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In hard rock masses, discontinuities control the slope stability, rather than block matrix breakage. The relative position 
and orientation of joints and slope face define the most likely mechanisms of failure. Among these mechanisms, the 
wedge failure is one of the most common modes of failure in which joint sets dip and dip direction, slope geometry 
and direction, external forces (including water pressure and earthquake) and rock and joints mechanical properties 
control the stability. The determination of these input parameters is not straightforward, mainly due to their variability 
and the limited amount of information available. Besides, in most projects, input parameters come from different 
sources (e.g., expert opinion, back-calculation, laboratory tests, field test or different project stages). Therefore, this 
limited information from different sources should be appropriately incorporated into the stability analysis to assist  
the design and decision-making process. In this context, random sets arise as a powerful tool to combine different 
sources of information and to perform a reliability assessment under limited information. This feature makes it possible 
to update the probability of failure as new evidence is available. With this framework, this paper presents a reliability 
assessment of wedge stability in a rock slope of a sandstone quarry, located in Une Cundinamarca, where information 
on mechanical and geometrical parameters has been collected for 20 years. This approach allowed to update the 
probability of failure. As a result, an updated probability of failure raging between 0.04 and 0.25 was calculated.
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Actualización de la probabilidad de falla en cuñas de roca
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En rocas duras, las discontinuidades controlan la estabilidad de los taludes. La posición relativa entre las 
discontinuidades y el talud define el mecanismo de falla más probable. Entre estos mecanismos, la falla en cuña es uno 
de los más comunes. La estabilidad de las cuñas está controlada por la orientación de los planos de discontinuidad, 
la geometría y orientación del talud, las fuerzas externas (incluyendo presión de agua y sismo) y las propiedades 
mecánicas de las discontinuidades. La determinación de estas propiedades no es sencilla, debido a su variabilidad y 
cantidad limitada de información. Además, en muchos proyectos de ingeniería la información proviene de diferentes 
fuentes, tales como la opinión de expertos, retro-análisis, ensayos de laboratorio y pruebas de campo, en diferentes 
etapas de proyectos. Por lo tanto, los modelos de análisis deben ser capaces de incorporan información con estas 
características, para asistir el proceso de toma de decisiones en los proyectos de ingeniería. En este contexto, la 
teoría de los conjuntos aleatorios se constituye en una herramienta apropiada para combinar diferentes fuentes de 
información y efectuar análisis de confiabilidad cuando se tiene información escasa de los parámetros de entrada 
del modelo. Esta característica hace posible la actualización de la probabilidad de falla, a medida que aparece nueva 
información. Con este marco de referencia, este trabajo presenta el análisis de confiabilidad de la estabilidad de cuñas 
en una mina de arenisca, localizada en Une, Cundinamarca, donde se ha recolectado información durante 20 años. 
Este análisis permitió actualizar la probabilidad de falla. Como resultado se obtuvo una probabilidad de falla en un 
rango entre 0.04 y 0.25.
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Introduction

Wedge failure is a kinematically controlled mechanism of failure, in 
which the relative position of joint and slope planes controls the stability. This 
mechanism is widespread in both highway and open pit excavations. Limit 
equilibrium (LE) is a suitable approach to calculate the stability of potentially 
unstable rock wedges. LE provides a closed form solution to well-defined 
wedge geometry to calculate the factor of safety, which is convenient when 
performing a reliability assessment.

Although LE provides a practical solution to the problem of wedge 
stability, the inputs determination is not straightforward, since rock mass is a 
heterogeneous material, in which properties change from point to point. This 
variability introduces uncertainty to the model. Moreover, in mining projects, 
new and variable information is available, as the exploitation progresses. 
Considering that the information is variable, different results are obtained at 
different stages of the project operation. Hence, in this sort of projects, the 
decision-making process should be a dynamic task, assisted by geotechnical 
models able to incorporate new information and to update the results.

There are several alternatives to cope with uncertainty. For engineers, 
the most popular alternative is the purely probabilistic approach, with some 
documented drawbacks; the actual meaning of the probability of failure and 
the need for information, which is not available in most geotechnical projects 
(Oberguggenberger, 2012). Therefore, alternative and more flexible approaches 
have been developed to deal with uncertainty under limited information (Couso, 
Dubois, & Sánchez, 2014).

These alternative approaches are based on interval analysis and correspond 
to imprecise probabilities techniques. Among these techniques, the random sets 
theory (RST) is a suitable tool to perform reliability assessment in geotechnical 
problems, including the input parameters as intervals (Oberguggenberger, 
2012). RST, also, offers a systematic way to combine different pieces of 
evidence and adjust the reliability assessment results, at different stages of the 
project. This combination is performed according to the mixing (or averaging) 
of evidence rule, under the evidence theory framework (Sentz & Ferson, 2002).

The concept of RST as presented in this document corresponds to 
the interpretation of Dempster (1967) of the Belief function as the lower 
probabilities induced by a multivalued mapping. According to this approach, 
a multivalued mapping from a probability distribution generates a set-valued 
random variable, that is a more complex object than the standard random 
variable. The original work developed by Dempster was reinterpreted and 
generalized by Shafer (1976) to develop their evidence theory, which building 
block is the probability distribution on the power set of a finite set (Couso et al., 
2014), i.e., a random set.

Although before Shafer’s (1976) work there were no practical 
applications of RST, since 1990’s there has been a geometrical growth on the 
number DST applications (Beynon, Curry, & Morgan, 2000).  Some examples 
of the most recent publications on the topic include measuring uncertainty in 
big data (Dutta, 2018), multisensor-based activity recognition in smart homes 
(Al Machot, Mayr, & Ranasinghe, 2018), skin diseases (Khairina, Hatta, 
Rustam, & Maharani, 2018), cancer detection (Kim et al., 2018), fault in power 
transformers (Kari et al., 2018), heritage evaluation (Liu, Zhao, & Yang, 2018), 
thermal plants monitoring (Moradi, Chaibakhsh, & Ramezani, 2018) and 
chemical risk assessment (Rathman, Yang, & Zhou, 2018). These are just a few 
examples to illustrate how relevant is this approach to handle decision making 
under uncertainty. 

