT
Keywords: Radial basis function neural network, 
Bursa-Wolf model, K-fold cross-validation, 
Coordinate transformation, Statistical 
Resampling.

Coordinate Transformation between Global and Local Data Based on Artificial Neural Network  
with K-Fold Cross-Validation in Ghana

Transformación coordinada entre información global y local basada en Redes Neuronales Artificiales  
con validación cruzada de k-iteraciones en Ghana

ISSN 1794-6190 e-ISSN 2339-3459         
https://doi.org/10.15446/esrj.v23n1.63860

La popularidad de la metodología de Redes Neuronales Artificiales está en crecimiento en varias áreas en geodesia y en 
las ciencias geoespaciales. Su capacidad de realizar una transformación coordinada entre diferente información ha sido 
bien documentada en la literatura. En la aplicación de métodos de Redes Neuronales Artificiales para la transformación 
coordinada solo se ha evaluado el desempeño del enfoque de prueba de adiestramiento (validación cruzada por método de 
retención). En este punto, la información se divide en dos subconjuntos diferentes: adiestramiento (modelo de construcción) 
y verificación (modelo de validación). Sin embargo, una desventaja en el procedimiento de validación cruzada por método 
de retención es inapropiada durante la división de información. Una partición no adecuada en la información podría llevar 
a una gran diferencia o a un sesgo en los resultados generados. Además, ante una situación de un conjunto de datos disperso 
la validación cruzada por método de retención no es adecuada. Por estas razones se recomienda la validación cruzada de 
k-iteraciones. Por consiguiente, este estudio, por primera vez, explora el potencial de usar el método por validación cruzada 
de k-iteraciones en la evaluación de ejecución de la función de base radial en redes neuronales y el modelo Bursa-Wolf 
en una situación de información insuficiente en la red de referencia geodética de Ghana. El análisis estadístico de los 
resultados muestra que una partición incorrecta de información puede llevar a un registro falso en la ejecución predictiva 
del modelo de transformación. Los resultados demuestran que la función radial y el modelo Bursa-Wolf producen un error 
posicional de media cuadrática horizontal de 0.797 m y 1.182 m, respectivamente. Los resultados del modelo radial por 
la medición cadastral concuerdan con los requerimientos del plan de producción instaurados por la divisón de mapeo del 
servicio geológico de Ghana. Este estudio contribuirá en la usabilidad del método de validación cruzada de k-iteracciones 
en países en desarrollo que tienen conjuntos de datos dispersos, como Ghana, y en las ciencias geodésicas donde los 
usuarios de redes neuronales casi nunca aplican la técnica estadística de remuestreo
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Introduction

Positional information about natural and man-made features is shown 
on maps as coordinates. Hence, coordinates has become an indispensable 
representative means for accurately mapping out natural resources. For 
example, the geologist needs coordinate to carry out geological mapping, while 
the drilling engineer require the position to be drilled as well as the azimuth the  
drilling should be done. In view of the foregoing discussion, it is clear that 
accurate positional information should be provided for proper planning, 
management and decision making. 

In view of the above, Global Navigation Satellite Systems (GNSS), 
particularly, Global Positioning System (GPS) have been widely adopted 
in geospatial sciences and its related Earth Science disciplines for geodetic 
purposes. Since its arrival, GPS has become an essential technology that has 
revolutionized data collection and surveying practices at large. However, for 
the GPS data to be used locally so that compatibility could be created between 
maps and other geospatial data produced in the national datum, there is a need 
to perform coordinate transformation (Featherstone, 1996; Yang, 2009). In 
doing this, Earth Scientist can comfortably apply the GPS measurement locally 
with minimal degree of errors that are usually created due to different datum 
size, shape and origin between the national data (non-geocentric) of countries 
and the global datum (geocentric) of the GPS. 

As a means to accomplish such task, empirical based coordinate 
transformation equations have widely been used. Notable among them is the 
three-dimension (3D) conformal transformation models like Bursa-Wolf (Bursa, 
1962; Wolf, 1963), Molodensky-Badekas (Molodensky et al., 1962; Badekas, 
1969), Abridged Molodensky (Molodensky et al., 1962) and Veis (Veis, 1960). 
Conversely, in recent times, artificial neural network (ANN) techniques have 
also been applied for coordinate transformation (Gullu, 2010; Gullu et al., 
2011; Lin and Wang, 2006; Mihalache, 2012; Tierra et al., 2008, 2009; Tierra 
and Romero, 2014; Turgut, 2010; Yilmaz and Gullu, 2012; Zaletnyik, 2004; 
Konakoğlu and Gökalp, 2016; Konakoğlu et al., 2016; ElSayed and Ali, 2016; 
Ziggah et al., 2016; Ziggah et al., 2017a). It was, however, evident in literature 
that, the statistical test called the hold-out cross-validation has been the most 
commonly used technique to evaluate coordinate transformation models 
performance. In this hold-out cross-validation method, it was noticed that, most 
authors are primarily concerned with randomly partitioning the available data 
into two disjunct samples: a training set and a testing set. Here, the training 
set is used to determine transformation parameters in the case of the empirical 
models and for ANN model construction. The testing data, on the other hand, is 
used to measure the predictive accuracy and stability of the chosen trained ANN 
model, and the empirical model developed with respect to the transformation 
parameters computed. 

However, many studies have reported some significant limitations for 
using the hold-out cross-validation procedure. One of the main issues is related 
to how appropriate the available data set is divided (Reitermanová, 2010). It has 
been indicated that partitioning the data into training and testing sets reduces 
the number of samples for calibrating the model, and the results produced is 
based on the unsystematic chosen split (train, test) sets. Moreover, improper 
data separation could lead to an unreasonably high inconsistency of the model 
performance. By virtue of this, any bias resulting from the improper split of the 
data set could have an adverse effect on the model performance (Kohavi, 1995). 

Besides, the hold-out cross-validation method heavily depends on having 
large datasets making it unsuitable to be applied in data-insufficient situations 
(sparse dataset). The reason being that in sparse dataset, a single train-and-test 
experiment performed could yield unstable estimates that do not provide enough 
convincing evidence of the models generalization ability. This could be attributed 
to: (i) the inadequate amount of observational data available; (ii) unsuitable 
train-test split selected; and (ii) high variance of the model performance (Bengio 
and Grandvalet, 2004). In continuance of this, there is often not enough data for 
holding some of it for testing purposes in sparse data situation. 

To combat these defects, the use of K-fold cross-validation (KCV) 
technique has been recommended (Burman, 1989; Reitermanová, 2010; 
Kohavi, 1995). It is for these reasons that this study applied for the first time, 
the KCV technique to evaluate the coordinate transformation performance 
of the widely used ANN (radial basis function neural network) as well as the 
similarity model (Bursa-Wolf). 

