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This paper designs a highly parallel Nested Factorization (NF) to solve large linear equations generated in reservoir 
numerical simulation problems. The NF method is a traditional linear solution preprocessing method for reservoir 
numerical simulation problems and has regained attention in recent years due to its potential to extend to parallel 
architectures such as GPUs (Graphics Processor Units). The parallel algorithm of this paper is based on the MPNF 
(Massively Parallel Nested Factorization) framework proposed by Appleya. The MPNF algorithm designed in this paper 
focuses on its efficient implementation on the GPU parallel architecture. Its features include: using a custom matrix 
structure to achieve merge access, improving access bottlenecks, and improving the efficiency of the SpMV algorithm. 
It is also applicable to the two-stage preprocessing method CPR (Constrain Pressure Residual). CPR pressures solution 
and global preprocessing stage; the MPNF method is extended to the solution of the 2.5-dimensional unstructured grid 
problem. The parallel algorithm in this paper has been integrated into the reservoir numerical simulator. For the SPE10 
(million grid, highly heterogeneous) standard example, the GPU-based parallel NF algorithm is in the structured grid 
model and the equivalent 2.5-dimensional non-on the structured grid model. Compared with the serial version of the 
NF method, the acceleration ratios of 19.8 and 17.0 times were obtained, respectively; compared with the mainstream 
serial solution method; the efficiency was also improved by 2 to 3 times.

ABSTRACT

GPU Parallelization Nested Decomposition Method for Solving Large Linear Systems in Reservoir Numerical Simulation

Método de descomposición anidada a través de paralelización con Unidades de Procesamiento Gráfico para resolver Sistemas 
Lineales Grandes en la simulación numérica de yacimientos

ISSN 1794-6190 e-ISSN 2339-3459         
 https://doi.org/10.15446/esrj.v23n3.81669

Este artículo diseña una Factorización Anidada (NF) altamente paralela para resolver grandes ecuaciones lineales 
generadas en problemas de simulación numérica de yacimientos. El método NF es un método tradicional de 
preprocesamiento de solución lineal para problemas de simulación numérica de yacimientos, y ha recuperado atención 
en los últimos años debido a su potencial para extenderse a arquitecturas paralelas como las GPU (Unidades de 
Procesador de Gráficos). El algoritmo paralelo de este artículo se basa en el marco de MPNF (Factorización Anidada 
Masivamente Paralela) propuesto por Appleya. El algoritmo MPNF diseñado en esta contribución se enfoca en 
su implementación eficiente en la arquitectura paralela de GPU. Sus características incluyen: usar una estructura 
de matriz personalizada para lograr un acceso combinado, mejorar los accesos de cuellos de botella y mejorar la 
eficiencia del algoritmo SpMV. También es aplicable al método de preprocesamiento en dos etapas CPR (solución de 
presión residual de restricción) presión solución y etapa de preprocesamiento global; el método MPNF se extiende a 
la solución del problema de cuadrícula no estructurada de 2.5 dimensiones. El algoritmo paralelo en este artículo se 
ha integrado en el simulador numérico de yacimiento. Para el ejemplo estándar de SPE10 (millones de cuadrículas, 
altamente heterogéneo), el algoritmo NF paralelo basado en GPU está en el modelo de cuadrícula estructurada y el 
equivalente de 2.5-no dimensional- en el modelo de cuadrícula estructurada, en comparación con la versión en serie 
del método NF, los índices de aceleración de 19.8 y 17.0 veces se obtuvieron respectivamente; en comparación con el 
método de solución serial convencional, la eficiencia también se mejoró de 2 a 3 veces.
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GPU parallel architecture

GPU multi-core parallel architecture has received more and more 
attention in the field of high-performance computing in recent years. GPU 
was originally used for graphics processing acceleration tasks. With the 
development of general-purpose GPU (General-Purpose Computing on GPU, 
GPGPU-related) software and hardware platforms, GPUs are gradually applied 
to parallel acceleration in the field of scientific computing. One of them is 
NVIDIA. Launched the Compute Unified Device Architecture (CUDA) 
platform (Appleyard, Appleyard, Wakefield, & Desitter, 2011; NVIDIA, 2009). 
The algorithm in this paper is based on CUDA implementation.

The GPU achieves higher computing performance by integrating more 
computing units on the same chip area. Take NVIDIA’s Kepler architecture 
GK110 chip as an example. The most basic computing unit is the CUDA core. 
A complete GK110 chip contains 2,880 CUDA cores. The K10C GPU with 
GK110 chip has 5GB GDDR5 (Graphics Double Data Rate, version 5) memory, 
and its single-precision and double-precision floating-point operation peak 
speeds are 3.52 and 1.17 TFLOPS respectively (Float Operation Per Second, 
floating-point operations per second) ). The peak bandwidth has reached 249.6 
GB/s. These metrics far exceed the peak data of the same level of CPU.

