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The objective of this research is to develop a new approach to estimate earthquake arrival azimuth using 
seismological records of the “El Rosal” station, near to the city of Bogota – Colombia, by applying support 
vector machines (SVMs). The algorithm was trained with time series descriptors of 863 events recorded from 
January 1998 to October 2008, considering only events with magnitude ≥ 2 ML.  The earthquake signals were 
filtered in order to remove diverse kind of low and high-frequency noise not related to typical seismic activity in 
the area. During training stages of SVMs, several combinations of kernel exponent and complexity factor were 
applied to time series of 5, 10 and 15 seconds along with earthquake magnitudes of 2.0, 2.5, 3.0 and 3.5 ML. The 
best classification of SVMs was obtained using time windows of 5 seconds and earthquake magnitudes greater 
than 3.0 ML with kernel exponent of 10 and complexity factor of 2, showing an accuracy of 45.4 degrees. This 
research is an improvement of previous works related to earthquake arrival azimuth determination from single 
station data employing machine learning techniques.

ABSTRACT

Fast estimation of earthquake arrival azimuth using a single seismological station and machine learning techniques

Estimación rápida del azimut de llegada de un terremoto utilizando registros de una sola estación sismológica  
y técnicas de aprendizaje de máquinas

ISSN 1794-6190 e-ISSN 2339-3459         
https://doi.org/10.15446/esrj.v23n2.70581

El propósito de esta investigación es desarrollar un nuevo enfoque para estimar el azimut de llegada de 
terremotos utilizando registros sismológicos de la estación El Rosal, cercana a la ciudad de Bogotá – Colombia, 
mediante la aplicación de máquinas de vectores de soporte (MVS). El algoritmo fue entrenado con descriptores 
de series de tiempo de 863 eventos adquiridos desde Enero 1998 hasta Octubre de 2008, considerando solamente 
eventos con magnitudes ≥ 2 ML. Las señales de los terremotos fueron filtradas para remover diversos tipos de 
ruidos de alta y baja frecuencia no relacionados con la actividad sísmica típica en el área. Durante las etapas de 
entrenamiento de la MVS fueron aplicadas varias combinaciones del exponente kernel y factor de complejidad, 
a series de tiempo de 5, 10 y 15 segundos junto con terremotos de magnitudes mayores a 2.0, 2.5, 3.0 y 3.5 ML. 
La mejor clasificación de la MVS fue obtenida utilizando ventanas de tiempo de 5 segundos y terremotos de 
magnitud mayor a 3.0 ML con exponente kernel de 10 y factor de complejidad de 2, mostrando una precisión de 
45.4 grados. Esta investigación es una mejora a trabajos previos relacionados con determinación del azimut de 
llegada de un terremoto a partir de datos de una única estación sismológica empleando técnicas de aprendizaje 
de máquinas.
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Introduction

This study is part of a research line which proposes calculation of 
earthquake hypocentral parameters applying artificial intelligence methods in 
order to develop an early warning system for the city of Bogota. In case of 
a destructive seismic event in this area, the entire country would face many 
harmful social and economic effects; this is why a seismic early warning system 
around Bogota is important and the earthquake arrival azimuth estimation is 
one of the main parameters in this system. Nearly a third of Colombia’s 
population lives in Bogota’s Savannah and surrounding which is the country’s 
main economic center with around 40% of the gross domestic product (Ojeda 
et al., 2002). The density of seismological stations around the city is not high 
enough, this makes the required time for seismic events localization to be longer 
than the travel time to areas where the early warning is required. An alternative 
solution to this problem is employing seismological data from previous events 
recorded at one single station to estimate the earthquake hypocentral parameters 
(Ochoa et al., 2014). Automatic computation algorithms in a single broadband 
three-component station have been mainly developed for P and S waves onsets 
detection, allowing estimation of source location using the back-azimuth and 
the apparent surface speed measurements (Magotra et al., 1987; Roberts et al., 
1989;  Saita & Nakamura, 2003), or seismic moment estimation (Talandier et 
al., 1987;  Reymond et al., 1991; Odaka et al., 2003; Horiuchi et al., 2005; Wu 
et al., 1998; Espinosa, 1995). Supervised machine learning techniques based 
on kernel methods have become a very powerful tool for mathematicians, 
scientist, and engineers, providing solution in areas like signal processing and 
pattern recognition; its implementation is quite simple and can be performed by 
applying mathematical functions that combine input variables as a combination 
of themselves, obtaining an enhanced new space with more dimensions where 
separation of classes can be achieved. 

