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In this study, Multifractal Detrended Fluctuation Analysis (MFDFA) is applied to daily temperature time series in 
Benin synoptic stations from 1967 to 2012. The purpose is to examine the degree of multifractality and compare 
multifractal characteristics of temperature in various climatic areas (subequatorial and Sudanian). The analysis reveals 
that the daily temperature time series shows a multifractal behavior that is sensitive to the station’s geographic position  
and presents a positive long-term correlation. Weather conditions and the geographic position of the synoptic stations 
affect the shape and the characteristics of temperature spectrum. The multifractality is stronger in subequatorial region 
than the Sudanian. The major source of multifractality in temperature series is found to be the fat-tailed probability 
density function. However, long-range correlations also partly contribute to the multifractal features. Except Kandi’s 
synoptic station, the spectrum is left-skewed. The findings indicate the usefulness of the non-linear analysis in 
climate research due to the complex interactions among the natural processes. It can help understand the mechanisms 
governing the dynamics of temperature time series in Benin.

ABSTRACT

Multifractal Behaviors of Daily Temperature Time Series Observed over Benin Synoptic Stations (West Africa)

Comportamientos multifractales de las series temporales de temperatura observadas en las estaciones sinópticas de Benin (Africa Occidental)

ISSN 1794-6190 e-ISSN 2339-3459         
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En este estudio, el análisis de la fluctuación multifractal descendente es aplicado a diversos tiempos de temperatura 
cotidiana en estaciones sinópticas en Benín de 1967 a 2012. El objetivo es examinar el nivel de multifractalidad y 
comparar las características multifractales de temperatura en varias zonas climáticas (subecuatorial y sudanés). El 
análisis muestra que los diversos tiempos de temperatura diaria presentan un comportamiento multifractal, que son 
sensitivos a la posición geográfica de la estación y que hay una correlación positiva a largo plazo. Las condiciones 
climáticas y la posición geográfica de la estación sinóptica afectan la forma y la característica del espectro de la 
temperatura. La multifractalidad es más fuerte en la región subecuatorial que en la sudanesa. Se encontró que la mayor 
fuente de multifractalidad en las diversas temperaturas consiste en una función probabilística de colas pesadas. Sin 
embargo, correlaciones de gran autonomía también se corresponden con las características multifractales. Excepto la 
estación sinóptica de Kandi, el espectro inclina a la izquierda la asimetría estadística. Los hallazgos señalan la utilidad 
del análisis no lineal en la investigación climática debido a las interacciones complejas entre los procesos naturales. 
Este estudio permite comprender los mecanismos que manejan la dinámica de las series temporales de la temperatura 
en Benin.
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Introduction
According to several studies, linear statistical methods are insufficient 

for a complete analysis of meteorological parameters time series. Researchers 
have explained these findings by the fact that the atmosphere and the 
natural processes taking place in it are a complex natural system (Kantz and 
Schreiber, 2004; Peters and Neelin, 2006; Vassoler and Zebende, 2012; Shi, 
2014). Therefore, meteorological parameters are characterized by a high 
degree of nonlinearity, non-stationarity and complexity (He, 2015; Agbazo 
et al., 2019a; Philippopoulos et al., 2019; Kalamaras et al., 2017, 2019; Jiang 
et al., 2016; Burgueño et al., 2014 and Dong et al., 2016). In this context, 
multifractal methods are suitable to analyze processes that obey to nonlinearity 
characteristics. Nowadays, the Multifractal Detrended Fluctuation Analysis 
(MFDFA) introduced by Kantelhardt et al. (Kantelhardt et al., 2002) has been 
used widely to examine the intrinsic behavior of meteorological parameters in 
order to explain climate change, to assess climate change impact by improved 
methods and to do their prediction (Kalamaras et al., 2019). For example, 
recently, MFDFA has been applied to time series of: precipitation by Efstathiou 
and Varotsos (2012); Agbazo et al. (2019a); temperature by Kalamaras et al. 
(2017); Kalamaras et al. (2019); Jiang et al. (2016); Burgueño et al. (2014); 
Dong et al. (2016); wind speed by Kavasseri and Nagarajan (2005); Feng et 
al. (2009), and many others. The authors found that MFDFA methods can 
help reveal some properties, which could not be detected by linear methods 
(Kantelhardt et al., 2002; Kalamaras et al., 2017, 2019; Philippopoulos et al., 
2019; Jiang et al., 2016). 