GPU parallelism is often memory-constrained, so it must be well-
designed to accommodate the GPU’s multi-level memory structure to maximize 
GPU computing performance (NVIDIA, 2012a; NVIDIA, 2012b).

Linear System Solution in Reservoir Numerical Simulation

 Control equation

In reservoir numerical simulation, the basic governing equation is the 
mass mass conservation equation. For any discrete grid system, the mass 
conservation equation for a certain mesh i and component c can be written as:
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Which represents volume, represents porosity, represents phase saturation, 
represents phase density, represents component mass fraction, represents source 
term (well term), represents all meshes connected to i, represents a phase, 
between a connected mesh Conductivity, which represents pressure, represents 
the mass density of the phase, represents the gravitational acceleration constant, 
and represents the mesh depth.

Additional constraints are required to solve the above system. For the 
most common case, in the constraint equation V represents volume,  indicates 
porosity, indicates phase saturation 
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Equation (4) represents the fugacity balance of the components between 
phases and .

The above systems are usually solved using the Newton iteration method. 
At each Newton iteration step, the corresponding Jacobian matrix and the right-
end term are obtained, and the linear system is solved, and the Newtonian update 
is performed until the nonlinear equation converges, and then the simulation of 
the next time step is performed.

In the above process, the linear system solution takes up the most time. 
In the reservoir numerical simulation, the Krylov subspace-based iterative 
solver is generally used to solve such large sparse linear systems. Generalized 

Minimum Residual (Saad, 2003; Saad & Schultz, 1986) (Generalized Minimum 
Residual, GMRES) is one of the most commonly used solvers. However, the 
performance of such solvers depends to a large extent on the pre-processing 
methods used with them.

 CPR two-stage pretreatment method

The equation system of the reservoir problem has mixed characteristics, 
which are close to the part of the elliptic equation (pressure equation) and the 
part close to the hyperbolic equation (convection equation). In order to solve 
this mixed equation problem, Wallis et al. (Wallis, 1983; Wallis, Kendall & 
Little, 1985) proposed a two-step pretreatment method, Constrained Pressure 
Residual (CPR). In this method, the first step extracts the pressure matrix 
from the complete Jacobi matrix, solves the pressure matrix to eliminate the 
low frequency error existing in the pressure variable, and the second step 
preprocesses the complete matrix to eliminate the high frequency error (or local 
error). ). The mathematical characterization and algorithm steps of the CPR 
method are as follows.

The preprocessing matrix defining the CPR method is M1,2
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Where M1 and M2 are the preprocessing matrix for the first and second 
steps, respectively. It is the original matrix, which is the unit matrix.

Call CPR method to get x M v= 1,2
-1  . It can be broken down into two 

separate pre-processing processes to calculate:

1) Call the first step of the preprocessing algorithm, calculate x M v= 1
-1  ;

2) Calculate v v Ax2 1=  ;
3) Call the second step preprocessing method, calculate x M v2 2

1
2= −  ;

4) Calculate x x x= +1 2;

Reasonable selection of two separate preprocessing methods as CPR 
components, the CPR method proved to be very efficient in dealing with 
reservoir simulation problems, on a series of complex models including 
standard wells, multi-segment wells and unstructured grid models. Can have 
very good performance (Jiang, 2007; Jiang & Tchelepi, 2009).

The pressure solution process in CPR generally uses the multigrid 
method (Stüben, 1983), and the global preprocessing stage generally uses the 
ILU0 method. This paper retains the CPR solution framework and uses the 
MPNF method as a two-stage preprocessing method.

Nested decomposition

 Traditional NF method

The NF method (Stüben, 1983) is a classical linear solution preprocessing 
algorithm for reservoir numerical simulation problems for structured grids. Its 
basic idea is to use the nested three-diagonal matrix structure corresponding to 
the structured mesh to solve the problem quickly. For structured grid systems 
that are small (within hundreds of thousands of grids), the NF method has high 
efficiency. 

 MPNF Method

NF is a completely serial algorithm, both in the decomposition phase and 
in the solution phase. In order to make it parallel on the GPU, the algorithm 
needs to have a large number of parallelizable units. MPNF is such a variant.