There are several methods to detect seismic wave and its arrival azimuth 
in a single three-component station (Magotra et al., 1987; Anant & Dowla, 
1997); these authors employed algorithms that measure the level of linear 
polarization in the P wave’s arrival. The methodology proposed in this research 
consists of applying SVMs along with a kernel function in order to estimate the 
arrival azimuth with minimal processing of data acquired at the station, similar 
to methodology applied to a fast determination of earthquake magnitude and 
epicenter distance using a single seismological station (Ochoa et al., 2017; 
Ochoa et al., 2018).

Data Sets And Methods 

The dataset used in this research belongs to the “El Rosal” seismological 
station, located toward north-west Bogota as shows Figure 1. This station is 
part of the Colombian Seismic Network operated by The “Servicio Geológico 
Colombiano - SGC” (Colombian Geological Service).

The “El Rosal” station employs a Guralp CMG - T3E007 sensor in 
three components and a Nanometrics RD3-HRD24 digitizer, which provides 
simultaneous sampling of three channels with 24-bit of sampling rate 
(Bermudez & Rengifo, 2002). The data correspond to the three component raw 
waveforms recorded directly in this station and a seismic catalog with 2164 
characterized events, selected between January 1st 1998 and October 27th 2008; 
all of them located less than 120 kilometers from the station.

The Colombian seismic network consists of 42 stations, with an average 
distance of 162 kilometers between them, which record and transmit seismic 
data in real time for the entire country as shown in Figure 2.  

Before starting the processing related to SVMs, waveform files from “El 
Rosal” station were converted to the American standard code for information 
interchange (ASCII) format, using a Seisan package tool; earthquakes with 
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Figure 1. Location of the “El Rosal” seismological station and earthquake distribution around Bogota. 
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magnitudes lower than 2.0 ML were ignored; therefore the followed processes 
were applied on the remaining 1011 events. Since the selected seismic records 
present variable levels of noise, it was necessary to filter them out with both 
high and low-frequency filters. Low frequencies correspond to instrumental 
noise that can be easily eliminated through implementation of a high-pass filter 
with cut-off frequency of 0.075 Hz  (Wu & Zhao, 2006), while high frequencies 
were removed with a low-pass filter with cut-off frequency of 150 Hz.  

The statistical distribution of azimuth values is presented in Figure 3, 
where the main distribution of the whole dataset is observed. This histogram 
shows a high frequency in 240 degrees (azimuth), indicating an active 
seismogenic zone in that direction. Although this is not a homogeneous 
distribution, it represents the regular seismic behavior of the area.

Descriptors – Input data set of the SVM

In the first stage, parameters that have been previously used by other 
authors to earthquake magnitude estimation were calculated and employed 
as input variables or descriptors for the SVM of this research. In this sense, 
the relationship between maximum P wave amplitudes and local earthquake 
magnitudes was considered (Wu & Kanamori, 2005), where a linear regression 
was performed for each one of the three components of the station. Three 
parameters were taken from this linear regression which corresponds to 
the slope (M), an independent term (B) and correlation coefficient (R). The 
maximum amplitude values (Mx) obtained for each component’s time window 
were used as descriptors as well. Therefore, each event had 12 descriptors 
associated with this concept.