The present authors were also motivated to apply the KCV approach 
on Ghana geodetic reference network data for several reasons. First, the ANN 

approach has only been tested for transforming coordinates between two local 
geodetic data, namely Accra and Leigon data in Ghana. This can be found in 
Ziggah et al. (2016). In their study, only 27 local common points were available. 
Although the data is quite small, the hold-out cross-validation procedure was 
implemented where 20 co-located points were used to form the model and 7 
evenly distributed points were used to test the model. In addition, Ziggah et 
al. (2017a) developed an error compensation model based on ANN capable 
of improving the performance of the geocentric translation model. Here, 19 
co-located points were divided into 11 training points and 8 testing points, 
respectively. Due to data limitation, it is suggested by the present authors that the 
KCV technique may have been more appropriate to represent the true reflection 
of the ANN performance. It is important to note that no such kind of study has 
also been carried out in Ghana using the ANN approach to directly transform 
coordinates between the global datum and Ghana’s local geodetic datum.

In continuance of that, the widely adopted GNSS for geodetic purposes 
has necessitated the transformation of its data to the local datum to make it 
applicable. In line with that, the present study applied the ANN approach which 
usage in Ghana for global to local datum transformation has been hampered 
due to limited data availability. In addition, the similarity, affine and projective 
transformation models (Ayer, 2008; Ayer and Fosu, 2008; Dzidefo, 2011; 
Ziggah et al., 2013a, b; Kumi-Boateng and Ziggah, 2016; Anann et al., 2016; 
Laari et al., 2016; Ziggah et al., 2017b) which have been utilised in Ghana’s 
geodetic reference network could be compared with the ANN via KCV  
approach. The study will further serve as the foundation for exploiting  
KCV as an alternate way of assessing transformation models performance in 
Ghana geodetic reference network. 

Study Area and Data

This study was carried out in Ghana, located in the Western part of Africa 
(Fig. 1). It lies between latitudes 4°30′ N and 11o N, and between longitudes 
3o W and 10 E. It has a land area of 238, 540 km2 (Fosu et al., 2006) with 
the highest elevation range not exceeding 880 m above mean sea level located 
at mountain Afadjato in the Volta Region (Berry, 1995). The land has general 
characteristics of low grassland and savanna with a divided plateau at the 
South-Central part of the country (Baabereyir, 2009). Ghana shares border with 
Ivory Coast to the West, Togo to the East, Burkina Faso to the North and Gulf 
of Guinea to the South.

The local ellipsoid used in Ghana for its mapping and surveying 
undertakings is the War Office 1926 suggested by the British War Office. The 
War Office 1926 ellipsoid has a semi-major axis a = 6378299.99899832 m, 
semi-minor axis b = 6356751.68824042 m, and flattening f = 1/296 (Ayer, 
2008; Poku-Gyamfi, 2009; Mugnier, 2000). The Ghana coordinate system is 
a projected grid coordinates based on the Transverse Mercator. The origin of 
the Transverse Mercator is longitude 01o 00’ W (central meridian) and latitude 
04o 40’ N with 274319.736 m as the false Easting added to all Y coordinates 
to avoid negative coordinates and the false Northing set to zero. A scale factor 
of 0.99975 is used at the central meridian so that the scale distortion exceeds 
the projection values only at the extreme ends of the country (Mugnier, 2000). 
Therefore, positions of features of all survey maps in Ghana are the projected 
grid coordinates of Easting and Northing derived from the Transverse Mercator 
10 NW.

For Ghana to capitalise on the potential of GNSS technology, the Ghana 
Survey and Mapping Division of Lands Commission with funding from the 
World Bank and other stakeholders embarked on the Land Administrative 
Project (LAP). One of the major aims of the LAP is to establish a nationwide 
GNSS reference network for Ghana. The LAP has been divided into three 
phases namely the Golden Triangle, Northern triangle and the Kintampo link, 
and the nationwide coverage (Poku-Gyamfi, 2009). Currently, it is only the 
Golden Triangle phase covering five out of the ten administrative regions in 
Ghana that has been completed (Fig. 1). The Golden Triangle (Fig. 1) was 
strategically established in these five regions due to their massive contributions 
to the country’s economic growth. This is because almost all the natural 
resources like gold, oil, timber, cocoa, diamond, manganese, bauxite, limestone 
to mention but a few are located in these regions (Poku-Gyamfi, 2009). The 
Golden Triangle comprises of three permanent reference stations fixed at the 
apex of the three largest cities situated at the Western, Ashanti and Greater 
Accra regions. The reference stations form a triangle of sides 200 km and radii 
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coverage of 100 km with area coverage of 79857 km2 representing 33.5 % of 
the total land area (238,540 km2) for Ghana (Fosu et al., 2006).

In the establishment of the GNSS reference network, a continuous twelve-
hour observation was made on 19 historical triangulation stations located in the 
Golden Triangle by dual frequency GPS receivers. The coordinates provided 
by the GPS receivers were then differentially processed with the International 
GNSS permanent stations to obtain the respective common points on the 
WGS84 ellipsoid. These 19 satellite coordinates are defined in the International 
Terrestrial Reference Frame 2005 specified at epoch 2007.39 (Kotzev, 2013). 

Data used for the study is from the LAP comprising of 19 Golden Triangle 
common points on the War Office 1926 ϕ, λ,h WAR( )  

and WGS84 ϕ, λ,h WGS( ) 84 
reference frames. Here,  is the geodetic latitude,  is the geodetic longitude and 
h is the ellipsoid height. It is imperative to note that the local geodetic network 
of Ghana involves data in geodetic latitude, geodetic longitude and orthometric 
height (H) without the existence of ellipsoidal height. This, however, impedes 
the direct conversion of geodetic coordinates to cartesian coordinates. In 
view of this, the Abridged Molodensky transformation model (Molodensky 
et al., 1962) was applied in the LAP to get the War Office ellipsoid heights. 
This was done by applying the Abridged Molodensky model to estimate the 
ellipsoid correction factor (∆h) between the WGS84 and War Office 1926. The 
War Office 1926 ellipsoid height (hWAR) was then calculated using the relation 
h h hWAR WSG= 84−∆ .

Methods

Conversion of Geodetic Coordinate to Cartesian Coordinate

The common points geodetic coordinates, ϕ, λ,h WGS( ) 84 and ϕ, λ,h WAR( )  
on WGS84 and War Office 1926 was converted to cartesian coordinates (X, Y, Z)  

using the standard forward equations from Heiskanen and Moritz (1967). The 
rectangular coordinates derived from the conversion is designated in this study 
as (X, Y, Z)WGS84 and (X, Y, Z)WAR, respectively.

Similarity Transformation Model

This study applied the 3D similarity model of Bursa-Wolf (Bursa, 1962; 
Wolf, 1963) to transform coordinates from WGS84 to War Office 1926. The 
Bursa-Wolf model considers the misalignment of the X, Y, Z axes between 
two reference systems. The Bursa-Wolf model is made up of three rotations, 
three translations and a scale factor which in totality form a seven parameter 
transformation approach. One important characteristic feature of this model 
is that the shape of the geodetic network containing the coordinates to be 
transformed is preserved, hence angles are not altered after transformation, but 
the distance between the transformed coordinates and their original positions 
could be changed (Constantin-Octavian, 2006; Ghilani, 2010). 