MPNF achieves good fine-grained parallelism through dyeing and 
rearrangement. For example, a set of meshes extending in the z direction (other 
directions are also possible) is called a kernel; then coloring is performed at the 
core level (that is, the xy plane), and the dyeing operation refers to Each unit is 
assigned a color, so that adjacent units always belong to different colors; finally, 
the grid system is rearranged by number, first in color order, and the same color 
is sorted by core (the order between cores can be arbitrary) ), the core internals 
are sorted from small to large in the z direction.
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pre-processed GMRES for the CPR first-stage solution, and introduced the 
CUDA-based GPU algorithm implementation in detail, and this method 
Applied to multi-GPU parallelism.

This paper implements a complete GPU parallel linear algorithm based 
on CUDA. The algorithm uses CPR as the preprocessor and GMRES as the 
accelerator solution framework. The preprocessor selection of CPR two stages 
is MPNF method. 

 Consolidated access

The global memory is the memory outside the GPU chip. It has the 
largest storage space and the largest access latency. When the algorithm 
works, it will store all the data that needs to be read and written from the host  

Thus, the inner mesh of the core is a one-dimensional connection, and the 
numbers are adjacent, resulting in a three-diagonal structure. 

 Kernel
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Where nC  represents the number of grids in each core, representing the 
serial number of the core. It can be a single element or a dense matrix block, 
depending on the current matrix type (pressure matrix or main matrix) and the 
number of implicit variables in each grid block.

The cores in the same color are not connected to each other, forming a 
block diagonal structure.
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Where nK Represents the number of cores in a color (the number of cores 
in different colors is generally different), representing the serial number of the 
color. 

 Think of a grid within a color as a whole, as long as the dyeing 
algorithm ensures that the different colors are also one-dimensional connections, 
then the colors also form a block-like three-diagonal structure.
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Where nCo representative dye number, L,U Represents the non-diagonal 
elements produced by the connection between colors.

Compared with NF mehtod, MPNF through dyeing and rearrangement, 
a matrix of two-level three-diagonal nested structure is formed, and a similar 
factorization can be performed corresponding to the pre-processing matrix. 
Since at the color level, the cores inside the same color are always not adjacent, 
the parallelism is obtained between the cores. In the decomposition and solution 
phase of the preprocessing, each core can be executed in parallel when it 
involves operations within each color.

The simplest method of dyeing is the checkerboard dyeing of two colors, 
alternating the two colors to complete the staining on the plane. As shown in 
Figure 1. In the figure, each core contains 4 grids, which are arranged in the 
longitudinal direction. After dyeing, the two colors each contain 10 cores, and 
the cores in the same color are not connected to each other.

Fewer staining results in higher parallelism, but at the same time the 
approximation of the preprocessing matrix is   degraded, and convergence 
requires more iterations. Appropriate increase in the number of stains may 
contribute to the parallel effect as a whole.

A four-color oscillatory format staining method is shown in Figure 2. 
The dyeing starts from one corner and is sequentially dyed according to 
the strip parallel to the diagonal, and the color is circulated in the order of 
1→2→3→4→3→2→1. Obviously, this dyeing method can still ensure that 
the cores in the same color are not connected, and the color is a one-dimensional 
connection. Figure 3 is the corresponding matrix structure.

Efficient implementation and expansion of MPNF methods

Appleyard (2011) describes the principle of the MPNF method, but 
there is no specific implementation details; Zhou (2012) used the MPNF  

Figure 1. 5×4×4 Regular sorting of the grid (left) and checkerboard sorting (right)

Figure 2. Four-color oscillating format dye sorting
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Figure 3.  Matrix structure diagram corresponding to four-color oscillating 
format dyeing sorting
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rows is the same as the number of rows of the original matrix, and the number of 
columns is the same as the maximum number of non-zero elements in each row 
of the original matrix, and the position where there is a gap after compression 
by the row is filled with 0 elements. Val is stored in column priority order. The 
col_idx storage format is the same as val, recording the original column index 
of each corresponding position element.

When using CUDA for SpMV operations, the operation of each row in 
the EllPack format is handled by one thread, and the padded 0 element ensures 
that access to the matrix elements is a merged access. This mode allows it to 
perform better than the CSR format when the number of non-zero elements in 
each row is not much different.

In the reservoir numerical simulation problem, the maximum number of 
non-zero elements per row of the matrix depends on the number of connections 
of the grid (a grid is connected to at most 6 grids), which is relatively fixed, and 
after the grid number is determined, the maximum The number of non-zero 
elements can be calculated, and it is suitable to use EllPack format storage. 
Combined with the characteristics of the matrix, this format can be further 
improved.