Variations in temperature and precipitations’ records are important 
indicators of climate change (Jiang, 2017). Agbazo et al. (2019a) have studied 
the fractal analysis of the long-term memory in precipitation in Benin (West 
Africa). They have shown, (i) the existence of positive long-term memory 
characteristic in the rainfall of area and found that (ii) fractal theory reveals 
Benin climatic characteristics better. Therefore, in order to generalise the 
differences in the dynamics of meteorological processes and to assess climate 
impacts, it is important to compare multifractal properties of temperature in 
various climate conditions. However, long-term memory of temperature has 
not yet been studied in a fractal framework in Benin, one of the West African 
countries affected by the effects of climate change (IPCC, 2007). Thus, the  
aim of this work is to analyse spatial and time variation of multifractal properties 
of daily temperature time series observed in Benin synoptic stations in order to 
examine the basic features of their multifractal behavior.

Materials and Methods

Materials

Site Description 
The study covers all the synoptic stations of Benin (Figure 1), the 

geographical positions of which are presented in Table 1 below. According to 

Boko et al. (1988), Benin is characterized from the South to the North by two 
main climatic zones in which synoptic stations are located: Cotonou, Bohicon, 
and Save are located in the subequatorial region where March is the hottest 
month (~26°C), while August is the coldest month (~24°C). The daily and 
annual thermal amplitudes are, respectively, ~10°C and ~5°C. The relative 
humidity ranges between 70% and 95% because of the proximity to the Atlantic 
Ocean. The subequatorial climate has four seasons in a year: a long rainy season 
(April to July) followed by a short dry season (August to September) and a short 
rainy season (October to November) followed by long dry season (December 
to March). However, the stations of Parakou, Kandi, and Natitingou are located 
in Sudanian region in the northern part of the country. The daily mean of air 
temperatures in Natitingou, Parakou, and Kandi are, respectively, ~25°C, 
~27°C, and ~35°C.

Table 1. Geographical Coordinates of Synoptic Stations

Stations Latitude (°N) Longitude (°E) Altitude (m)

Cotonou 6.21 2.23 3.9

Bohicon 7.10 2.03 166.00

Save 7.59 2.26 198.51

Parakou 9.21 2.37 392.00

Natitingou 10.19 1.23 460.00

Kandi 11.08 2.52 289.7

Data Records
Data were provided by the Agency for Aerial Navigation Safety in Africa 

and Madagascar (ASECNA). Daily temperature data from Benin synoptic 
stations: Cotonou (Co), Bohicon (Bo), Save (Sa), Parakou (Pa), Kandi (Ka) and 
Natitingou (Na) are used for the period from 1967 to 2012. Figure 2 shows the 
mustache boxes of temperature. 

The figure shows that the smallest and largest values of minimum 
temperature are observed respectively in Save (~ 3°C) and Cotonou  
(~ 39°C). While, the smallest and largest values of maximum temperature are 
observed respectively in Parakou and Cotonou. The temperature distribution is 
asymmetrical. 
Methods

Description of MFDFA Method
To investigate multifractal characteristics of non-stationary, non-linear, 

natural and complex meteorological phenomenon time series (Shen et al., 2015, 
2017; Wan et al., 2016; Jiang et al., 2017), the MFDFA method was proposed 

Figure 1. Study sites location: (a) Benin’s location in West Africa, (b) Synoptic stations’ location in Benin.
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If the time series follow the power law, then we can obtain the scaling 
function: 

F s sq
h q( ) ∝ ( )�      (4)