In the second place, 9 descriptors used for epicenter distance estimation 
were added adjusting a linear regression of an exponential function in time (t) by 
applying the expression “Bt exp (-At)”; this expression belongs to the envelope 
of the seismic record in logarithmic scale (Odaka et al., 2003) determined also 
by a linear regression and its respective correlation coefficient (R), for each of 
component in the seismic station. The correlation coefficient (R) along with 
the parameters (A) and (B) were calculated for each component; where (B) 
represents the slope of initial part of P waves and (A) is a parameter related to 
amplitude variations in time. 

Finally, parameters for back-azimuth determination were used to include 
information about sources location of the seismic events into the model.  

Maximum eigenvalues of two-dimensional covariance matrix were employed 
as input, calculated as described in Magotra et al., 1987, and Magotra et al., 
1989. A windowing scheme with one second time windows was performed to 
obtain consecutive values for which a linear regression was calculated, also 
determining the slope (M), the independent term (B), the regression correlation 
factor (R), and this time with addition of the arithmetic mean of the eigenvalues 
(P). This last processing works with all components of the station at the same 
time, thus 4 descriptors were added as input related to this process.

In summary, the SVM of this study employs 25-time signal descriptors as 
input (Table 1); 12 of them related to works on magnitude calculation, 9 were 
associated with epicenter distance estimations and the last 4 were used in the 
back-azimuth determination. These descriptors were calculated for 5, 10 and 15 
seconds signal of the 863 selected events.

The SVM Model

A SVM is a supervised classification technique that has its roots in 
statistical learning theory and has shown promising empirical results in 
many practical applications, from handwritten digit recognition to text 
categorization. SVM also works very well with high-dimensional data and 
avoids the curse of dimensionality problem (Tan et al., 2006). In geosciences 
e.g., it have been applied in earthquake characterization (Ochoa et al., 2017), 
automatic recognition of natural fractures (Leal et al., 2016), automatic 
indicator of lithologies in open hole logs (Leal et al., 2018), among other 
applications related to pattern recognition. The SVM model of this research 
was trained with the refined data set for each time window using the Waikato 
Environment for Knowledge Analysis WEKA 3.6 (Frank et al., 2016) and the 
25 descriptors explained before. This algorithm has strong statistical support 
and can be easily implemented on the station by electronic processing cards.  

1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000

0
400000 600000 800000 1000000 1200000 1400000 1600000 1800000

COLOMBIA

VENEZUELA

ECUADOR

BRASIL

PANAMA

Figure 2. Colombian Seismic Network.

BackAzimuth - Magnitude ML ≥ 2.0

Fr
eq

ue
nc

y

400

350

300

250

200

150

100

50

0
0     30     60    90   120   150  180   210  240  270  300   330  360

Figure 3. Statistical distribution of earthquake azimuth recorded at “El 
Rosal” station.

Table 1. Summary of Descriptors Employ as Input data

Related to earthquake 
magnitude estimation 

(Wu & Kanamori, 2005)

Related to epicenter 
distance estimation 
(Odaka et al., 2003)

Related to back-azimuth 
estimation (Magotra  
et al., 1987; Magotra  

et al., 1989)

Slope (M)
Independent Term (B)

Correlation Coefficient (R)
Maximum Amplitude (Mx)

12 Descriptors  
(4 in each component  

of the station).

Parameter (A)
Parameter (B)

Correlation Coefficient (R)
9 Descriptors  

(3 in each component  
of the station).

Slope (M)
Independent Term (B)

Correlation Coefficient (R)
Maximum Eigenvalues (P)

4 Descriptors (all 
components work at the 

same time).
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After performing several processing tests, a standard normalized polynomial 
kernel was selected. In order to choose the kernel exponent and the complexity 
factor, correlation factors and minimum absolute error obtained by a 10 fold 
cross-validation process were compared. These processes were carried out 
testing multiple combinations of exponents and complexity factor for selected 
earthquake magnitudes and time signals. The correlation coefficient calculated 
for each partition corresponds to the Pearson’s coefficient, which measure the 
linear relationship between two variables independently of their scales. This 
coefficient takes values between 1 and – 1; a value of zero means that a linear 
relationship between two variables could not be found. A positive value of this 
relation means that two variables change in  the same way, i.e. high values 
of one variable correspond to high values of the other and vice versa. The 
closer this value is to one, the greater certainty that two variables have a linear 
relation. The Pearson’s coefficient in this research is as high as 0.6, showing the 
relevance of SVM in the estimation of earthquake arrival azimuth; the lower 
value of this coefficient was 0.096 as shown in Table 4.  