One of the characteristics of such a matrix is   that the first layer of the 
block structure is constructed in a core organization. In the matrix shown in Fig. 
3, the upper non-diagonal element representing the connection between color 1 
and color 2 is taken as an example (see Fig. 5), and the red box marked portion 
represents the connection relationship between the cores of the two colors, and 
constitutes a connection relationship. A layered structure, in which each small 
matrix block is a diagonal matrix, which is hereinafter referred to as a core block. 
Another feature is that each diagonal element in the core block (ie, the black patch 
in the figure) is also a block structure. With these two layers of block structure, a 
more compact b-EllPack format can be constructed for SpMV operations.

Figure  5.  Two-layer block structure diagram

Figure 6 is a schematic diagram of the storage of Figure 5 as a b-EllPack. 
In this format, only the column subscript of the block block of the core block 
is stored in col_idx, and the column subscript of each non-zero element is not 
required to be recorded, and the required storage space and the access frequency 
thereof are greatly reduced, thereby improving the correlation. The efficiency 
of the operation. When performing SpMV operation, each thread processes a 
block operation of a core block. The storage order of specific elements in the val 
array should be: firstly stored in the order of the block block of the core block; 
sorted by layer in the block column of the same core block (Assume that the 
core is distributed along the z direction); the same layer is arranged in the order 
of the columns of the small matrix blocks; finally, the core blocks are sorted by 
the block rows.

The matrix representing the connection between colors can be stored 
in the b-ELLPack format. The SpMV operation needs to be performed when 
solving the block-shaped three-diagonal matrix composed of colors, and the 
obtained result vector is used for the right-end term of the inner three-diagonal 
solution of the next color. Therefore, in addition to the higher efficiency, this 
format can also make the order of the result vectors obtained by the matrix  
after the SpMV operation coincide with the order of the right end items required 
for the inner tridiagonal solution of the color (ie, the order).

For p-GMRES and b-GMRES, the SpMV operation of the pressure 
matrix and the main matrix is   required in the algorithm. A simple modification 
to the above format is applicable. This variant is hereinafter referred to as the 
b-Diag-EllPack format.

(host) memory. Copy to the device (device, also known as GPU), stored in the 
global memory for thread access.

Access to global memory needs to satisfy coalesced access: if an 
instruction needs to access specific data in global memory, and the access 
locations of all threads (within the same thread bundle) are consecutive in 
memory, then the merge access is satisfied. . If the merge access condition is 
satisfied, only one read operation is required, and all threads in the warp can 
obtain their respective data; otherwise, each thread must perform a separate 
read operation to obtain the respective data, which greatly reduces the effective 
bandwidth. 

For the MPNF algorithm, the initial matrix data of the host does not meet 
the merge access requirements, and needs to be rearranged before being passed 
to the device for parallel algorithms. The data that the MPNF algorithm needs to 
use includes: matrix data, unknown vectors, and right-end vectors.

The structure is similar and is illustrated by an example. After the mesh is 
dyed, the initial structure of the diagonal elements is first sorted by color number 
(that is, the elements whose subordinate color numbers are small are always in 
front of the elements with large numbers), the same color is internally sorted 
according to the core number, and the same core is internally meshed according 
to the grid. The number is sorted. Finally, if the middle element is a matrix block 
(for b-MPNF), the matrix blocks are arranged in column priority order.

Since the parallelism of the MPNF algorithm exists between the 
cores in the same color, the thread responsible for processing different cores  
should access the contiguous memory under the same operation to satisfy the 
merge access, so it should be rearranged in the following order: firstly, the order 
is the same according to the color number. Inside the same color, first arranged 
in layer order (assuming the core is in the z direction); if the middle element is 
a matrix block in the same layer, it is arranged in the order of the columns in the 
matrix block; the positions in the same matrix block are in the order of the core 
number arrangement.

If the above arrangement order in the same color is denoted as IN_
KER_ORDER, IN_BLK_ORDER, KER_ORDER, the arrangement before 
and after rearrangement is changed from “KER_ORDER” “IN_KER_
ORDER” “IN_BLK_ORDER” to “IN_KER_ORDER” “IN_BLK_ORDER” 
“KER_ORDER”.

In short, parallelism exists between cores, and only needs to be sorted 
by core number in the end, and the other order is unchanged to ensure merge 
access.

In addition to using the same arrangement, the incoming right-end vectors 
should be rearranged in the same way, as is the calculated solution vectors. The 
intermediate variables calculated in this way also have the same order.