The number of publications on the geotechnical is not comparable to 
other fields like AI or medicine. However, there is a growing interest of the 
geotechnical community in involving the evidence theory in the decision-
making process. The first application attempted to predict the rock mass response 
around a tunnel excavation (Tonon, Mammino, & Bernardini, 1996). Likewise, 
Tonon, & Bernardini (1999) pursued the problem of optimization of the lining 
using RST and fuzzy sets. Subsequently, Tonon, Bernardini, & Mammino 
(2000) presented an application to compute rock mass parameters (RMR) of 
rock masses. Moreover, Tonon, Bernardini, & Mammino (2000b) performed 
plane failure analysis and tunnel lining design with simple explicit models 
using RST and Monte Carlo simulation. They also showed the advantages 
of using the concept of strictly monotonic functions to reduce the number of 
computations, which reduces the computational cost of this approach.

A framework to develop a reliability assessment of geotechnical 
problems by finite element methods and RST was developed by Peschl (2004). 
This work presents a comprehensive methodology to perform reliability 
assessment, in which inputs are expressed as random sets, leading to a bounded 
probability function for the finite element model results, e.g., displacements. 
This application was named random sets finite element method, RS FEM. 
Subsequently, related documents have been published with applications of the 
RS FEM (Schweiger & Peschl, 2005; H. F. Schweiger & Peschl, 2004, 2005). 
Besides, this method has been applied to the analysis of tunnel excavations 
(Nasekhian & Schweiger, 2011).

Klapperich, Rafig, & Wu, (2012) and, Shen, & Abbas (2013) combined 
RST with the distinct element method to assess the stability of rock slopes. In 
this case, the deterministic reference model is run using the discrete element 
software UDEC (Cundall, 1980), according to the realizations defined by the 
combinations of the input random sets. With the results, cumulative probability 
distributions were computed.

In this context, this paper presents the RST as an alternative to deal with 
uncertainty, under limited information. The approach is applied to evaluate 
the stability of wedges in a sandstone quarry located in Une, Cundinamarca, 
Colombia, that has been under operation for 20 years. Thus, as new information 
is available, the analysis is updated.

The first part of the paper presents a description of the wedge LE model 
selected. Subsequently, a brief description of RST is offered, along with an 
approach to perform sensitivity analysis and the combination of evidence. 
A practical example at a sandstone mine in Une, Cundinamarca, Colombia is 
presented using this approach. Lastly, based on the results, conclusions are drawn.

This research aims at contributing to the process of rock slope stability 
analysis by considering one mechanism of failure (wedge failure). Nevertheless, 
the design of a rock slope is a very complex task, in which several mechanisms 
of failure and triggering factors are involved. Hence, additional work on random 
sets applied to rock slope stability is required.

Wedge stability model

The geometry of the wedge analyzed in this project is defined by four 
planes; two discontinuities and two free surfaces (slope face and upper slope) 
as shown in Fig. 1(a). Tension cracks are not explicitly considered. The stability 
assessment of wedges implies the formulation of equilibrium of forces in a 
three-dimensional space. This problem has been solved by using stereographic 
projections (Goodman & Taylor, 1966; Hoek, Bray, & Boyd, 1973; and 
Goodman, 1995).

However, when a reliability assessment is performed, a closed-form 
solution is more suitable because several realizations of the model should 
be computed. Low (1979) developed a closed-form equation without using 
graphical assistance; subsequently, Einstein & Low (1992) extended this 
solution considering an inclined upper slope. The approach has been applied to 
perform wedge failure reliability assessment (Einstein & Low, 1992; Jimenez-
Rodriguez, Sitar, & Chacón, 2006; Low, 1997; Low & Einstein, 2013). The 
reliability of wedges has also been studied considering multiple correlated 
failure modes (Li & Zhou, 2009; Li et al. 2009) and knowledge-based clustered 
partitioning approach (Lee et al., 2012).

The solution proposed by Low (1979) was selected to account for the 
uncertainty in this work since it is convenient to perform several realizations of 
the model. A brief description of this proposal is given below. 

The model can analyze four modes of failure in this sort of wedges: failure 
along the intersection of both joint planes, failure along either joint plane 1 or 
plane 2 (the planes order selection is arbitrary), and lifting failure. The factor of 
safety (FS) for this mode can be calculated according to Eq. (1) (Low, 1997):
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F m Aii x li

* = ( )
≤∑ :

    (7)

In other words, to obtain the left envelope (upper bound), the distribution 
function of each interval in the calculation matrix is assumed to be concentrated 
at the lower bound of each focal element. On the other hand, for the right 
envelope (lower bound) the probability mass for each interval is assumed to 
be concentrated at the upper bound of the interval (Schweiger & Peschl, 2005). 
The bounded distribution function defined by the upper and lower bounds is 
referred to as BDF.

The following example illustrates the concept of a random set. Let assume 
a layer of sandstone, from which four block samples were taken. From each 
block, two cores were taken and tested to measure the uniaxial compressive 
strength, UCS. Due to local regulations, two different laboratories tested  
the samples. However, design engineers have more confidence in the results 
from laboratory 1, because it provides certified testing services, while the 
second does not. Table 1 summarizes the test results.

Table 1. Results from UCS tests

UCS1 (MPa) UCS2 (MPa)

Laboratory 1*

Block 1 53.2 57.9

Block 2 49.3 51.8

Block 3 54.3 55.9

Laboratory 2 Block 4 60.1 66.3

*Certified laboratory

Based on their experience and judgment, the design team defined a 
random set for the sandstone uniaxial compressive strength, UCS, like the one 
shown in Table 2. Such a random set has four focal elements, Ai, defined by the 
strength intervals resulting from each sample. The set of these intervals forms 
the support of the random set. Moreover, each focal element has a probability 
attached, i.e., the probability assignment, m. The probability was assigned 
based on the reliance of engineers on each laboratory. In this example, the  
results from each block define the random set. However, the selection of  
the focal elements and probability assignments should be the result of sound 
engineering judgment.