Results and discussion

Using the 25 descriptors and real magnitudes for each seismic event, 
a group of 12 datasets was evaluated (Table 2). Each dataset corresponds to 
combinations of 4 minimum magnitude filters (2.0, 2.5, 3.0 and 3.5 ML) and 3 
signal length filters (5, 10 and 15 seconds), evaluating combinations of 7 values 
for kernel exponent (E = 1.5, 2, 4, 5, 10, 20 and 50) and 6 values for complexity 
factor (C = 1, 3, 5, 10, 20 and 50); testing 504 models of SVMs in order to 
find the combination of parameters with the best correlation factor in arrival 
azimuth determination. Table 2 shows values of correlation coefficients in each 
combination of cut-off magnitude and time signals where kernel exponents and 
complexity factors were calculated. According to Table 2, the best correlation 
coefficient is 0.6 for a time signal of 15 seconds (Magnitude ≥ 2 ML).

Table 3 shows statistical summary for the best model of earthquake 
arrival azimuth in each combination of time signal (15, 10 and 5 seconds) and 

magnitude (2, 2.5, 3 and 3.5 ML). According to skewness values, all distributions 
present similar shape except samples from 5 seconds and 3.5ML (Skewness = 
-4.86), theses samples show a negative skew related to low number of samples 
for this set (count = 33). The mean arithmetic can be affected by extremely low 
and high values; therefore, any interpretation from this parameter might produce 
a wrong perception of the data.  High kurtosis values are related to over-fitting 
in some combinations and lower kurtosis are related to time signals of 10 and 15 
seconds with cut-off of 3.5 ML, which can be interpreted as the arrival azimuth 
estimation may be reliable for earthquake greater than 3.5 ML and time signal of 
15 seconds; however, the objective of this research is to develop the best model 
with the lowest base magnitude; in consequence and according to Table 3 the 
best time signal should be 5 seconds and cut-off magnitude of 3.0 ML.

The choice of SVM final parameters is shown in Table 4, where 
Pearson’s correlation coefficient and mean absolute error are presented for each 
combination of kernel exponent “E” and complexity factor “C”, all of them for 
the time signal and the cut-off magnitude previously selected. These parameters 
were calculated using SVM algorithms in WEKA 3.6 (Frank, et al. 2016) 
with a standard normalized polynomial kernel and 10 fold cross-validations. 
According Table to 4, the earthquake arrival azimuth can be performed at “El 
Rosal” station using the SVM based model with a normalized polykernel of 
exponent 2 and complexity factor of 10 for a time signal of 5 seconds and 3.0 
ML of earthquake cut-off magnitude, showing a standard deviation of 45.4 
degrees.

Figure 4 shows the cross-plot with a relationship between the real arrival 
azimuth (X-axis) and the azimuth calculated by the model (Y-axis), where a 
normal statistical pattern can be observed in the distribution of residual values 
(histogram). The dashed blue line represents the linear behavior of predicted 
data, corresponding to the locus where prediction is equal to real values. This 
model tends to place the prediction further south to the real location, because of 
seismogenic zones toward east and west of the station producing more data in 
those directions and lower among of information from north and south; this is a 
normal operational condition of “El Rosal” station and therefore, it is a behavior 
implicit into the model.
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Table 2. Cut-off Magnitude and Time Length combination

Pearson’s Coefficient for Each Combination of Magnitude and Time Signal

Magnitude ≥ 2.0 ML – “E” Magnitude ≥ 2.5 ML – “E”