 Block-based b-EllPack format
The EllPack format is a sparse matrix storage format, and its storage 

mode is similar to the CSR format. The difference is that after the matrix is 
compressed by row, the EllPack format fills 0 elements in rows with fewer non-
zero elements so that all rows are compressed to the same length. See Figure 4 
for an example of its storage format. Where val is a dense matrix, the number of 

Figure 4.  EllPack storage format example. 0 represents the filled 0 element, 
* represents the subscript corresponding to the filled 0 element, can be any value, 

will not be accessed when used
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Take the main matrix as an example. The main matrix differs from that of 
Figure 5 in that the block diagonal elements are internally trigonal rather than 
diagonal. The diagonal block always exists, so only the diagonal block needs 
to be stored in the top position of each block row, and col_idx does not need to 
store the column index of the diagonal block, and the correlation operation is 
performed. The block column can be specially treated. The order of the special 
block columns can be various, and it is only necessary to ensure that the order of 
the last two steps is arranged in the order of IN_BLK_ORDER KER_ORDER.

FIG. 7 is a behavior example corresponding to the first color in FIG. 3, 
showing the corresponding b-Diag-EllPack storage format.

Correspondingly, the SpMV results of the main matrix are also stored in 
the same order. When performing other vector parallel operations, they must 
first be converted back to the normal order.

 MPNF method for 2.5d unstructured grid
The simulation of fractured reservoirs uses the Discrete Fracture Model 

(DFM). The DFM mesh model can be a completely unstructured tetrahedral 
model or a semi-structured layered model (ie 2.5d). A layered model is a grid 
system that is still divided into layers in the longitudinal direction and is formed 
by triangulation (or other splitting format) on the plane. Compared with the 
tetrahedral model, the layered model has limitations in applicability (requires 
cracks to be high-angle seams), but it has significant advantages in terms of 
sectioning difficulty, grid quality, formation information, and speed of solution. 
An important unstructured grid model.

Kuznetsova et al. (2007) introduced a method of applying the NF method 
to a layered model: dyeing on a plane to construct a two-layer one-dimensional 
joint structure (the grid in the same color is a one-dimensional connection, and 
the color is one between Dimensional links, plus one-dimensional connections 
in the vertical direction, finally construct a three-dimensional one-dimensional 
structure in the unstructured grid.

Similarly, the MPNF method itself does not require the distribution of 
the mesh on the plane: as long as one direction can be selected as the direction 
of the core extension (requires the same number of core meshes, and is a one-
dimensional connection), and in the direction of the core extension A dyeing 
method can be given on a vertical plane to ensure a one-dimensional connection 
between colors, and the MPNF method can be applied.

Appleyard (2016) presented a method for staining unstructured meshes 
on a plane. First select the color number and the stimuli format of the dye 
sequence; select the starting grid, assign it the starting color; find the current 
unstained, but at least one of the grids connected to the dyed grid to form a 
candidate list; statistical candidate list The number of different colors connected 
to the grid is arranged in descending order of different color numbers; the next 
color in the color sequence is taken, and the grids satisfying the requirements 
(the same color cannot be connected) are sequentially given in the order of the 
candidate list until the traversal is completed. Finally, look for a new candidate 
list and repeat the above process until all the grids have been dyed.

This is a general dyeing method that works equally well for structured 
grids. When applied to a structured grid, the number of colors is at least 2; 
however, when applied to an unstructured grid, the number of colors required 
is generally large (eg, 6).

Figure 8 is a schematic diagram showing the results of staining on a plane 
using a dyeing method for the above dyeing method. The unstructured mesh is 
generated by Triangle (Shewchuk, 2002) (using the -q command to control the 
triangle element as close to the regular triangle as possible). It can be seen that 
the dye spreads outward from the layer at the initial grid, and the shock stimuli 
sequence is still well maintained.

Figure 9 is a layered model (divided into 41 triangular grids on the plane, 
divided into 3 layers in the longitudinal direction) and rearranged by 6 colors 
according to the above method, corresponding to the matrix structure diagram. 
The part marked by the red frame is a three-diagonal structure composed of 
connections between colors. It can be seen that for non-structural meshes, this 
method of dyeing does not completely guarantee a one-dimensional connection 
between colors, so there will be a small amount of elements that fall into the 
tri-diagonal off-band.

When using MPNF preprocessing, these off-band elements can be 
ignored. Although there is some loss in accuracy, a strict three-diagonal 
structure is guaranteed, so that the algorithm can be performed normally. But 
whether it is the GMRES algorithm in the pressure solution process or the 
GMRES algorithm used in conjunction with CPR, the SpMV part still uses  
the exact matrix.