Table 2. Random set defined for the UCS of the sandstone

Focal element
Interval bounds Probability 

AssignmentUCS, MPa

1 53.2 57.9 0.3

2 49.3 51.8 0.3

3 54.3 55.9 0.3

4 60.1 66.3 0.1

In which: 
Ø1 and Ø2 are the friction angles of planes 1 and 2, respectively 
c1 and c2 correspond to the cohesion of planes 1 and 2, respectively 
GW is the water pressure coefficient of a pyramidal distribution, as shown  

        in Fig. 1(b)
Α is the slope face inclination
h is the slope height, and Hb is the total height, including the upper slope  

       with inclination Ω
a1, a2, b1 and b2 are geometric coefficients; a function of the following  

       angles (for a detailed description see (Low, 1997))
β1 is the horizontal angle between the strike line of plane 1 and the line of  

        intersection between the upper ground surface and the slope face. Idem for  
       β2 in plane 2 (Jimenez-Rodriguez, Sitar & Chacon, 2006)

δ1 and δ2 are the dip angle of plane 1 and 2 respectively
ε is the inclination (plunge) of the line of intersection between planes
sᵞ is the specific weight of the rock

Random Sets Theory

Definition
To define a random set, suppose that M observations were made of a 

parameter u  U, each of which resulted in an imprecise (non-specific) 
measurement given by a set A of values. Let ci denote the number of occurrences 
of the set Ai  U, and φ(U) the set of subsets of U. A frequency function m can 
be defined such that (F. Tonon et al., 2000a):

 = = …{ }A nii : , ,1     (2)

m U: ,( ) →  0 1     (3)

 U( ) = 0      (4)

m A A Uii

n
( ) = ∀ ∈

=∑ 1
1

,    (5)

φ is called the support of the random set, the subsets Ai are the focal 
elements and m is the basic probability assignment. A pair (φ, m) defines a 
random set. Each set, Ai  φ, contains possible values of the variable, u, and 
m(A) is the probability associated with A (H. F. F. Schweiger & Peschl, 2005).

When working in the space of real numbers, the support of the random 
set, φ, is given by intervals, with their corresponding probability assignment. 
In this paper, the uncertain parameters are considered as intervals (rock 
mechanical properties and joints geometry), without any specific information 
related to the distribution or variation between the extremes of the interval, 
along with the probability assignment.

Accordingly, if the focal element Ai is a closed interval of real numbers 
expressed as: A x x l ui i i= ∈ { }| , , the lower F*( ) and the upper F*( ) cumulative 
probability distribution functions (probability function) can be computed as 
follows (Peschl, 2004):

F m Aii x ui
* :

= ( )
≥∑     (6)

(a) Tetrahedral wedge model (Jimenez-Rodriguez et al., 2006) (b) Pyramidal water pressure distribution

Figure 1. Wedge model selected for stability assessment
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As for the probability assignment of the output, if A1, …, An are sets on 
X1 × … × Xn, respectively, and x1, …, xN  are random independent sets, then the 
joint probability assignment is measured by:

m A A m A A A RN i

N
i i N1 1 1×…×( ) = ( ) ×…× ∈

=∏ ,  (13)

The bottom line is that RST allows involving the inputs into the problem 
as random sets, through a function or a model (in this case, the wedge slope 
factor of safety function, Eq. (1)) to obtain a bounded distribution function 
(BDF) of the response. A diagram of that process is depicted in Fig. 3.

A complete description of the theoretical background of RST and its 
applications can be found in Bernardini and Tonon (2010).

Combination of random sets
According to the concepts just presented, RST offers an alternative to 

performing reliability assessment concerning intervals and probabilities, when 
limited information is available. This approach also offers an alternative to 
systematically include new information to adjust or update the cumulative 
probability functions.

The problem of combining several pieces of information is addressed 
by Dempster-Shafer Theory of evidence (DST) (Shafer, 1976) and is suitable 
to consider the limited information when it  has both epistemic and aleatory 
uncertainty (Sentz & Ferson, 2002), even when expert opinion is involved 
(Torkzadeh-Mahani et al., 2018). This is the case that is assessed in this paper, 
which deals with information from different sources, at different stages of the 
project (pieces of information).

The primary goal of aggregation or combination of information is 
simplifying or summarizing information that comes from several sources into 
one set of evidence (Sentz & Ferson, 2002). In a DST framework, each piece 
of information is expressed as a random set and then combined with other 
pieces of information by redefining the focal elements and allocating different 
probability assignments. There are several rules to combine information, which 
differentiate on the way to allocate the probability assignment. For a detailed 
description of evidence combination rules under DST see Sentz & Ferson 
(2002) and some examples applied to engineering problems can be found in 
Zargar et al. (2012) 

With the random set, the bounded probability distribution function (BDF) 
for the UCS of the sandstone can be constructed according to Eqs. 6 and 7. 
Fig. 2 shows the BDF, where the original focal elements bounds are explicitly 
marked. Here, the orange and green lines represent the lower (right) and upper 
(left) bounds of the UCS BDF, respectively.

Function of random sets
Once the random sets of input parameters are defined, three main tasks 

should be performed to compute a bounded distribution function (BDF) of the 
assessed system. Firstly, the image (output) of the input random sets through a 
function f has to be established. Subsequently, a probability assignment should 
be assigned to the computed image. Finally, a bounded cumulative distribution 
function of the output is calculated, according to Eqs. 6 and 7. Below, a brief 
description of these steps is presented.
Assume a random set (R, ρ), which is the image of (T, m) through a function f. 
The set (R, ρ) is described as follows (Schweiger & Peschl, 2005):

R R f A A Tj i i= = ( ) ∈{ },� � �    (8)

f A f x x Ai i( ) = ( ) ∈{ },�     (9)

 R m Aj iAi Rj f ai
( ) = ( )

= ( )∑ :    (10)

Assuming that the function f(Ai) is continuous in all Ai  T, and no 
extreme points exist in this region, except at the vertices, the vertex method 
applies to calculate the image (R, ρ) of the input random set through the 
function f (Schweiger & Peschl, 2005). Assume each focal element Ai is an 
N-dimensional box, whose 2N vertices are indicated as vk, k = 1,… ,2N. If the 
vertex method applies then, the lower and upper bounds Rj*  and Rj* on each 
element Rj  R will be located at one of the vertices (Schweiger & Peschl, 
2005).