Mathematically, the Bursa-Wolf model integrates two sets of three-
dimensional (3D) rectangular coordinates defined in two different coordinate 
systems using Equation 1.
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where (X, Y, Z)WGS84 and (X, Y, Z)WAR  are the respective rectangular 
coordinates for WGS84 and War Office 1926 ellipsoid. The (TX, TY, TZ) are the 
translations along X, Y, Z-axes of the two reference systems, η is the scale factor 
and R is the total rotation matrix, respectively. Expansion and simplification of 
Eq. (1) into least squares form can be found in (Deakin, 2006).

In this study, the total least squares (TLS) approach was used to determine 
the unknown transformation parameters. The solution of the TLS was done 
using singular value decomposition (SVD) method. Here, the SVD was first 
applied on the augmented matrix [A:F]. Here, A is the design matrix and F is 
the observation matrix. The SVD on augmented matrix [A:F] could be defined 
by Equation 2 (Golub and Reinsch, 1970; Van Huffel and Vandewalle, 1991; 
Markovsky and Van Huffel, 2007) as
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The i are the singular values of A and [A:F], and the vectors ui and vi 
are the ith left and right singular vector of A and [A:F], respectively. A TLS 
solution exists if and only if V22 is non-singular and the solution is unique if and 
only if σ ≠σn n+1. The TLS  solution for the unknown parameters was 
determined using Equation 3.

					    (3)

The corresponding TLS correction matrix ∆Ctls( ) is given by Equation 4 as

∆ ∆ ∆C A L Udiag Vtls tls tls
T= [ ] = ∑( ): , 0 2 		  (4)

Figure 1. Study Area: GNSS reference network coverage
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Radial Basis Function Neural Network

The basic radial basis function neural network (RBFNN) structure consist 
of highly interconnected neurons arranged into three layers: input, hidden and 
output layer respectively, as shown in Figure 2 where (X1, X2, …, Xi) is the input 
layer data and (Y1, … ,YK) is the output layer target. The input layer accepts the 
input variables of the problem to be solved and deliver straightforwardly to the 
hidden layer without weighting. 

The obtained input data in the hidden layer are then transformed by 
weight multiplication and the results moved into a nonlinear system by means 
of a radial basis function (RBF). The most generic RBF widely used in RBFNN 
known as the Gaussian function was applied in this study. This type of RBF is 
highly characterized by a centre position and a width parameter which regulates 
the amount of decrease of the function during training.

The Gaussian function (Jain et al., 2011) is defined in Equation 5 as

,		  (5)

where M Xi v( ) denote the hidden layer output value of the ith unit, H is  
the number of RBF units, X jv is the jth variable of the input data v,   
is the centric position of ith RBF unit for input variable j and i is the spread 
parameter of ith RBF unit. It should be noted that, in the course of RBFNN 
training, the RBF parameters (Eq. (5)) are optimized and determined in a three-
step procedure. First, the Euclidean based clustering technique is applied to 
determine the RBFs centres. The spread parameters are then calculated by 
the nearest neighbour method. To this end, the weights (w) linking the hidden 
layer neurons (RBF units) and the output layer are estimated using a linear 
regressor. The estimated output layer results for the RBFNN could be given by  
Equation 6 as

y w M X wi i v o
u

H
= ( ) +

=
∑

1

,				    (6)

where H is the number of radial basis function, wi is the output weight that 
matches to the association between a hidden node and an output node, while wo 
is the bias. M Xi v( ) is defined in Equation 5.

The mean squared error (MSE) for the vth data is then estimated using 
Equation 7.

MSE y v y va t= ( ) ( )( )1
2

2
 ,			   (7)

where y va ( ) and y vt ( ) are the actual output and target for the vth data, 
respectively. Repeat the training process until the RBFNN reach the desired 

error value. The error function Ek( ) (Jain et al., 2011) could be estimated using 
Equation 8.
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where vmax represents the total number of training data. The optimum 
trained RBFNN model was then tested using a test data (untrained). 

It important to note that, in order for us to carry out the RBFNN training 
described, both the input and output data were first scaled into the interval  
[-1, 1] using Equation 9 (Mueller and Hemond, 2013). Scaling the data set 
into a bounded interval gave constant variation in the data and thus improved 
training speed of the network.

q q
q q b b

b bi
i= + ( ) × ( )

( )min
max min min

max min

 


,		  (9)

where qi represents the normalized data, bi is the measured coordinate 
values, while bmin and bmax represents the minimum and maximum value of the 
measured coordinates with qmax and qmin values set at 1 and -1, respectively.

Statistical Resampling Technique

Generalisation is a generic operational procedure use to assess the 
efficiency of developed mathematical and statistical models. In common 
terms, generalisation is the ability of a model to correctly learn the significant 
parameters of a prediction function (training set) and predict well on yet unseen 
data (testing data) (Urolagin, 2011). The general way adopted in the majority 
of research works relating to coordinate transformation for assessing the 
generalization capability of a model is by using the hold-out cross-validation 
technique (Gullu, 2010; Lin and Wang, 2006; Mihalache, 2012; Tierra et al., 
2008, 2009; Tierra and Romero, 2014; Turgut, 2010; Gullu et al., 2011; Yilmaz 
and Gullu, 2012; Zaletnyik, 2004; Konakoğlu and Gökalp, 2016; Konakoğlu 
et al., 2016; ElSayed and Ali, 2016; Ziggah et al., 2016; Ziggah et al., 2017a). 
However, as stated earlier (introductory section), the hold-out cross-validation 
method has some deficiencies to be surmounted. Therefore, a solution to the 
enumerated problems has led to the usage of K-fold cross-validation (KCV) as 
an alternative way to estimate out-of-sample accuracy. 

The KCV is a procedure that employs the entire dataset as training and 
testing sets (Bengio and Grandvalet, 2004). By virtue of using a combination of 
more tests, a stable estimate of the model error could be achieved (Reitermanová, 
2010). This is because each point in the entire dataset will be in a test set just 
once, and will be in the training set the number of folds. Hence, for KCV 
approach how the entire dataset is divided is less of a concern as compared with 
the hold-out approach.

In the KCV method, a K-fold partition of the entire dataset is first carried 
out. Here, the dataset M is separated into K disjoint blocks of approximately 

equal size as the target data such that M M
i

k

i=
=1
  (Konaté et al., 2015). 

Subsequently, for each K trials of cross validation the union of K-1 folds is 
used as training data for model development while the remaining part is used as 
the testing data for the resulting model validation (Stone, 1974). In this study, 
the K-1 disjoint set was used to train the RBFNN as well as to determine the 
transformation parameters for the Bursa-Wolf model. The remaining subset 
acting as the test data was used to validate the results produced by RBFNN and 
Bursa-Wolf model, respectively. This K-fold methodology was applied to the  
19 co-located points (Table 1) located in the Golden Triangle (Fig. 1) from  
the Land Administration Project.