Figure 6. b-EllPack format diagram

Figure 7.  b-Diag-EllPack format diagram

Figure 8. 2.5d grid 6-color turbulence format staining result (staining start 
point at the center)
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Study Case Test

 Algorithm convergence performance and time-consuming analysis

This section selects the first 10 layers of the SPE10 (Van der Vorst, 1992) 
example, and performs performance test and time analysis on the CPR two-
stage MPNF algorithm. The grid size is 60×220×10, a total of 132,000 grids, 
and the fluid is oil-water two-phase. The MPNF method in the pressure phase is 
combined with GMRES, that is, the one pressure matrix solution may need to 
call multiple MPNF solving processes, and the convergence error is set to 0.1; 
the second phase MPNF is used alone, that is, the second phase MPNF solving 
process is performed only once per CPR call. .

The first is the test of convergence speed. ILU0 and AMG were selected 
for comparison with p-MPNF, and BILU0 was selected for comparison with 
b-MPNF. The MPNF method also selects the number of stains as 3, 4, and 5 for 
comparison. If the MPNF method is not used in both stages of CPR, the grid 
number is in natural order. If MPNF is used in any stage, the grid number is  
the order after dyeing. When ILU0 is used in the pressure solution phase,  
it is also used in combination with GMRES. The pressure solution convergence 
error is 0.1, and AMG is used alone. The second phase of BILU0 is also used 
separately. The test platform hardware is configured for one Xeon X5670 CPU 
and one K20C GPU.

Table 1 shows the test results. First, the number of Newton iterations is 
almost the same in all the examples. This is because the selection of the specific 
components of the linear solution does not affect the Newton convergence 
speed under the same linear solution strategy and convergence error. The 
number of linear iterations is the number of iterations of the outer GMRES. 
CPR preprocessing is called once per iteration. The size reflects the validity of 
the CPR combination. The CPR combination of the example 1 achieves the best 
effect, which is consistent with the usual understanding. AMG is best suited as 
the choice for the stress solution phase in CPR.

In the comparison between the case 2 and the case 3, the average 
number of iterations required for each pressure solution is used as a standard, 
and the ILU0 is used for the pressure solution to be slightly weaker than the 
MPNF. Considering that the calculation example 3 is based on the dyeing 
rearrangement, the rearrangement will make the quality of the matrix worse in 
the sense of solution, and thus the number of linear iterations is more than that 
of the second example.

Comparing Example 3 with Example 4, the number of linear iterations 
is very close, reflecting that MPNF as a second-stage preprocessing is similar 
to BILU0. A comparison of the examples 3, 4, and 5 shows that the increase in 
the number of stains is beneficial to the matrix solution, whether it is a pressure 
matrix or an outer iteration. But the difference between the three in this test case 
is not obvious enough.

First, the MPNF decomposition phase time consumption is negligible 
compared to the solution phase. This is because for p-MPNF and b-MPNF, 
the decomposition phase is only executed once for each Newton iteration; and 
the solution phase for b-MPNF is every time. The CPR call is executed once. 
For p-MPNF, it is executed once per pressure iteration in each CPR call; the 
number of times of pressure solution iteration is very large, and the number of 
executions in the decomposition phase and the solution phase are very different 
(for p-MPNF and b- MPNF is 1:174 and 1:6) respectively.

BLAS operation has good parallelism, but the computational density 
is very low (the ratio of the number of memory reads to the number of 
calculations), which is limited by the GPU bandwidth cannot achieve high 
performance; the reduction operation decreases rapidly with the parallelism of 
the algorithm. Also can’t have a good performance. The number of these two 
operations is affected by the number of GMRES iterations. As the number of 
iterations increases, the number of BLAS and reduction operations performed 
per iteration increases linearly. Therefore, the two occupy a large proportion in 
the algorithm time composition.

In order to reduce the general BLAS and reduction operations for parallel 
performance, the BiCGStab (stabilized double conjugate gradient method) 
solver can be used instead of GMRES, which is used in conjunction with the 
pressure matrix solution. BiCGStab is also a subspace iterative method for 
general matrices. Experience has shown that GMRES is more stable because it 
guarantees that the norm of the residual is monotonically decreasing after each 
iteration. However, BiCGStab is different from GMRES in that the number of 
BLAS and reduction operations does not change with the number of iterations 
in each iteration. For the problem that the average number of iterations is close 
to 30, the ratio of these two operations is greatly reduced.