R f v kj k
N

* min : , ,= ( ) = …{ }1 2    (11)

R f v kj k
N* max : , ,= ( ) = …{ }1 2    (12)

Figure 2. Bounded probability function built from UCS tests
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For this paper, the mixing or averaging method was selected, since this 
technique generalizes the averaging operation frequently used for probability 
distributions, which is regarded as a natural method of aggregating probabi-
lity distributions. Hence, it is reasonable to consider this approach to average 
random sets. This combination rule has been applied to geotechnical problems 
including the finite elements method (Peschl, 2004). A brief description of this 
rule is given below.

Let suppose a rock slope excavated in different stages, before getting 
the final configuration. At each stage, information on joints geometry and 
joint mechanical properties are collected. Therefore, the information of  
any parameter Z is described by a random set (e.g., the friction angles are 
described by intervals with their corresponding probability assignment). 
Suppose there are n stages, so the variable is described by n alternative random 
sets, each one corresponding to an independent source of information. The 
method modifies the probability assignments, mi, as follows:

m A
n

w m An i ii

n
1 1

1
… =

( ) = ( )∑*    (14)

In which wi are weights assigned according to the reliability of the sources 
and mi* is the probability assigned to the combined focal element.

Sensitivity Analysis
To compute the distribution functions, selection of the most influencing 

variables is required. These variables are modeled as random sets, while the 
others as deterministic, which is a crucial step since the number of random sets 
defines the number of realizations of the model. For instance, if there are N 
random variables, each one with k focal elements, the number r of realizations 
of the model would be:

r kN N= 2 *      (15)

The sensitivity analysis also allows knowing the variation of the response 
of the model with the different variables. With this information, the proper 
combination of input variables can be defined at each N-dimensional box to 
define the maximum and minimum results of the model, without computing 
every combination at that box. Hence, the number of computations reduces to:

r kN= 2*      (16)

To perform reliability assessment in geotechnical problems applying 
the concept of RST, Peschl (2004) adopted a methodology based on a central 
difference approach, in which a sensitivity ratio (ηSR) is computed (EPA, 2002).

SR

L R

L R

f x f x
f x

x x
x

=

( ) − ( )
( )

−

,

,

    (17)

Where x is the reference value, xL,R and f(x) and f(xL,R ) are the outputs of 
the functions at those points. The sensitivity ratio is local, varying xL a small 
amount from the reference value, and general changing xR across the whole 
range. Therefore, if there are N variables, ηSR should be computed 4N+1 times.

The sensitivity ratio is normalized according to Eq. (18), then a total 
relative sensitivity index (α(xi )) is computed for each input variable. The last 
latter index varies between 0 and 1 and measures the influence of a given 
variable in the function. The higher α(xi ), the more the influence of the variable 
in the output.

 SS SR
R Rx minx
x

=
−( )

*
max (18)

α
η

η
xi

SS i

i

N
SS i

( ) =
∑

∑
=∑

,

,1

(19)

Figure 3. Overview of RST computation process
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The sensitivity analysis also provides a few realizations of the model, 
within a representative interval. Hence, it is possible establishing the local 
variation of the function for each input variable. In other words, the sensitivity 
analysis allows to establish if the model is increasing or decreasing concerning 
a variable, within an interval, which reduces the number of computations to 
define the upper and lower bounds for combinations of focal elements.

Example Analysis

The concepts just presented related to wedge failure and RST were applied 
to a sandstone mine situated in Une, Cundinamarca, Colombia. This mine is in 
a sedimentary rock mass, formed mainly by alternating layers of sandstone and 
shales. The mine has been operated since 1990ies until nowadays. 

Fig. 4(a) shows the surface geology of the mine and the points where 
planes orientation were collected in 2011 (blue) and 2016 (black). The 
descriptions of the lithologies is included in Fig. 5. Besides, Fig. 4(b) presents 
a picture of the rock mass, in which the joint and bedding planes are shown on 
a stable rock slope.

During its operation, a detailed geological and geotechnical monitoring 
has been carried out at the mine slopes. As a result, a complete data set on 
joints dip and dip direction is available. Besides, a few results of mechanical 
tests like unconfined compression strength (UCS) and shear behavior along 
discontinuities were collected. The first information was collected in 1997 
when the operation started. Then in 2011 a detailed geotechnical assessment to 
update the mine design was carried out, which included a back-calculation of 
a rock slope failure reported in 2000. Finally, as part of a research project, new 
information was collected in 2016.

Table 3 shows the results of strength parameters along discontinuities in 
shale layers. In regarding these results, some values of cohesion were measured 
in the laboratory. As for the samples tested in 2016, the cohesion is apparent 
and associated with the texture of the joint, rather than any filling within the 
joint. No information is provided related to cohesion from samples collected 
in 1997 and 2011.

Table 4 summarizes joint planes dip and dip direction and slope geometry. 
Sources of information listed in Tables 3 and 4 are assumed to be independent. 
In this case, this assumption is reasonable, since the information was collected 
at different times, by different groups of people and with different tools.