Ti
m

e 
Si

gn
al

 =
 1

5 
s –

 “
C

” 1.5 2 4 5 10 20 50 1.5 2 4 5 10 20 50

1 0.423 0.442 0.523 0.538 0.58 0.607 0.561 1 0.397 0.415 0.483 0.507 0.559 0.545 0.489

3 0.45 0.489 0.548 0.561 0.6 0.594 0.51 3 0.447 0.466 0.523 0.543 0.578 0.518 0.443

5 0.47 0.511 0.557 0.574 0.608 0.575 0.479 5 0.462 0.498 0.536 0.569 0.552 0.507 0.412

10 0.496 0.525 0.575 0.588 0.603 0.54 0.437 10 0.485 0.502 0.572 0.581 0.508 0.464 0.302

20 0.516 0.537 0.587 0.59 0.574 0.495 0.403 20 0.496 0.5 0.575 0.57 0.476 0.437 0.387

50 0.535 0.555 0.582 0.582 0.513 0.419 0.373 50 0.49 0.531 0.553 0.525 0.439 0.378 0.387

Ti
m

e 
Si

gn
al

 =
 1

0 
s –

 “
C

” 1.5 2 4 5 10 20 50 1.5 2 4 5 10 20 50

1 0.429 0.454 0.506 0.521 0.553 0.578 0.565 1 0.427 0.449 0.494 0.519 0.535 0.522 0.474

3 0.457 0.483 0.534 0.544 0.57 0.587 0.512 3 0.456 0.47 0.432 0.539 0.525 0.489 0.419

5 0.488 0.498 0.542 0.552 0.579 0.575 0.484 5 0.467 0.488 0.534 0.538 0.514 0.466 0.411

10 0.485 0.521 0.554 0.56 0.587 0.546 0.459 10 0.481 0.491 0.536 0.535 0.489 0.425 0.408

20 0.51 0.536 0.561 0.569 0.577 0.5 0.45 20 0.477 0.499 0.529 0.504 0.456 0.382 0.408

50 0.535 0.556 0.566 0.573 0.536 0.439 0.442 50 0.479 0.513 0.481 0.471 0.394 0.351 0.408

Ti
m

e 
Si

gn
al

 =
 0

5 
s –

 “
C

” 1.5 2 4 5 10 20 50 1.5 2 4 5 10 20 50

1 0.379 0.399 0.442 0.449 0.467 0.471 0.412 1 0.312 0.354 0.419 0.442 0.484 0.467 0.416

3 0.428 0.439 0.457 0.463 0.473 0.469 0.365 3 0.41 0.419 0.458 0.475 0.491 0.469 0.373

5 0.431 0.439 0.465 0.471 0.485 0.455 0.342 5 0.406 0.422 0.467 0.479 0.49 0.447 0.351

10 0.434 0.447 0.466 0.464 0.474 0.726 0.328 10 0.414 0.432 0.473 0.481 0.481 0.416 0.33

20 0.445 0.462 0.449 0.45 0.45 0.397 0.305 20 0.422 0.451 0.467 0.47 0.46 0.38 0.305

50 0.462 0.444 0.424 0.435 0.419 0.329 0.285 50 0.45 0.44 0.44 0.456 0.41 0.334 0.265

Magnitude ≥ 3.0 ML – “E” Magnitude ≥ 3.5 ML – “E”

Ti
m

e 
Si

gn
al

 =
 1

5 
s –

 “
C

” 1.5 2 4 5 10 20 50 1.5 2 4 5 10 20 50

1 0.431 0.43 0.422 0.421 0.386 0.37 0.341 1 0.283 0.327 0.366 0.361 0.295 0.237 0.135

3 0.433 0.412 0.405 0.411 0.426 0.362 0.34 3 0.364 0.419 0.475 0.37 0.348 0.241 0.135

5 0.416 0.407 0.417 0.427 0.405 0.368 0.348 5 0.401 0.454 0.392 0.383 0.351 0.241 0.135