Where h(q) is the generalized Hurst scaling function (Kantelhardt et al., 
2002; Telesca et al., 2004). For monofractal time series, h(q) is independent of 
q, whereas, for a multifractal time series, h(q) varies with q. To be specific, the 
scaling exponent h(2) provides information about the average fluctuation of 
the series. The series can be categorized into one of the following three types 
depending on the h(2) values. These are: (i) 0 < h(2) < 0.5 for an anti-persistent 
type long range correlated process (negative long-term memory) where large 
values (compared to the average) are more likely followed by small values and 
vice versa, (ii) h(2) = 0.5 for an entirely random uncorrelated distribution, and 
(iii) 0.5 < h(2) < 1 for a persistent and long range correlated process (positive 
long-term memory) where large values are more likely to be followed by large 
values and vice versa. As Király and Jánosi (2005) suggest, the term “persistent” 
is used in the sense that an increasing trend in the past implies an increasing 
trend in the future. Thus, it lightly differs from “persistence” in climatology, 
defined as the continuance of a specific pattern. This dependence is considered to  
be a characteristic of multifractal process (Kantelhardt et al., 2002). In order  
to avoid a divergence of moments in the fat tails of the fluctuation distribution 
as mentioned by some authors (Wang et al., 2013; Ihlen et al., 2012), we restrict 
the order q within the range -5 ≤ q ≤ 5 as in (Wang et al., 2013).

Multifractal Spectrum

In order to get more information about the temperature data and to 
characterize the strength of the multifractality, two functions and few parameters 
are deduced from h(q) via a Legendre transform (Feder et al.,1988; Kantelhardt 
et al., 2002; Shi et al., 2008; Liu et al., 2014a, 2015; Jiang et al., 2016). These 
functions are defined by following equations:



 

q h q q
dh q
dq

f q h q

( ) = ( ) +
( )

( ) = − ( )  +








 1

    (5)

 q( ) and f ( ) are respectively singularity strength (or Hölder exponent) 
and multifractal spectrum. 

These parameters are defined as followed:

∆  = −max min     (6)

and 

∆f f fmin max= −( ) ( )     (7)

Where max and min are obtained from the relation f ( ) = 0.

f fmax0( ) =     (8)

If the observed time series is a single-scale fractal series, the function 
f () is a constant. f () Generally, if the time series is a multiscale series, the 
function has a bell-like shape. The first important property of the spectrum is 
its width.  is multifractal spectrum width or spectrum width. The parameter 
 describes the inhomogeneity of the distribution of probability measured 
on the overall fractal structure, which has been identified as the intermittency 
and degree of multifractality (Liu et al., 2014a). The smaller  is, the more  
uniformly distributed the fractal region is; while, the bigger  is, the  
more heterogeneous the probability distribution is. In others words, if a 
spectrum has a broad width,  is indicative of a strong multifractality (i.e., it 
has a ‘fine’ structure). If the width becomes smaller, then the time series tends 
to be a monofractal one. The spectrum width of a pure monofractal time series 
is equal to zero. f > 0 shows that the number of largest subsets is greater than 
the minimal one in probability measures, so, multiscale fractal spectrum shows 
a “left hook” shape; f < 0 shows a contrary condition, and the multiscale 
fractal spectrum is “right hook” shaped. Designing 0 as the singularity strength 
with maximum spectrum, a small value of 0 means that the underlying process 
“loses fine-structure”; while a large value of 0 ensures larger complexity.

by Kantelhardt et al. (2002). It can be briefly described according to Shen et al. 
(2017), as followed:

Let x t Nt | = …{ }1 2, , ,  be an original time series of N equidistant 
measurements to which the procedure of the MFDFA method is applied. First, 
a new series named “profile” is determined as followed:

Y k x x
t

k

t( ) = −( )
=
∑

1

    (1)

Where x  is the mean value of xt and k = 1, 2, …, N.