(a) Points in blue and black show the location where orientations were collected  
in 2011 and 2016, respectively

(b) Joint and bedding planes considered for the wedge model  
on a stable rock slope face

Figure 4. El Pedregal Mine surface geological features and general view of the rock mass

Figure 5. Description of lithological sequence reported in El Pedregal Mine
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β β
θ

u l,
,= ± 40 90

2
    (21)

where,
αu,l is the upper or lower dip direction
α is the current mean dip direction
βu,l is the upper or lower dip 
β is the current mean dip 
θ40,90 angle of the probability region (either for 90% or 40% of the  

          probability)
Subsequently, the factor of safety was computed for each piece of 

evidence for the combinations defined by the focal elements of each random 
set. Regarding this, it is worth to highlight that:

•	 There are three random sets, one for each uncertain variable (i.e., 
bedding dip, dip direction, and friction angle). Each combination 
of input focal elements defines a 3D-box, in which the factor of 
safety should be computed 8 times, to define the bounds of the 
factor of safety (FS*i, FS*i) linked to that specific focal element 
combination, according to Eqs. 11 and 12. 

Table 3. Mechanical properties measured on rock joints

Year Sample
Peak 

cohesion 
(kPa)

Residual 
Cohesion 

(kPa)

Peak 
friction 
angle (°)

Residual 
friction 
angle (°)

Unit 
weight 

(kN/m3)

1997 1 32.5 2.9 22.5 22.0 26.2

8.2 - 29.5 - -

2 - - 26.3 17.6 23.6

7.8 - 23.6 - -

2011 1* - 18.0 - 18.0 26.0

- 6.0 - 20.0 -

1 87.3 39.6 29.2 23.9 24.3

2 89.2 25.5 34.8 32.8 23.6

3 17.6 - 40.4 36.6 23.9

2016 1 48.0 - 31.8 - 24.2

2 69.0 - 22.0 - 24.8

3 97.0 - 18.5 - 24.8

*From the back analysis

Table 4. Joint plane and slope mean parameters

Plane Dip direction (°) Dip (°) Height (m)

Bedding 306 26 -

Joint set 1 57 82 -

Slope 329 70 25

Once the input information is defined, the steps followed to perform an 
update the probability of failure is depicted in Fig. 6. At this point, it is important 
to highlight that two types of information can be distinguished. Firstly, there are 
just ten results on strength parameters of the rock masses, collected for 20 years, 
while there are 967 poles measured during the same period.

The wedge failure model selected for this paper has been developed for 
wedges delimited by two joint sets, the slope face and the upper slope. Based 
on this information, the model has 13 variables, including geomechanical and 
geometrical variables.

Results

With the slope model and input variables fully established, the next step 
is to define the most influencing variables on the wedge response, which is 
accomplished by the sensitivity analysis described in section 3.3. Therefore, the 
factor of safety was computed with Eq. (1), and the weighted sensitivity indexes, 
αi, were computed and plotted in Fig. 7(a). The three variables with the highest 
αi were selected as random sets and the rest as deterministic. Hence, the random 
sets are the dip and dip direction of the bedding, as well as, its friction angle.

Next step is defining the input random sets. In regarding friction 
angle, assumptions are required because few data are available. Hence, for 
the information collected in 1997 and 2011, the random sets were defined 
considering that the actual value of the friction lies somewhere between the 
peak and the residual friction. These values are conservative compared with 
the focal elements selected for 2016, in which only peak friction angle was 
considered, as there are no residual values reported. Table 5 shows the selected 
random sets.

Conversely, vector information on joints orientation and dip were pre-
processed to be expressed as intervals. Considering that these data are vectors, 
they were assumed to fit a Fisher distribution. This distribution assumes that a 
population of poles is distributed around a true orientation (Fisher, 1953). Then, 
angles for confidence regions of 40% and 90% around the true orientation were 
calculated based on the measured orientations. Afterward, new interval bounds 
were defined as follows (see Table 6):

α α
θ

u l,
,= ± 40 90

2
    (20)

Figure 6. The methodology applied to compute and update  
the probability of failure
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•	 The number of computations of each box reduces from 8 to 2, as 
the sensitivity results explicitly showed the trends of the factor 
of safety, as each variable changes. Therefore, FS*i is obtained 
by combining the highest friction, along with the lowest dip and 
dip direction; and FS*i by including the lowest friction angle,  
and the highest dip and dip direction. The influence of bedding dip 
direction on wedge stability is shown in Fig. 7(b).

The next step is combining different sets of evidence to update the 
bounded probability of failure computed according to random sets. The pieces 
of evidence were combined as follows:

•	 The mixing or averaging rule was applied
•	 At each period, the information was combined sequentially
•	 Then, the information at each period was combined until all sources 

of information were aggregated

(a) Relative Sensitivity Index for Rock Wedge Failure (b) Effect of bedding plane dip direction on the factor 
of safety

Figure 7. Sensitivity analysis results

Figure 8. Bedding dip. Aggregation of 1997 information by mixing rule

Table 5. Input random sets on bedding plane friction angle

Year
Bedding plane friction angle (º)

Lower Upper PA*

1997

22.0 22.5 0.33

22.0 26.3 0.33

17.5 23.6 0.34

2011

23.9 29.2 0.33

32.8 34.8 0.33

36.6 40.4 0.34

2016
22.0 31.8 0.50

18.5 22.0 0.50

*Probability Assignment

Figure 8 shows a sample of the bounded cumulative density function 
(BDF) associated with the bedding dip collected in 1997. From that, it can 
be concluded that the information is very conflicting since source 1 yields 
dip measurements up to three times higher than those reported by sources 2 
and 3. The aggregated information combined by the mixing rule (plotted in 
black) re-allocates the probability assignment of the original focal elements. 
As a result, a more robust (higher number of focal elements) set of inputs is 
available. However, this combination rule does not account for the conflicting 
information; it averages the original probability assignments.

Figure 9 presents a step forward in the evidence combination (updating). 
Here again, the bedding dip is depicted, but in this case, the updating sequence 
is shown. First, in black is the already 1997 combined information. Then, in 
green the information from 1997 aggregated with the data collected in 2011 is 
shown. Finally, in red is the latter set, now updated with the evidence collected 
in 2016. With this last robust random set, the updated wedge factor of safety 
can be computed.

Regarding the friction angle, the amount of information is much smaller, 
since there is only one piece of information at each period (see Table 5). Because 
of this, a smaller updated random input set is obtained as can be seen in Fig. 10.