On the other hand, the stress solving phase in CPR does not require high 
accuracy. Convergence criteria for relaxation stress solving can be considered 
to reduce the number of iterations of excessive pressure system solutions.
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Figure 9. 2.5d grid 6 color oscillating format dyeing corresponding matrix 
structure

Table 1.  Comparison of iteration speeds of different CPR combinations (3c, 4c, 5c represent the number of dyes, respectively, 3, 4, 5)

Study number CPR combination
Newton 

iterations
Linear iterations

Pressure solution 
iteration number

Average number of 
iterations per iteration

1 AMG+BILU0 147 667 667 1.0

2 ILU0+BILU0 145 786 25073 31.9

3 p-MPNF+BILU0(4c) 147 871 25770 29.6

4 p-MPNF+b-MPNF(4c) 147 869 25635 29.5

5 p-MPNF+b-MPNF(3c) 147 941 28412 30.2

6 p-MPNF+b-MPNF(5c) 147 840 24501 29.2
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The pressure solution was changed to BiCGStab and the pressure 
convergence criterion was relaxed to 0.5 and tested again. The comparison 
results are shown in Table 2. The number of Newton iterations is constant, the 
number of linear solutions is increased by 40%, but the average number of 
iterations of the solution is reduced to 11 times, and the total time consumption is  
reduced by more than 40%. The increase of the number of linear solutions 
is caused by the lower precision pressure solution, which increases the time 
consumption of the outer GMRES and b-MPNF, but also reduces the average 
pressure solution iteration number, and finally reduces the total pressure solution 
iterations. . In addition, it should be noted that the total time consumption 
of MPNF has not decreased, but has increased. On the one hand, BiCGStab 
will call p-MPNF solution twice in one iteration, so that the actual number of 
p-MPNF calls in two tests is close; The number of b-MPNF calls increases as 
the number of linear iterations increases, and the time spent on a single call is 
also higher than that of p-MPNF.

Thanks to the use of BiCGStab, the proportion of time for reduction 
and BLAS operations decreased from 59% to 21%. Parallel performance 
The general proportion of calculated components is reduced, which is the 
reason for the significant reduction in total time consumption. Under the 
new setting, the MPNF solution stage time consumption is 44.7% (mainly 
p-MPNF solution stage, more than 90%), which occupies the main part. At 
the same time, the proportion of the remaining serial part in the linear solution 
algorithm is also more significant (close to 20 %). Although this ratio is very 
high (resulting in an acceleration ratio of up to 5), the main time composition 
of the serial part is derived from the pressure matrix decomposition process. 
For more complex problems, a pressure matrix decomposition will correspond 
to more linear iterations, corresponding strings. The proportion of the line 
portion will also decrease.

 SPE10 study test

This section uses the complete SPE10 model for parallel algorithm 
testing. The complete SPE10 model consists of 60 x 220 x 85 with a total of 1.1 
million grids. The model hole permeation field height is heterogeneous and is 
a standard example designed to evaluate the performance of linear solvers. The 
fluid uses two phases of oil and water. The model consists of four production 
wells located at the four corners of the model and one injection well located 
in the center of the model. All wells are shot through all formations. The test 
platform is the same as before.

This paper implements a serial version of the two-stage MPNF algorithm 
as a reference to measure the acceleration of parallel implementation. At the 
same time, the GMRES method preprocessed by CPR (AMG+BILU0) under 
the serial algorithm is also added to compare the advantages of the parallel 
algorithm compared with the current mainstream serial algorithm. The 
comparison is classified according to the total time taken by the linear solution, 
the time-consuming of the pressure matrix, the second-stage pre-processing and 
the outer GMRES time-consuming.

The parallel version of MPNF achieved an acceleration ratio of 19.8 over 
the entire linear solution phase, and an acceleration ratio of 23.9 and 27.0 was 
obtained in the pressure solution phase and the second phase pretreatment and 
the outer GMRES, respectively. Since the total speedup includes additional 
overhead and other parts that cannot be paralleled, it is lower than the other 
two parts; the second stage preprocessing and outer GMRES are similar 
in composition to the stress solution stage (average GMRES iterations are  

12 times) ), but thanks to the use of the block matrix, the access limit is smaller, 
so the acceleration ratio is higher than the pressure solution phase.

The serial version of MPNF is significantly slower than the serial version 
of the mainstream solution combination. Among them, the velocity matrix 
solution speed is very different, which verifies that AMG is much better than 
MPNF in the serial hardware. The pressure matrix solution occupies most of the 
time (more than 70%) of the linear solution, so although the time consumption 
of the second stage preprocessing is not much different (about 2 times, the 
number of CPR calls caused by inaccurate pressure solution increases) Cause), 
but the total linear solution time is still much higher.