In practice, the 19 common points was divided into four disjoint subsets 
(four-fold) as shown in Table 1 as subset 1, 2, 3 and 4 respectively. It can be 
seen from Table 1 that subsets 1 to 3 comprised of five common points, while 
subset 4 consisted of four data points. After dividing the entire dataset into four-
folds (Table 1), four models were then built using each subset. In this process, 
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Figure 2. RBFNN representation
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Table 1. Co-located point in the Ghana geodetic reference network showing K-fold partition (subset 1, 2, 3 and 4). The WGS84 coordinates for longitude,  
latitude and ellipsoid height are represented as WGS LONG, WGS LAT in decimal degree unit and WGS HGHT in meters. WAR LONG,  

WAR LAT, WAR HGHT are the corresponding coordinates on the War Office 1926 ellipsoid.

POINT ID Subset WGS LONG 
(Degree)

WGS LAT 
(Degree)

WGS HGHT 
(metre)

WAR LONG 
(Degree)

WAR LAT
(Degree)

WAR HGHT 
(metre)

PT1

1

-0.423560 5.460090 78.2744 -0.423846 5.457304 82.0662

PT2 -0.559317 5.625798 304.9379 -0.559597 5.623015 307.9119

PT3 -1.501102 5.455087 275.1437 -1.501354 5.452274 279.5252

PT4 -0.734406 5.282744 83.4515 -0.734678 5.279958 88.3693

PT5 -0.121995 5.939034 524.5492 -0.122291 5.936247 525.5954

PT6

2

-1.033307 6.372118 492.5083 -1.033574 6.369342 491.7309

PT7 -1.286211 6.053792 437.6990 -1.286464 6.051007 438.7549

PT8 -0.729705 5.943107 311.0926 -0.729978 5.940331 312.4534

PT9 -0.765572 6.575797 782.2084 -0.765843 6.573035 780.2024

PT10 -0.748904 6.128197 327.0218 -0.749175 6.125418 327.4004

PT11

3

-1.164663 6.571357 615.7568 -1.164932 6.568592 613.9824

PT12 -1.925156 6.484775 643.5756 -1.925406 6.482004 642.6334

PT13 -1.630465 7.235861 536.0062 -1.630717 7.233129 530.9264

PT14 -2.016758 6.912480 560.8285 -2.017006 6.909735 557.6481

PT15 -1.445338 6.992209 620.9316 -1.445591 6.989461 617.0558

PT16

4

-1.743418 6.846344 417.0231 -1.743673 6.843595 414.0673

PT17 -1.411897 6.556916 503.7124 -1.412161 6.554147 502.1391

PT18 -1.694831 6.471558 472.1430 -1.695085 6.468791 471.1630

PT19 -1.966153 5.849618 399.3477 -1.966403 5.846824 401.8272

Table 2 Four-fold cross-validation technique structure

Number of common points per subset
First trial Second trial Third trial Fourth trial

Subset 1 Subset 2 Subset 3 Subset 4

5 Testing Training Training Training

5 Training Testing Training Training

5 Training Training Testing Training

4 Training Training Training Testing

for each trial one part of the data is kept for testing and the remaining parts for 
training as shown in Table 2. That is, in the present study, there are three parts 
for training and one part for testing at each step. This is evident from Table 2 
where it can be seen that the first row in subset 1 has been singled out for testing, 
while the second to fourth rows data are used for the training. In subset 2, the 
second row was set for testing while the first, third and fourth rows were used 
for training. This same procedure was continued for subsets 3 and 4 as indicated 
in Table 2, respectively. 

A critical study of Table 2 shows that there is no overlap between the 
subsets and no overlap between the testing data. However, there is significant 
overlap of the training parts. This implies that in the K-fold cross-validation 
system each data subset is passed exactly once as a test sample. In the present 
context, RBFNN and Bursa-Wolf model was trained and tested in four trials 
with four coordinate transformation models being developed simultaneously. 
Therefore, the average accuracy produced over all the four disjoint subsets served 

as a better indicator for the out-of-sample rotation performance of the RBFNN 
and the Bursa-Wolf model in the study area. It should be known here that the 
same subset data applied in the RBFNN was used for the Bursa-wolf model.

Statistical Performance Metrics

The usefulness of any applied mathematical or statistical model depends 
on how close their predicted outcomes fit well with the observed data. By 
applying statistical quantitative methods, an objective evaluation of the quality 
of the results produced by the model could be done. In lieu of this, the following 
statistical performance metric (PM) tools were employed.

(i) Root Mean Square Error
The root mean square error (RMSE) is a type of dimensioned error statistic 

that is always non-negative and incorporates the concept of bias and standard 
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deviation. It is used to quantify the degree of dispersion of model predictions to 
observed data in a system. Ideally, an optimum model performance should have 
a RMSE value of zero. However, in practice, the RMSE could vary from zero to 
infinity subject to the units of the forecasted variable. Equation 10 was applied 
in the RMSE estimation expressed as

RMSE N O Pi i
i

N
= ( )

=
∑ 1 2

1

.			   (10)

(ii) RMSE Horizontal Positional Residual
The RMSE horizontal positional residual (RMSEHE) technique was used 

to determine the total uncertainties in the integrated data set used. The RMSEHE 
(Paredes-Hernández, 2013) is given by Equation 11 as follows:

RMSE RMSE RMSEHE Easting Northing= ( ) + ( )2 2 ,	 (11)

where

RMSE
Easting N E Ei

obs
i
pred

i
= ( )∑ 1 2  and

 
RMSE

Northing N N Ni
obs

i
pred

i
= ( )∑ 1 2 .

The RMSEEasting and RMSENorthing is the RMSE in Easting and Northing 
coordinates. Ei

obs, Ei
pred , Ni

obs

 
and Ni

pred signify the observed and predicted 
Easting and Northing coordinates.

(iii) Standard Deviation
The standard deviation (SD) was computed to assess the precision of the 

transformed coordinates produced by the model. It is calculated in Equation 
12 as

.				    (12)

Here, e represent the deviations between the observed and predicted data 
and  is the average of the deviations.

(iv) Horizontal Positional Residual
The Horizontal positional residual (HE) was used to ascertain the 

horizontal accuracy associated by integrating the transformed horizontal 
coordinates for each position. The HE could be represented by Equation 13 as

HE E E N No p o pi i i i
= ( ) + ( ) 

2 2 ,			  (13)

where (EO, NO) are the observed coordinates and (EP, NP) are the 
transformed coordinates given by the model.