233Updating the probability of failure of rock wedges

Figure 11 depicts the BDF for the wedge factor of safety computed with 
the evidence collected in 1997 First, results with the information considered 
separately are plotted in red, green and magenta for the sources 1, 2 and 3, 
respectively. These curves reflect the conflict linked to the input parameters, 
since the factor of safety is highly variable, depending on the considered source  
of information. The lowest factors of safety are obtained from the first  
source 1997-1 (red) that has the highest dip and dip direction measurements. On 
the contrary, the highest factor of safety comes from the piece of evidence 1997-
2 (green), which combines the lowest dip with the lowest bedding dip direction.

Considering the evidence collected in 1997 separately might lead to a 
biased conclusion on the actual stability condition of the rock wedge. If the 
information first collected (1997-1) is involved, a conservative conclusion 
is drawn, while 1997-2 source could be riskier. This issue justifies the need 
for combining information, to get a more reliable representation of the actual 
stability condition.

In Figure 11, the black curves represent the factor of safety obtained when 
the combined input random sets are considered. These lines balance the biased 
information provided by independent sources and a result in between the most 
conservative and the riskiest BDF is obtained. This sort of response is directly 

Table 6. Input random sets on bedding dip and dip direction

Year ID

Bedding

Dip direction (°) Dip (°)

Lower Upper PA Lower Upper PA

1997

1

313 318 0.25 27 32 0.25

318 323 0.25 32 37 0.25

323 328 0.25 37 41 0.25

328 333 0.25 41 47 0.25

2

273 281 0.25 6 13 0.25

281 293 0.25 13 25 0.25

293 305 0.25 25 37 0.25

305 312 0.25 37 45 0.25

3

286 296 0.25 5 15 0.25

296 305 0.25 15 23 0.25

305 313 0.25 23 32 0.25

313 323 0.25 32 42 0.25

4

300 305 0.25 11 16 0.25

305 312 0.25 16 23 0.25

312 319 0.25 23 29 0.25

319 324 0.25 29 35 0.25

2011

1

295 300 0.25 10 16 0.25

300 307 0.25 16 22 0.25

307 314 0.25 22 29 0.25

314 319 0.25 29 34 0.25

2

281 286 0.25 13 18 0.25

286 293 0.25 18 24 0.25

293 299 0.25 24 31 0.25

299 304 0.25 31 38 0.25

2016

1

288 293 0.25 18 20 0.25

293 299 0.25 20 22 0.25

299 304 0.25 22 24 0.25

301 310 0.25 24 26 0.25

2

313 318 0.25 27 32 0.25

318 323 0.25 32 37 0.25

323 328 0.25 37 41 0.25

328 333 0.25 41 47 0.25

Figure 9. Bedding dip. Step by step evidence combination

It is important to clarify that as new information is included, the number 
of input random sets increases. Hence, the number of computations required 
to define the probability of failure also increases. As an example, for the first 
piece of information collected in 1997, there were three input random sets, each 
one with 3 or 4 focal elements, which brings 384 computations of the factor of  
safety. This number is reduced to 96 since the sensitivity analysis helped to 
clarify the variation of the factor of safety with the input random variables. 
When all the evidence is combined, 50176 computations are required, which 
are reduced to 12544.

This difference in the number of computations does have a relevant 
influence when more complex computation techniques are involved (e.g., 
finite elements or discrete elements) since the linked computational cost will 
constraint the number of computations of the model. 

The probability of failure is computed from the bounded distribution 
function defined for each assessed scenario, as the number of realizations that 
threw a factor of safety lower than 1.0

Figure 10. Bedding friction angle. Aggregation of information, only one 
source per period
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linked to the combination rule utilized to aggregate (update) the pieces of 
evidence, which basically averages the probability assignments of the original 
random sets.

The averaging effect of the mixing combination rule is much more 
evident when the input pieces of evidence are more consistent (less conflicting) 
than those from 1997, which is the case of the information collected in 2011 
and 2016. The resulting BDF are plotted in Figs. 12(a) and 12(b), respectively. 
As can be seen, the combined curves (in black) are located entirely in between 
the curves gotten from the individual sources. In fact, information collected in 
2011 yields the best agreement between BDF computed from individual and 
aggregated pieces of evidence. These pieces of evidence are the least conflicting 
(See Tables 5 and 6).

In Figure 13 the factor of safety BDFs resulting from the combination of 
the information at each period 1997 (red), 2011 (green), and 2016 (magenta) 
are plotted. There is a noticeable difference, particularly between the results of 
1997 and 2011, the earlier is more conservative than the latter. 

The already aggregated information at every year can be considered as 
single new pieces of evidence that can be again mixed, to produce more robust 
input random sets to compute an updated BDF. The result of this task is the 
BDF plotted in black in Figure 13. That curve subsumes all the information 

available on input parameters until 2016. Again, the aggregated information 
balances the results and reflects the nature of the combination rule.

It is also important to remark that when the whole body of information is 
considered, the probability function, more than discrete, resembles a continuous 
probability function that might represent a probability box (Ferson et al. 2003). 
This is because the number of focal elements included for the RST analysis is 
28 on bedding geometry and 8 on joint friction angle, so the BDF is the result 
of 12544 computations of the model.

So far, a noticeable difference in the cumulative probability function of 
the factor of safety has been presented. Now, to make it more objective, the 
probability of failure when considering different sources of information has 
been computed and included in Table 7 for FS<1.0. This chart shows different 
probabilities of failure as different pieces of evidence are considered, e.g., for 
the information from source 1 in 1997, the probability of failure ranges between 
67% and 100%, therefore failure is almost sure. On the other hand, the source 
2 of the information collected in 1996 yields a probability of failure of 0, 
which is not true, since a slope instability was already reported in 2000. When 
combining all available information, a probability of failure between 4% and 
25% is computed.