By comparing the latter two, it can be seen that the shortcomings of 
the MPNF preprocessing method itself can be compensated for on parallel 
hardware due to better parallelism. The parallel version of p-MPNF is more 
than twice as fast as AMG, and the serial version of b-MPNF is more than 10 
times faster than BILU0. The total linear solution speed is nearly three times 
faster. This proves the practicability of this parallel solution algorithm, and it 
can also bring about a real speed increase compared with the optimal strategy 
of the serial version.

 Unstructured equivalent SPE10 study test

This section performs a crack-free layered model MPNF method test. 
The unstructured mesh (see Figure 10) model is generated based on the SPE10 
example, keeping the number of layers unchanged, and the horizontal direction 
is re-divided into 12,680 meshes, and the attribute field is mapped according to 
the closest distance of the center point of the mesh. The unstructured model has 
1,077,800 grids.

In parallel MPNF vs. serial MPNF acceleration ratio, the structural model 
has decreased. This is because this study uses 6-color shading, and the number 
of parallel tasks drops, failing to take full advantage of hardware performance. 
The average number of iterations for the pressure solution is 20, which is more 
than the structured model, reflecting the consequences of ignoring elements 
outside the strip. But the parallel version of MPNF still has an advantage over 
the AMG+BILU0 combination.

Table 2 . Comparison of iterative speeds between different pressure solver selections and convergence errors

Study setting Newton iterations
Linear 

iterations
Pressure solution 
iteration number

Average number of 
iterations per iteration

Total time 
consumption / s

MPNF total time 
consumption / s

p-GMRES 
ConvP<0.1

147 869 25635 29.5 48.7 11.2

BiCGStab 
ConvP<0.5

147 1233 13551 11.0 27.5 12.4

Figure 10.  Layered model generated by SPE10 study and dyeing results
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 2.5d non-structural example test with cracks

Next is a layered model test with cracks. The model is divided into 
10 layers vertically, with a total of 26,418 grids in the horizontal direction, 
including 417 crack grids. The fracture permeability was 1000 md and the 
matrix permeability was 1.0 md on average. There is a production well in  
the two corners of the injection well. The fluid uses two phases of oil and  
water. The model is shown in Figure 11.

The model uses 6 color stains. The convergence speed information of 
the MPNF method is shown in Table 3. Although the elements outside the 
tridiagonal strip are rounded off, the overall convergence performance of  
the cracked example is still relatively stable. The number of linear iterations 
is not much higher; the average pressure matrix solution iterations is slightly 
higher than the regular grid, but it is also within the acceptance range.

The speedup results are similar to the previous few examples. It is worth 
noting that the advantage of MPNF compared to AMG+BILU0 combination 
is more obvious in this example, mainly because the total number of linear 
iterations is not much different between the two examples.

Conclusion

The linear solution part is the most time-consuming part of reservoir 
numerical simulation. This paper mainly discusses how to use the GPU as 
a multi-core parallel architecture to parallelize the linear solution algorithm. 
Parallel algorithm In the CPR two-step preprocessing solution framework, 
the MPNF method developed by the classical NF method is selected as the 
two-step preprocessor selection. The algorithm proposes a data rearrangement 
method for the two-stage MPNF preprocessing algorithm to ensure the merge 
access; the block-based b-ELLPACk structure is used to accelerate the SpMV 
operation in the global GMRES algorithm; BiCGStab is used as the pressure 
stage solver. The weaker pressure is used to solve the convergence criterion 
to reduce the proportion of the less conservative reduction operation in the 
algorithm. Through these optimization methods, the parallel solution algorithm 
achieves a good parallel effect. Compared with the serial MPNF method, 
the complete SPE10 algorithm obtains a speed ratio of more than ten times. 
Compared with the mainstream linear algorithm, it also obtains 2-3. The 
speedup ratio is doubled.

In addition, this paper uses the general dyeing algorithm to extend the 
MPNF method applicable to CPR two-stage preprocessing to 2.5 unstructured 
grid model, which expands the practicability of the MPNF method. In the  
2.5d unstructured grid, the dyeing process requires more dyeing numbers, and 
there are a small number of elements located outside the three diagonal strips. 
These elements are ignored in MPNF preprocessing, and the parallel effect may 
be inferior to the structured net. grid. The algorithm was tested on a custom 
example containing discrete cracks and an example derived from SPE10 
mapping (both 2.5d unstructured grid studies). The results were shown on a 
2.5d unstructured grid. The MPNF algorithm still has obvious advantages over 
the serial algorithm.
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