Application

Transformation Parameters Determined and RBFNN Model Developed

The application of the similarity transformation model of Bursa-Wolf 
requires the determination of seven unknown coordinate transformation 
parameters. This study deduced these parameters from a sequence of 19 
common points in WGS84 and War Office 1926 reference frames. It was 
however observed that the number of available common points will generate 
more equations than the seven unknown transformation parameters needed. 
This will as a result, create an over-determined system of linear equations that 
require a more pragmatic technique to find solutions to them. To overcome this 
problem, the total least squares adjustment technique described in Sect. 3.2 
was applied to the Bursa-Wolf model for the calculation of the transformation 
parameters and their standard deviations. It must be known that the training and 
testing data for each subset (Table 2) was used to determine the transformation 
parameters and checking model performance. These determined parameters 
involved three translation vectors (Tx, Ty, Tz), three rotational parameters (Rx, 
Ry, Rz), and one scale factor (Sf) as shown in Table 3. For the purpose of this 
study and to provide adequate objective comparison of the Bursa-wolf model 
to the RBFNN, the transformation parameters were determined for each subset. 
Table 3 presents the transformation parameters, with the addition of their 
standard deviations for each subset.

The proposed RBFNN model developed for transforming coordinates 
from WGS84 to War Office 1926 reference frame comprise of three layers: 
input layer, hidden layer and output layer. In the RBFNN model development 
process, the same K-fold split data (Tables 1 and 2) set used for the Bursa-
Wolf was employed. The supervised training technique was adopted in the 
RBFNN model formulation. The data was first normalised into the range of [-1, 
1] using Equation 9. This was necessary in order to bring the entire data onto a 
common scale interval thereby achieving equal variations among the datasets. 
In this study, the RBFNN structure consists of two inputs, one hidden layer 
using Gaussian function as the non-linear transfer function, and an output layer 
having linear transfer function. The data for each subset (see Tables 1 and 2) 
was trained and tested by the RBFNN. 

To do that, several input and output data scenarios were tested with the 
objective of selecting the one that produced better transformed coordinate values. 
Here, (X, Y, Z)WGS84 and (X, Y, Z)WAR was first applied as the input and output 
data, respectively. Secondly, ϕ, λ,h( )WGS84 and ϕ, λ,h( )WAR was used as input and 
output. Finally, ϕ, λ( )WGS84 was used as input with ϕ, λ( )WAR as the output. The 
coordinates used here are defined in Table 1. The input-output scenario was 
made possible due to the non-parametric capability of the RBFNN. Thus, the 
RBFNN does not require a mathematical function to describe the input-output 
relationship among the variables. It was observed that the third scenario yielded 
more satisfactory results. 

In deciding the optimal RBFNN for each subset (see Tables 1 and 2), 
the MSE (Equation 7) of all the trained models were examined at each stage 
of training and testing. Here, the MSE was serving as the optimality criterion 
to facilitate in choosing the best RBFNN structure for each trained subset 

Table 3. Computed transformation parameters for the Bursa-Wolf transformation model for on each partition

Parameter Symbol and unit Subset 1 Subset 2 Subset 3 Subset  4

Tx (m) -117.636±19.796 -163.811±22.733 -182.277±18.359 -181.962±33.147

Ty (m) 88.337±28.057 178.050±40.437 57.558±26.115 287.919±57.782

Tz (m) 165.156±31.213 187.775±38.282 109.870±30.099 300.8797±56.300

Rx (rad) -2.71E-07±3.11E-06 2.75E-07±3.60E-06 4.84E-06±2.88E-06 -2.0282E-06±5.24E-06

Ry (rad) 2.59E-05±4.91E-06 2.15E-05±6.02E-06 3.33E-05±4.73E-06 3.5482E-06±8.85E-06

Rz (rad) 8.85E-06±4.38E-06 2.29E-05±6.31E-06 4.32E-06±4.08E-06 3.9979E-05±9.02E-06

Sf (ppm) -9.523±3.08E-06 2.321±3.54E-06 1.470±2.86E-06 -1.1354±5.16E-06
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suitable for coordinate transformation from WGS84 to Ghana War Office 1926. 
Therefore, the trained network that produced the lowest MSE from the testing 
dataset was chosen as the best RBFNN scheme. 

After several trials, the optimum RBFNN scheme for subsets 1, 2 and 3 
(Tables 1 and 2) was [2-14-2], while subset 4 had [2-15-2], respectively. The 
interpretation here is that, two inputs (φ, λ)WGS84, one hidden layer of 14 neurons 
and two outputs (φ, λ)WAR, was achieved for subsets 1, 2 and 3 whereas, subset 
4 differed only by the number of hidden neurons (15) as its optimal number. 
The results produced by these optimum RBFNN models were then projected 
onto the Transverse Mercator 10 NW to get the projected grid coordinates. 
This was done by using equations from Ayer (2008). For the case of the Bursa-
Wolf model, the transformed rectangular coordinates was first converted into 
geodetic coordinates using Bowring Inverse Equation (Bowring, 1976) and 
then projected onto the Transverse Mercator. These projections were necessary 
because Ghana utilises the 2D projected grid coordinate system (Easting, 
Northing) for its surveying and mapping related activities.

K-fold Cross-Validation Analysis

The K-fold cross-validation technique enables the modeller and the user to 
have an honest assessment of the models predictive performance. The objective 
here is to test the potential of RBFNN via KCV for the first time in coordinate 
transformation under data-insufficient situation in Ghana geodetic reference 
network. In order to evaluate the extent at which the RBFNN and Bursa-
Wolf model transformed coordinates deviate from the measured, horizontal 
positional residuals using Eq. (13) were estimated and evaluated. The essence 
is to know the practical application of the Bursa-Wolf and RBFNN transformed 
coordinates. The various positional errors determined at the training and testing 
stages for all the four-folds are shown in Figures 3 to 10, respectively.

With reference to Figures 3, 4, 5 and 6, it is known that the respective 
transformed training coordinates from the RBFNN model demonstrated low 
bias in the training data than the Bursa-Wolf model. This means that the RBFNN 
transformed outputs do not differ greatly from the measured (target) training 
data and thus was able to learn the training data in a more effective manner due 
to its adaptive computational capabilities compared with the parametric method 
of the Bursa-Wolf model. This phenomenon was observed in all the four-folds of  
the training data as shown in Figures 3, 4, 5 and 6, respectively.

Figures 7, 8, 9 and 10 display how well the Bursa-Wolf and RBFNN 
models generalised on the testing data for the four-folds. It is acceptable that 
the strength of a model lies in its ability to give a least prediction error when 
unseen data is introduced into the model. A visual inspection in Figures 7, 8, 9 
and 10 clearly exposed the strength of RBFNN generalisation over the Bursa-
Wolf model in terms of horizontal accuracy. Moreover, Figures 7, 8, 9 and 10 
suggest that encouraging horizontal coordinates were produced by the RBFNN 
model. Furthermore, these assertions are buttressed by the interpretation of the 
quantitative estimations of the horizontal positional accuracy assessment for the 
training and testing set as presented in Table 4. 