The profile is then divided into N = int(N/s) equal-sized nonoverlapping 
windows with a length s. Since N is not the integral multiple of s in most cases, 
there might be a short part at the end of the profile that remains uncovered. 
To take full account of the series, the same procedure can be repeated starting 
from the end of the series. Hence, we obtain 2Ns segments altogether. We then 
calculate the variance of each window as follows:
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It should be noted that linear (i.e., polynomial order m=1), quadratic (i.e., 

m=2), cubic (i.e., m=3), or higher-order polynomials y m
( ) ( )i  can be used to 

fit the local trend. In MFDFAm, possible m order trends are eliminated in the 
profile. The order of the polynomial has been found not to alter the results, with 
the order varying from 2 to 5 (Koscielny-Bundea et al., 2006). In this study, a 
third-order polynomial has been adopted as shown by Agbazo et al. (2019a) in 
Benin for the precipitation time series.

By averaging over all windows, we obtain the fluctuation as follows:

F s
N

F s for q

exp
N

q
s

N
q

q

s

s

( ) =

( )
















≠

=
∑1

2
0

1
4

1

2
2 2

1



,
/

/

 





=
∑ ( )
















=














 1

2
2 0

Ns
F s for qln ,  

 (3)

Figure 2. Mustache boxes of temperature data observed at each synoptic 
station from 1967 to 2012. Cotonou (Co), Bohicon (Bo), Save (Sa), Parakou (Pa), 

Kandi (Ka) and Natitingou (Na).



368 M. Agbazo, G. Koto N’gobi, E. Alamou, B. Kounouhewa, A. Afouda, & N. Kounkonnou 

According to Shimizu et al. (2006), a measure of the width of the 
multifractal spectrum can be obtained by fitting a second-order equation to  
the curve of the spectrum around 0 

f A B C    ( ) = −( ) − −( ) +0
2

0   (9)

Among the three constants A, B, C, the most important is B, which is an 
asymmetry parameter. Coefficient B indicates the asymmetry of the spectrum. 
According to Burgueño et al. (2014) and Kalamaras et al. (2019), when B being 
zero for a symmetric spectrum, the shape of the spectrum is symmetrical. For 
positive B values, the spectrum is right-skewed and for negative left-skewed 
(Burgueño et al., 2014). A right-skewed spectrum is related to relatively 
strongly weighted high fractal exponents (with “fine-structure”), while a left-
skewed spectrum is indicative of low fractal exponents (a more ‘regular’ time 
series). C is an additive constant equal to 1.

Origins of Multifractality

Generally, there are two major types of sources for multifractality in 
time series: (a) different temporal correlations for small and large fluctuations 
and (b) a fat-tailed probability distribution for the values of the time series 
(Rak and Zieba 2015). The main methods to find the contributions of the 
two sources of multifractality are the shuffling procedure and the surrogating 
procedure, respectively (Kwapien et al., 2005). Indeed, to test the first source 
of multifractality, we randomly shuffle the series to remove any temporal 
correlations. Thus, if no multifractal feature remains after we conduct the 
shuffling procedure on the original multifractal series, we can conclude that 
long-range correlation dominates the multifractality in the original series. The 
shuffling procedure consists in generating a random permutation of the array 
elements of time series. In contrast, surrogate data is used to check whether 
the multifractality comes from fat-tailed probability distribution, because it 
can eliminate any sort of non-linearities in original series and weaken the non-
Gaussianity of the distributions. In this paper, we use the common method of 
Amplitude Adjusted Fourier Transform (AAFT) developed in (Theiler et al., 
1992; Dong et al., 2016; Wu et al., 2018) to obtain surrogate data. AAFT can 
be summarized according to Dong et al. (2016) as follows: 1) a discrete Fourier 
transform of the original series is conducted, 2) the discrete Fourier transform 
of the data is multiplied by random phases, and 3) an inverse Fourier transform 
is performed to generate a phase-randomized surrogate. To further compare 
the contributions of multifractality from the two sources, the corresponding 
multifractal spectrum width is computed for the original series, shuffled series 
and surrogate series. To better compare the impact of both types of multifractality 
in time, the following computations are done: (1) the ratio  to , which can 
reflect the contribution of the long-range correlations’ multifractal strength 
to the whole multifractal strength (Shen et al., 2016); (2) the ratio ∆shuf  to 
, which indicates the proportion of the fat-tailed probability distribution 
multifractality.