10 0.415 0.413 0.441 0.457 0.382 0.388 0.34 10 0.456 0.404 0.357 0.341 0.351 0.241 0.135

20 0.426 0.42 0.461 0.437 0.387 0.368 0.34 20 0.412 0.397 0.325 0.34 0.351 0.241 0.135

50 0.419 0.431 0.431 0.398 0.388 0.368 0.34 50 0.379 0.323 0.325 0.34 0.351 0.241 0.135

Ti
m

e 
Si

gn
al

 =
 1

0 
s –

 “
C

” 1.5 2 4 5 10 20 50 1.5 2 4 5 10 20 50

1 0.388 0.412 0.41 0.428 0.458 0.491 0.334 1 0.305 0.339 0.375 0.37 0.313 0.318 0.121

3 0.411 0.408 0.427 0.442 0.532 0.41 0.333 3 0.324 0.33 0.317 0.334 0.326 0.32 0.121

5 0.409 0.422 0.45 0.487 0.509 0.382 0.333 5 0.299 0.29 0.346 0.366 0.327 0.32 0.121

10 0.42 0.409 0.486 0.513 0.435 0.382 0.333 10 0.247 0.274 0.382 0.346 0.327 0.32 0.121

20 0.403 0.411 0.494 0.496 0.374 0.382 0.333 20 0.245 0.329 0.357 0.347 0.327 0.32 0.121

50 0.393 0.433 0.467 0.425 0.352 0.382 0.333 50 0.318 0.357 0.357 0.347 0.327 0.32 0.121

Ti
m

e 
Si

gn
al

 =
 0

5 
s –

 “
C

” 1.5 2 4 5 10 20 50 1.5 2 4 5 10 20 50

1 0.336 0.407 0.47 0.46 0.456 0.343 0.182 1 0.369 0.427 0.52 0.534 0.518 0.267 -0.34

3 0.549 0.542 0.524 0.496 0.387 0.312 0.183 3 0.523 0.551 0.586 0.599 0.468 0.168 -0.34

5 0.571 0.561 0.494 0.462 0.346 0.305 0.183 5 0.556 0.563 0.609 0.609 0.413 0.168 -0.34

10 0.572 0.588 0.447 0.406 0.326 0.29 0.183 10 0.556 0.572 0.6 0.546 0.418 0.168 -0.34

20 0.501 0.531 0.369 0.308 0.321 0.298 0.183 20 0.552 0.567 0.532 0.525 0.418 0.168 -0.34

50 0.538 0.436 0.249 0.251 0.325 0.298 0.183 50 0.552 0.552 0.536 0.525 0.418 0.168 -0.34
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Table 3. Summary for the best model of earthquake arrival azimuth in each combination

SUMMARY IN DETERMINATION OF EARTHQUAKE ARRIVAL AZIMUTH - RESIDUAL

Signal Time = 15 s Signal Time = 10 s Signal Time = 05 s

Minimum Magnitude 2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.5

Skewness 0.64 1.11 1.16 0.07 1.27 1.10 1.62 0.43 0.78 1.29 0.48 -4.86

Kurtosis 4.14 4.89 7.68 1.58 6.83 3.26 16.24 2.39 1.93 4.09 2.60 27.14

Mean 2.62 2.69 -0.14 4.71 3.96 5.74 -0.09 -3.10 6.04 5.79 2.81 -1.94

Standard Deviation 46.3 40.7 31.8 35.5 37.8 52.0 27.6 34.8 53.1 46.4 45.4 17.6

Standard error 1.58 2.09 2.84 6.19 1.29 2.67 2.46 6.69 1.81 2.39 4.05 3.06

Count 863 379 126 33 863 379 126 33 864 377 126 33

Level of Confidence 
(95%) 3.093 4.109 5.614 12.605 2.528 5.252 4.863 13.628 3.545 4.702 8.010 6.231

Table 4. Pearson’s Coefficient and Mean Absolute Error used to Determent “E” and “C”

Pearson’s Coefficient
Exponent “E”