It is well understood that to evaluate the overall performance of a model 
via KCV technique, there is the need to find the average across the K-folds 
‘optimal’ models error estimates as quantified by the performance metrics (Jung 
and Hu, 2015). That is, find the average of each performance metric results 
presented in Table 4 across the entire four-fold. Hence, the four-fold cross 
validation technique average performance based on the statistical analytical 
tools applied to the Bursa-Wolf and RBFNN transformed coordinates is given 
in Table 5.

As can be seen from the descriptive statistics in Table 5, it is noticeable 
that the RBFNN model performed better than the Bursa-Wolf model. The 
RMSEHE test results (Table 5) indicate that the RBFNN model had the least total 
horizontal dispersion of 0.797 m, while 1.1820 m was achieved by the Bursa-
Wolf model. These RMSEHE calculated values describe the total uncertainties 
exhibited in the entire integrated horizontal coordinates. On account of the 
Mean HE test results (Table 5), it could be stated that when the RBFNN model 
is applied in the study area, a horizontal positional error in average of 0.704 
m would be produced as compared with 1.149 m by the Bursa-Wolf model. 
These mean HE values denote the achievable average horizontal positional 
error for Bursa-Wolf and RBFNN models, respectively. The maximum and 
minimum HEs (Table 5) suggest the interval at which the error produced by 

Figure 3. Horizontal positional residuals for subset 1 (training)

Figure 4. Horizontal positional residuals for subset 2 (training)

Figure 5. Horizontal positional residuals for subset 3 (training)
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Bursa-Wolf and RBFNN varies in the study area. Observation from Table 5 
shows that the RBFNN achieved the best minimum (0.241 m) and maximum 
(1.351 m) HE test results. Thus, the RBFNN has the capability of producing 
satisfactory transformation results in the Ghana geodetic reference network 
(Golden Triangle) than the Bursa-Wolf model. From the SD computed values 
(Table 5), it could be seen that similar transformation precision was produced 
across the four-folds by RBFNN and Bursa-Wolf model, respectively. 

Consistent with the results in Table 5, it is clear that for the study area 
the RBFNN approach is superior to the Bursa-Wolf model. The strength 
of the RBFNN could be attributed to its non-parametric properties whereby 
it has the capability to adapt to the dataset without a priori knowledge of the 
underlying functional relationship describing the input and output dataset. 
From these results, it can be stated that the application of RBFNN via KCV 
approach for coordinate transformation in Ghana geodetic reference network 
has been duly demonstrated. Furthermore, the transformation errors produced 
in this study could possibly be attributed to the coordinates related to the Ghana 
local geodetic reference system (Accra datum) than the global WGS84 data. 
This is because with all the attendant problems of local geodetic networks as 
indicated by several authors (see e.g. Poku-Gyamfi, 2009; Varga et al., 2017 
and references therein), the coordinates of the Accra datum lacks homogeneity. 
It is therefore logical to state that these distortions inherent in the network might 
have contributed to the level of accuracy achieved in this study. Nonetheless, it 
is suggested here that the obtained results produced could still be used in Ghana 
for low-order survey works such as data collection for geographic information 

Figure 6. Horizontal positional residuals for subset 4 (training)

Figure 7. Horizontal positional residuals for subset 1 (testing data)

Figure 8. Horizontal positional residuals for subset 2 (testing data)

Figure 9. Horizontal positional residuals for subset 3 (testing data)

Figure 10. Horizontal positional residuals for subset 4 (testing data)
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Table 4. Statistics of the total horizontal residual assessment for the training and testing data across the 4-folds (unit: metre)

PM

Subset 1 Subset 2

Training Testing Training Testing

BW RBFNN BW RBFNN BW RBFNN BW RBFNN

RMSEHE 0.686 0.509 1.085 1.479 1.098 0.379 0.963 0.624

Mean HE 0.637 0.353 1.003 1.275 0.969 0.353 0.940 0.484

Min HE 0.144 0.099 0.641 0.442 0.199 0.160 0.626 0.123

Max HE 1.015 0.792 1.777 2.587 2.131 0.587 1.280 1.165

SD 0.265 0.145 0.463 0.839 0.537 0.145 0.209 0.394

PM

Subset 3 Subset 4

Training Testing Training Testing

BW RBFNN BW RBFNN BW RBFNN BW RBFNN

RMSEHE 1.090 0.583 1.434 0.514 1.120 0.796 1.246 0.570

Mean HE 0.979 0.539 1.320 0.469 1.039 0.694 1.335 0.587

Min HE 0.381 0.161 0.575 0.231 0.429 0.054 0.869 0.168

Max HE 1.905 0.881 2.030 0.841 2.088 1.691 1.911 0.809

SD 0.497 0.233 0.626 0.236 0.506 0.439 0.457 0.285

Table 5. Statistics of the overall average horizontal positional errors for Bursa-Wolf (BW) and RBFNN across the 4-folds (unit: metre)

PM
Training Testing

BW RBFNN BW RBFNN

RMSEHE 0.999 0.567 1.182 0.797

Mean HE 0.906 0.485 1.149 0.704

Min HE 0.288 0.118 0.678 0.241

Max HE 1.784 0.988 1.750 1.351

SD 0.451 0.240 0.439 0.439

system geodatabase generation, reconnaissance survey, small scale topographic 
surveys and for land information system works. This assertion was based on 
the maximum allowable horizontal positional error tolerance of ± 0.9144 m 
set by the Ghana Survey and Mapping of Lands Commission for cadastral 
applications and plan production in Ghana (Yakubu and Kumi-Boateng, 2015).

Concluding remarks

The hold-out cross-validation procedure has been widely adopted to 
assess the performance of the coordinate transformation methods. However, 
studies have shown that the KCV offers some advantages over the hold-
out approach. Therefore, the main contribution of this study is to apply and 
demonstrate the potential and applicability of the RBFNN via KCV technique 
on the LAP sparse dataset in Ghana geodetic reference network. The obtained 
RBFNN results were compared with the Bursa-Wolf model. The findings 
revealed significantly that improper split of the sparse dataset for the Ghana 
geodetic reference network into single train-test experimentation could produce 
misleading results that is totally dependent on how the data was partitioned 
and the split set selected. These are evident from the four-fold results produced 
by Bursa-Wolf and RBFNN where if a particular split fold is chosen for the 
case of hold-out cross-validation would give a misrepresentation of the models 
capability. Hence, it has been demonstrated in this study that for proper 
assessment of model predictive performance especially in sparse dataset 
situation, the KCV offers a better solution. 

The conclusion made from the overall statistical analyses was that, for 
Ghana geodetic reference network the RBFNN has the potential and strength 
to account for the uncertainties in the data related to the different data (War 
Office 1926 and WGS84) more effectively than the Bursa-Wolf model. The 
result suggests that the RBFNN will be more applicable to low-order accuracy 
surveys. This is because the RBFNN achieved maximum horizontal positional 
error was more than the ± 0.9114 m tolerance set by the Ghana Survey and 
Mapping Division of Lands Commission for cadastral applications.