Table 7 Computed probability of failure

Year
Probability of failure (%)

Source Lower Upper

1997

1 67 100

2 7 28

3 5 35

Combined 18 52

2011

1 0 8

2 0 6

Combined 0 6

2016

1 0 9

2 0 0

Combined 0 7

Combined 4 25Figure 11. Factor of safety BDF computed with the evidence collected in 1997

(a) Computed with the evidence collected in 2011 (b) Computed with the evidence collected in 2016

Figure 12. BDF for the factor wedge stability factor of safety
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Conclusions
In this paper, an alternative to compute and update the probability of 

failure of rock wedges under the random sets theory was presented. The method 
was applied to a sandstone mine located in Une, Cundinamarca that has been 
monitored for 20 years and has relevant geotechnical information collected in 
1997, 2011 and 2016. The most important findings from this work were:

•	 RST allows obtaining bounded probability curves from the available 
information, even when this is limited to a few data. Besides, RST 
allows updating the BDF as new information is available. These 
two aspects make the RST suitable to be applied in rock mechanics 
problems where the information is limited, conflicting and new 
information appears as the project progress.

•	 When the pieces of evidence (or sources of information) were 
considered separately, noticeable differences in the BDF were ob-
tained, which justified the need for aggregating the information 
into a representative set of mixed evidence. 

•	 The BDF of the factor of safety computed for the combined 
(updated) evidence balances the results obtained from individual 
sources and reflects the combination rule utilized to aggregate the 
different pieces of available evidence. In this case, the applied 
combination rule was the mixing or averaging.

•	 The sensitivity analysis arises as a powerful tool to reduce the 
number of variables to be expressed as random sets, which brings 
a reduction in the total number of realizations to calculate the BDF. 
This is very important when complex numerical techniques are 
involved, since its high computational cost constraints the feasible 
number of model realizations.

•	 Random sets theory, as presented in this paper, is an alternative to 
systematically include new information in the design process as it is 
available, which allows to update the model predictions and to assist 
the decision making at different project stages. Nevertheless, sound 
engineering judgment is required to define the input random sets.

It is important to highlight that the design of a rock slope is a complex 
task, in which several mechanisms of failure and triggering factors should be 
considered. In this context, this research contributes to that complex task by 
considering the wedge mechanism of failure when limited information from 
several sources is available. However, further work on random sets applied 
to rock slope stability is required to extend this approach to more general 
applications.

Acknowledgments
Authors want to thank Universidad Nacional de Colombia for the technical 

support given through the Civil and Agricultural Engineering Department, 
to Colciencias for the funding provided through contract FP44842-208-2015 
and, to Gravillera Albania S.A. for its assistance during the field work and the 
secondary information provided. 

References
Al Machot, F., Mayr, H. C., & Ranasinghe, S. (2018). A Hybrid Reasoning 

Approach for Activity Recognition Based on Answer Set Programming 
and Dempster–Shafer Theory. Recent Advances in Nonlinear 
Dynamics and Synchronization, 303–318. 

Bernardini, A., & Tonon, F. (2010). Bounding Uncertainty in Civil Engineering 
- Theoretical Background. Springer Science & Business Media. 

Beynon, M., Curry, B., & Morgan, P. (2000). The Dempster–Shafer theory 
of evidence: an alternative approach to multicriteria decision 
modelling. Omega, 28(1), 37–50. https://doi.org/10.1016/S0305-
0483(99)00033-X

Couso, I., Dubois, D., & Sánchez, L. (2014). Random Sets as Ill-Perceived 
Random Variables. In  Kacprzyk, J. (Editor). Random Sets and 
Random Fuzzy Sets as Ill-Perceived Random Variables, Springer 
International Publishing, 7-45.

Cundall, P. A. (1980). UDEC - A generalized distinct element program for 
modelling jointed rock. No. PCAR-1-80, Cundall (Peter) Associates 
Virginia Water, England. 

Dempster, A. P. (1967). Upper and Lower Probabilities Induced by a 
Multivalued Mapping. The Annals of Mathematical Statistics, 38(2), 
325–339.

Dutta, P. (2018). An uncertainty measure and fusion rule for conflict evidences 
of big data via Dempster–Shafer theory. International Journal of 
Image and Data Fusion, 9(2), 152–169. 

Einstein, H. H., & Low, B. K. (1992). Simplified reliability analysis for 
wedge mechanisms in rock slopes. 6th International Symposium on 
Landslides, Christchurch, New Zealand, 499–507

Environmental Protection Agency (EPA) (2002). Total Risk Integrated 
Methodology (TRIM) - TRIM.FaTE. Research Triangle Park, Nort 
Carolina, US.

Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D., & Sentz, K. (2003). 
Constructing Probability Boxes and Dempster - Shafer Structures. 
Albuquerque, NM.

Fisher, R. (1953). Dispersion on a Sphere. Proceedings of the Royal Society 
of London A: Mathematical, Physical and Engineering Sciences, 
217(1130), 295-305. 

Goodman, R. E. (1995). Block theory and its application. 35th US Symposium 
on Rock Mechanics,  AA Balkema. Rotterdam. 3-15.

Goodman, R. E., & Taylor, R. L. (1966). Methods Of Analysis For Rock 
Slopes And Abutments: A Review Of Recent Developments, 8th U.S. 
Symposium on Rock Mechanics (USRMS). American Rock Mechanics 
Association, 303-320.

Hoek, E., Bray, J. W., & Boyd, J. M. (1973). The stability of a rock slope 
containing a wedge resting on two intersecting discontinuities. 
Quarterly Journal of Engineering Geology and Hydrogeology, 6(1), 
1–55.

Jimenez-Rodriguez, R., Sitar, N., & Chacón, J. (2006). System reliability 
approach to rock slope stability. International Journal of Rock 
Mechanics and Mining Sciences, 43(6), 847–859. 

Kari, T., Gao, W., Zhao, D., Zhang, Z., Mo, W., Wang, Y., & Luan, L. (2018). 
An integrated method of ANFIS and Dempster-Shafer theory for fault 
diagnosis of power transformer. IEEE Transactions on Dielectrics and 
Electrical Insulation, 25(1), 360–371.

Khairina, D. M., Hatta, H. R., Rustam, R., & Maharani, S. (2018). Automation 
Diagnosis of Skin Disease in Humans using Dempster-Shafer Method. 
E3S Web of Conferences, 31, 11006.