0.5 0.8 1.1 1.5 2 4 5 10 20 50

C
om

pl
ex

ity
 F

ac
to

r 
“C

”

0.1 0.096 0.12 0.125 0.137 0.159 0.209 0.23 0.272 0.28 0.187

0.5 0.165 0.192 0.226 0.264 0.303 0.387 0.401 0.414 0.386 0.195

0.8 0.192 0.234 0.267 0.307 0.366 0.45 0.451 0.452 0.355 0.182

1 0.207 0.25 0.276 0.339 0.409 0.47 0.459 0.458 0.347 0.182

2 0.225 0.287 0.365 0.472 0.522 0.51 0.506 0.417 0.327 0.172

4 0.285 0.406 0.529 0.57 0.55 0.51 0.475 0.361 0.31 0.183

5 0.324 0.454 0.557 0.571 0.56 0.494 0.462 0.346 0.304 0.183

10 0.409 0.498 0.555 0.573 0.588 0.447 0.406 0.326 0.29 0.183

20 0.438 0.507 0.553 0.6 0.532 0.368 0.308 0.321 0.298 0.183

50 0.38 0.398 0.583 0.538 0.436 0.25 0.252 0.352 0.298 0.183

Mean Absolute Error
Exponent “E”

0.5 0.8 1.1 1.5 2 4 5 10 20 50

C
om

pl
ex

ity
 F

ac
to

r 
“C

”

0.1 53.1 52.7 52.5 52.4 52.2 51.9 51.8 51.3 51.1 52.3

0.5 52.3 52.6 52.6 52.4 51.9 50.5 50.2 50.4 51.7 56.4

0.8 52.6 52.7 52.5 52 51.1 49.2 49.4 49.9 54 57.7

1 52.7 52.6 52.5 51.6 50.3 48.8 49.3 49.7 55.2 57.9

2 53.1 52.9 51.5 48.8 47.5 48.3 48.3 53.2 58.2 58.5

4 53.7 51.6 47.8 46.2 47.4 48.5 50.3 60.4 60.3 58.2

5 53.9 50.6 46.8 46.4 47.3 49.6 51.9 63 60.9 58.2

10 54.6 50.3 47 46.4 45.6 55.9 59.9 67.4 62.7 58.2

20 56.7 52.5 47.1 45 49.9 65.8 73.2 69 62.8 58.2

50 81.3 65.4 45.1 51 61.7 85.2 85 73.1 62.8 58.2
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Conclusions & Recommendations

This model is proposed and evaluated for fast earthquake arrival 
azimuth determination, based on support vector machine regression through 
pattern recognition and characterization of earthquake signals recorded on a 
three components seismic station in only 5 seconds, anticipating the arrival of 
earthquakes in the city of Bogota. Additionally, this model can be implemented 
directly in the electronic devices of a seismological station, where the main 
mathematical process corresponds to a simple matrix product, a kernel function 
of exponent 2 and complexity factor of 10 with an earthquake of 3.0 ML. 

The accuracy reported in this research is lower compared with results 
reported by Lockman & Allen, 2005 and Eisermann et al., 2015; however it must 
to be consider that these authors works with data from several seismological 
station and not with a single station as this research does. Nevertheless, the 
result of 45.4 degrees in earthquake arrival azimuth estimation showed in this 
research is an improvement on that of Noda et al., 2012, who had standard 
deviation between 49.0 and 67.9 degrees working also with a single station. 

The implementation of additional input variables such as predominant 
period, Fourier and wavelet frequency spectra should be considered in order 
to obtain higher correlation factors. Furthermore, the use of an updated dataset 
is recommended, adding information from October 27th 2008 to present; this 
new data along with additional input variables might improve the model 
performance and reaching better estimation of earthquake arrival azimuth.

It is important to find ways to improve the prediction accuracy based 
on further research, supported by computational intelligence and geophysics 
research groups as well as the seismological network in Bogota’s Savannah and 
its surroundings managed by the Universidad Nacional de Colombia.
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