Acknowledgement

The authors are grateful to the Ghana Survey and Mapping Division of 
the Lands Commission for given us the Land Administration Project data for 
this work. Our sincere gratitude also goes to the anonymous reviewers for their 
helpful comments.

References
Annan, R. F., Ziggah, Y. Y., Ayer, J., & Odutola, C.A. (2016). A Hybridized 

Centroid Technique for 3D Molodensky-Badekas Coordinate 
Transformation in the Ghana Geodetic Reference Network using Total 
Least Squares Approach. South African Journal of Geomatics, 5, 3, 
269-284.



76 Yao Yevenyo Ziggah, Hu Youjian, Alfonso Rodrigo Tierra, Prosper Basommi Laari

Ayer, J. (2008). Transformation models and procedures for framework 
integration of Ghana geodetic network. The Ghana Surveyor, 1, 52-58. 

Ayer, J., & Fosu, C. (2008). Map coordinates referencing and the use of GPS 
datasets in Ghana. Journal of Science and Technology, 28, 116-127.

Badekas, J. (1969). Investigations related to the establishment of a World 
Geodetic System. Technical Report. The Ohio State University, 
Deparment of Geodetic Science, Columbus, Ohio State, USA. 

Baabereyir, A. (2009). Urban environmental problems in Ghana: case study 
of social and environmental injustice in solid waste management 
in Accra and Sekondi-Takoradi. PhD Dissertation, University of 
Nottingham, UK. 

Bengio, Y., & Grandvalet, Y. (2004). No unbiased estimator of the variance 
of K-fold cross-validation. Journal of Machine Learning Research, 5, 
1089-1105. 

Berry, L. (1995). Ghana: a country study. 3rd Edition. Federal Research 
Division, Library of Congress, USA.

Bowring, B.R. (1976). Transformation from spatial to geographical coordinates. 
Survey Review, 181, 323–327.

Burman, P. (1989). A comparative study of ordinary cross-validation, v-fold 
cross-validation and the repeated learning-testing methods. Biometrika, 
76, 503-514.

Bursa, M. (1962). The theory of the determination of the nonparallelism of the 
minor axis of the reference ellipsoid, Polar axis of the Earth, and initial 
astronomical and geodetic meridians from observation of artificial 
Earth satellites. Studia Geophysica et Geodaetica, 6, 209-214. 

Constantin-Octavian, A. (2006). 3D Affine coordinate transformations. Master 
of Science Thesis in Geodesy No. 3091 TRITA-GIT EX 06-004, 
School of Architecture and the Built Environment, Royal Institute of 
Technology (KTH), 100 44 Stockholm, Sweden.

Deakin, R. E. (2006). A Note on the Bursa-Wolf and Molodensky-Badekas 
Transformations. Technical Report, School of Mathematical and 
Geospatial Sciences, RMIT University, 1-21. 

Dzidefo, A. (2011). Determination of transformation parameters between the 
World Geodetic System 1984 and the Ghana geodetic network. Masters 
Thesis, Kwame Nkrumah University of Science and Technology, 
Ghana.

ElSayed, M. S., & Ali, A. H. (2016). Performance Evaluation of Applying 
Fuzzy Multiple Regression Model to TLS in the Geodetic Coordinate 
Transformation. American Scientific Research Journal for 
Engineering, Technology and Sciences, 36-50.

Featherstone, W.E. (1996). A revised explanation of the Geocentric Datum of 
Australia and its effect upon mapping. The Australian Surveyor, 41, 
121-130.

Fosu, C., Poku-Gyamfi, Y., & Hein, W. G. (2006). Global Navigation Satellite 
System (GNSS) - A Utility for Sustainable Development in Africa. 5th 
FIG Regional Conference on Promoting Land Administration and 
Good Governance, Workshop – AFREF I, Accra, Ghana, 1-12. 

Ghilani, C. D. (2010). Adjustment Computations: Spatial Data Analysis. 5th 
Edition. John Wiley and Sons Inc., Hoboken, New Jersey, USA. 

Golub, G. H., & Reinsch, C. (1970). Singular Value Decomposition and Least 
Squares Solutions. Numerische Mathematik, 14, 5, 403-420.

Gullu, M. (2010). Coordinate Transformation by Radial Basis Function Neural 
Network. Scientific Research and Essays, 5, 3141-3146. 

Gullu, M., Yilmaz, M., Yilmaz, I., & Turgut, B. (2011). Datum Transformation 
by Artificial Neural Networks for Geographic Information Systems 
Applications. International Symposium on Environmental Protection 
and Planning: Geographic Information Systems (GIS) and Remote 
Sensing (RS) Applications (ISEPP), Izmir-Turkey, 13-19.

Heiskanen, A. W., & Moritz, H. (1967). Physical Geodesy. San Francisco: W.H. 
Freeman and Co Ltd. 

Jain, T., Singh, S. N., & Srivastava, S. C. (2011). Fast static available transfer 
capability determination using radial basis function neural network. 
Applied Soft Computing, 11, 2756-2764.

Jung, Y., & Hu, J. (2015). A K-fold averaging cross-validation procedure. 
Journal of nonparametric statistics, 27, 167-179.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy 
estimation and model selection. IJCAI’95 proceedings of the 14th 
international joint Conference on Artificial Intelligence, 2, 1137-1143. 

Konakoğlu, B., & Gökalp, E. (2016). A Study on 2D similarity transformation 
using multilayer perceptron neural networks and a performance 
comparison with conventional and robust outlier detection methods. 
Acta Montanistica Slovaca, 21, 4, 324-332.

Konakoğlu, B., Cakir, L., & Gökalp, E. (2016). 2D coordinates transformation 
using artificial neural networks. Geo Advances 2016: ISPRS 
Workshop on Multi-dimensional & Multi-scale Spatial Data Modeling, 
At Mimar Sinan Fine Arts University/Istanbul, Volume XLII-2/W1: 
3rd International GeoAdvances Workshop.

Konaté, A. A., Pan, H., Fang, S., Asim, S., Ziggah, Y. Y., Deng, C., & Khan, 
N. (2015). Capability of self-organizing map neural network in 
geophysical log data classification: Case study from the CCSD-MH. 
Journal of Applied Geophysics, 118, 37-46. 

Kotzev, V. (2013). Consultancy Service for the Selection of a New Projection 
System for Ghana. Technical Draft Final Reports, World Bank Second 
Land Administration Project (LAP-2), Ghana.

Kumi-Boateng, B., & Ziggah, Y. Y. (2016).  Accuracy assessment of cartesian 
(X, Y, Z) to geodetic coordinates (φ, λ, h) transformation procedures in 
precise 3D coordinate transformation – A case study of Ghana geodetic 
reference network. Journal of Geosciences and Geomatics, 4, 1-7.

Laari, P. B., Ziggah, Y. Y., & Annan, R. F (2016). Determination of 3D 
Transformation Parameters for the Ghana Geodetic Reference 
Network using Ordinary Least Squares and Total Least Squares 
Techniques. International Journal of Geomatics and Geosciences, 7, 
3, 245-261.