Figure 13. Factor of safety BDF computed with the evidence collected  
in 1997, 2011 and 2016



236 Rodrigo Hernandez-Carrillo, Gloria Beltrán

Kim, J. K., Choi, M. J., Lee, J. S., Hong, J. H., Kim, C.-S., Seo, S. Il, Jeong, C., 
Byun, S., Koo, K. Chung, B., Park, Y., Lee, J., & Choi, I. Y. (2018). 
A Deep Belief Network and Dempster-Shafer- Based Multiclassifier 
for the Pathology Stage of Prostate Cancer. Journal of Healthcare 
Engineering, 2018, 1–8.

Klapperich, H., Rafig, A., & Wu, W. (2012). Non-Deterministic Analysis of 
Slope Stability based on Numerical Simulation. Ph. D. Thesis, Faculty 
of Geosciences, Geoengineering and Mining, Technische Universität 
Bergakademie Freiberg, Freiberg, Germany.

Lee, Y.-F., Chi, Y.-Y., Juang, C. H. & Lee, D.-H., Hsein Juang, C. (2012). 
Reliability Analysis of Rock Wedge Stability: Knowledge-Based 
Clustered Partitioning Approach. Journal of Geotechnical and 
Geoenvironmental Engineering, 138(6), 700–708. 

Li, D., & Zhou, C. (2009). System reliability analysis of rock slope considering 
multiple correlated failure modes. Yanshilixue Yu Gongcheng Xuebao/
Chinese Journal of Rock Mechanics and Engineering, 28(3), 541–551.

Li, D., Zhou, C., Lu, W., & Jiang, Q. (2009). A system reliability approach 
for evaluating stability of rock wedges with correlated failure modes. 
Computers and Geotechnics, 36(8), 1298–1307. 

Liu, F., Zhao, Q., & Yang, Y. (2018). An approach to assess the value of 
industrial heritage based on Dempster–Shafer theory. Journal of 
Cultural Heritage, 32, 210-220

Low, B. K. (1997). Reliability Analysis of Rock Wedges. Journal of 
Geotechnical and Geoenvironmental Engineering, 123(6), 498–505.

Low, B. K., & Einstein, H. H. (2013). Reliability analysis of roof wedges 
and rockbolt forces in tunnels. Tunnelling and Underground Space 
Technology, 38, 1–10. 

Low, B. K.. (1979). Reliability of rock slopes with wedge mechanisms. Ph. D. 
Thesis, Massachusetts Institute of Technology, US.

Moradi, M., Chaibakhsh, A., & Ramezani, A. (2018). An intelligent hybrid 
technique for fault detection and condition monitoring of a thermal 
power plant. Applied Mathematical Modelling, 60, 34–47.

Nasekhian, Ali, & Schweiger, H. F. (2011). Random set finite element method 
application to tunnelling. International Journal of Reliability and 
Safety, 5(3-4), 299-319.

Oberguggenberger, M. (2012). Combined methods in nondeterministic 
mechanics. In: Elishakoff, I. (Editor), Nondeterministic Mechanics, 
Viena, Austria, 263–356.

Peschl, G. M. (2004). Reliability Analyses in Geotechnics with Random Set 
Finite Element Method. Ph.D. Thesis, Technische Universitat Graz, 
Graz, Austria.

Rathman, J. F., Yang, C., & Zhou, H. (2018). Dempster-Shafer theory for 
combining in silico evidence and estimating uncertainty in chemical 
risk assessment. Computational Toxicology, 16-36. 

Schweiger, H. F., & Peschl, G. M. M. (2005). Reliability analysis in 
geotechnics with the random set finite element method. Computers 
and Geotechnics, 32(6), 422–435. 

Schweiger, H. F., & Peschl, G. M. (2004). Numerical analysis of deep 
excavations utilizing random set theory. Geotechnical Innovations, 
Essen, 277–294.

Schweiger, H. F., & Peschl, G. M. (2005). Application of the random set finite 
element method (RS-FEM) in geotechnics. Plaxis Bulletin, 17, 16-21.

Sentz, K., & Ferson, S. (2002). Combination of Evidence in Dempster- Shafer 
Theory. Sandia, National Laboratories, Albuquerque, NM, US.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton Uiversity 
Press, New Jersey, NJ, US.

Shen, H., & Abbas, S. M. (2013). Rock slope reliability analysis based on 
distinct element method and random set theory. International Journal 
of Rock Mechanics and Mining Sciences, 61, 15–22. 

Tonon, F., Bernardini, A., & Mammino, A. (2000a). Determination of parameters 
range in rock engineering by means of Random Set Theory. Reliability 
Engineering & System Safety, 70(3), 241–261.

Tonon, F., Bernardini, A., & Mammino, A. (2000b). Reliability analysis of 
rock mass response by means of Random Set Theory. Reliability 
Engineering & System Safety, 70(3), 263–282. 

Tonon, F., Mammino, A., & Bernardini, A. (1996). A Random Set Approach 
to the Uncertainties In Rock Engineering And Tunnel Lining Design, 
ISRM International Symposium - EUROCK 96. Turin, Italy, 

Tonon, F., & Bernardini, A. (1999). Multiobjective Optimization of Uncertain 
Structures Through Fuzzy Set and Random Set Theory. Computer-
Aided Civil and Infrastructure Engineering, 14(2), 119–140.

Torkzadeh-Mahani, N., Dehghani, M., Mirian, M. S., Shakery, A., Taheri, 
K., Torkzadeh Mahani, N., Taheri, K. (2018). Expert finding by the 
Dempster-Shafer theory for evidence combination. Expert Systems, 
35(1).

Zargar, A., Sadiq, R., Naser, G., Khan, F. I., & Neumann, N. N. (2012). 
Dempster-Shafer Theory for Handling Conflict in Hydrological 
Data: Case of Snow Water Equivalent. Journal of Computing in Civil 
Engineering, 26(3), 434–447.