Lin, L. S., & Wang, Y. J. (2006). A Study on Cadastral Coordinate 
Transformation using Artificial Neural Network. Proceedings of the 
27th Asian Conference on Remote Sensing, Ulaanbaatar, Mongolia, 1-6.

Markovsky, I., & Van Huffel, S. (2007). Overview of Total Least-Squares. 
Signal Processing, 87, 2283-2302.

Mihalache, R. M. (2012). Coordinate transformation for integrating map 
information in the new geocentric European system using artificial 
neural networks. GeoCAD, 1-8.

Molodensky, M. S., Yeremeyev, V., & Yurkina, M. (1962). Methods for study 
of the external Gravitational Field and Figure of the Earth. Technical 
report Office of Technical services, US Deparment of Commerce, 
Israel Program for Scientific Translations, Jerusalem, Israel, 248 pp 
(Russian).

Mugnier, J. C. (2000). OGP-Coordinate conversions and Transformations 
including formulae. COLUMN, Grids and Datums, The Republic of 
Ghana. Photogrammetric Engineering and Remote Sensing, 695-697.

Muller, V. A., & Hemond, F. H. (2013). Extended artificial neural networks: 
incorporation of a priori chemical knowledge enables use of ion 
selective electrodes for in-situ measurement of ions at environmentally 
relevant levels. Talanta, 117, 112–118.

Paredes-Hernández, C. U., Salinas-Castillo, W. E., Guevara-Cortina, F., & 
Martínez-Becerra, X. (2013). Horizontal positional accuracy of 
Google Earth’s imagery over rural areas: a study case in Tamaulipas, 
Mexico. The Bulletin of Geodetic Sciences, 19, 588-601.

Poku-Gyamfi, Y. (2009). Establishment of GPS Reference Network in Ghana. 
PhD Dissertation, Universitat der Bundeswehr Munchen, Germany.

Reitermanová, Z. (2010). Data Splitting. In: Šafránková, J. and Pavlu, J. (Eds.), 
WDS 2010 proceedings of contributed papers, Part I: Mathematics and 
Computer Sciences, Matfyzpress, Prague, 31-36.

Stone, M. (1974). Cross-validatory choice and assessment of statistical 
predictions. Journal of the Royal Statistical Society: Series B 
(Statistical Methodology), 36, 111–147.

Tierra, A., Dalazoana, R., & De Freitas, S. (2008). Using an Artificial Neural 
Network to Improve the Transformation of Coordinates between 
Classical Geodetic Reference Frames. Computers and Geosciences, 
34, 181-189.



77Coordinate Transformation between Global and Local Data Based on Artificial Neural Network with K-Fold Cross-Validation in Ghana

Tierra, A. R., De Freitas, S. R. C., & Guevara, P. M. (2009). Using an Artificial 
Neural Network to Transformation of Coordinates from PSAD56 
to SIRGAS95. In: Drewes H. (Ed.), Geodetic Reference Frames. 
International Association of Geodesy Symposia, 134:173-178, 
Springer-Verlag Berlin Heidelberg, Germany.

Tierra, A., & Romero, R. (2014). Planes Coordinates Transformation between 
PSAD56 to SIRGAS using a Multilayer Artificial Neural Network. 
Geodesy and Cartography, 63, 199-209.

Turgut, B. (2010). A Back-Propagation Artificial Neural Network Approach for 
Three-Dimensional Coordinate Transformation. Scientific Research 
and Essays, 5, 3330-3335.

Urolagin, S., Prema, K. V., & Subba Reddy, N. V. (2011). Generalization 
Capability of Artificial Neural Network Incorporated with Pruning 
Method. In: Thilagam, P. S., Pias, A. R., Chandrasekaran, K. and 
Balakrishnan, N. (Eds.), Advanced Computing, Networking and 
Security. Lecture Notes in Computer Science, 7135, 171-178, Springer 
Berlin Heidelberg, Germany.

Van Huffel, S., & Vandewalle, J. (1991). The Total Least Squares Problem – 
Computational Aspects and Analysis, Frontiers in Applied Mathematics. 
SIAM, USA.

Varga, M., Grgić, M., & Bašić, T. (2017). Empirical comparison of the Geodetic 
Coordinate Transformation Models: a case study of Croatia. Survey 
Review, 49, 352, 15-27.

Veis, G. (1960). Geodetic uses of artificial satellites. Smithsonian contributions 
to Astrophysics, 3, 95-159.

Wolf, H. (1963). Geometric connection and reorientation of three-dimensional 
triangulation nets. Bulletin of Geodesy, 68, 165-169.

Yakubu, I., & Kumi-Boateng, B. (2015). Ramification of datum and ellipsoidal 
parameters on post processed differential global positioning system 
(DGPS) data – A case study. Ghana Mining Journal, 15, 1-9.

Yang, Y. X. (2009). Chinese geodetic coordinate system 2000. Chinese Science 
Bulletin, 54, 2714-2721.

Yilmaz, I., & Gullu, M. (2012). Georeferencing of Historical Maps using back 
propagation artificial neural network. Experimental Techniques, 36, 
15-19.

Zaletnyik, P. (2004). Coordinate Transformation with Neural Networks and 
with Polynomials in Hungary. International Symposium on Modern 
Technologies, Education and Professional Practice in Geodesy and 
Related Fields, Sofia, Bulgaria, 471-479.

Ziggah, Y. Y., Youjian, H., Tierra, A., Konaté, A. A. & Hui, Z. (2016). 
Performance evaluation of artificial neural networks for planimetric 
coordinate transformation—a case study, Ghana. Arabian Journal of 
Geosciences, 9, 17,698, 1-16.

Ziggah, Y. Y., Youjian, H., Odutola, C. A., & Fan, D. L. (2013a). Determination 
of GPS Coordinate Transformation Parameters of Geodetic data 
between Reference Datums - A Case Study of Ghana Geodetic 
Reference Network. International Journal of Engineering Sciences & 
Research Technology, 2, 956-971.

Ziggah, Y. Y., Youjian, H., Odutola, C. A., & Nguyen, T. T. (2013b). Accuracy 
assessment of centroid computation methods in precise GPS 
coordinates transformation parameters determination- A case study, 
Ghana. European Scientific Journal, 9, 1857-7431.

Ziggah, Y. Y., Youjian, H., Laari, P. B., & Hui, Z. (2017a). Novel approach 
to improve geocentric translation model performance using artificial 
neural network technology. Boletim de Ciências Geodésicas, 23, 1, 
213-233.

Ziggah, Y. Y., Ayer, J., Laari, P. B., & Frimpong, E. (2017b). Coordinate 
transformation using Featherstone and Vaníček proposed approach 
- a case study of Ghana geodetic reference network. Geoplanning: 
Journal of Geomatics and Planning, 4, 1, 19-26.