Results and Discussion
The fluctuation function log F sq ( )( ) versus log s( ) of the original 

temperature time series is plotted for different statistical moments q= (-5, -2, 2, 5) 
and shown in Figure 3. 

It is observed that the linear relationship between the MFDFA 
fluctuation factor Fq(s) and the time scale s is obvious, which implies the 
existence of power-law relationship. In addition, a phenomenon appears 
in some of the relationships shown in Figure 3: the regression lines with 
different orders of q tend to converge, which indicates the multifractal 
nature of the original series of temperature records. Moreover, the scaling 
behavior of Fq(s) (i.e. slope) for positive and negative q are not the same 
at each synoptic station. This behavior reveals the existence of different 
degrees of multifractality at Benin synoptic stations. 

In order to verify if these apparently converging lines are multifractal 
or monofractal, the plot of the generalized Hurst exponent h(q) versus  
q obtained at each synoptic station for original temperature times series 
are shown in Figure 4. 

To further compare the contributions of multifractality from the two 
sources, the corresponding multifractal spectrum f () is computed. In  

Figure 3. Log-log plots of the MFDFA fluctuation factor Fq(s) versus the time 
scale s for specific moments q for the temperature time series observed at (a) Cotonou, 

(b) Bohicon, (c) Save, (d) Parakou, (e) Natitingou and (f) Kandi synoptic stations. 

Figure 4. Generalized Hurst exponent h(q) as a function of q for the original 
temperature at all synoptic stations

It is observed that multifractal behavior for temperature at each synoptic 
station is clearly shown in Figure 4 because all the curves have obvious 
negative slopes. To be specific, all the h(2) values are greater than 0.5. One 
can conclude that the original temperature series is nonstationary signals with 
long range power-law correlations (Shi, 2014). Therefore, the fluctuations of 
the temperature time series are positively correlated in a power-law fashion.
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Figure 5 the multifractal spectrum is presented as a function of the singularity 
strength  for the original series, shuffled series and surrogate series. 

In all cases, the spectrum shape is a humped curve and it is obviously 
unsymmetrical about its axis. Moreover, the spectrum has a left truncation 
and a long right tail. This is attributed to multifractal structure that is 
insensitive to the local fluctuations with large magnitudes. 

The South-North distributions of the main multifractal parameters 
are presented in Figure 6. 

It is observed in Figure 6a that except Cotonou and Bohicon stations, 0 
values increase with the station’s latitude. However, highest and lowest values 
are respectively observed at Cotonou and Save stations, which implies that the 
underlying mechanism governing daily temperatures has larger complexity at 
Cotonou than Save. 

Figure 6a reveals that spectrum width  increases with the latitude in 
subequatorial and Sudanian regions. However,  values in the subequatorial 
region are systematically greater than those of Sudanian region. These 
findings indicate that in Sudanian region the fractal range is more uniformly 
distributed; while in subequatorial region the probability distribution is more 
heterogeneous. In others words, the multifractality is stronger in subequatorial 
region. The highest value of  is obtained at Parakou station, which implies a 
stochastic dynamic character and strong fluctuations of the original series at this 
station as compared to the others (Xue et al., 2015).

The ratio ∆surr  to , and ratio ∆shuf  to  are presented in Figure 
6b. It is shown that no gradient is obvious in their South-North distribution. 
It is clearly observed that, whatever the station, the contribution of the long-
range correlations’ multifractal strength to the whole multifractal strength 
is systematically greater than the proportion of the fat-tailed probability 
distribution multifractality. It can be noticed that Parakou temperature series 
have the highest value of the ratio ∆surr  to  among all the Benin synoptic 
stations.

Regarding the spectral asymmetry spatial distribution (Figure 6c), it 
is observed that except Kandi, the spectrum asymmetry values are negative; 

therefore, the spectrum is left-skewed, which is indicative of low fractal 
exponents (a more ‘regular’ time series). Kandi’s spectra are with higher 
spectrum asymmetry values, therefore, contain a greater number of high fractal 
components. 

As shown in Figure 6d, f > 0 for the original, shuffled and surrogate 
temperature times series over all synoptic stations. These findings show that 
the number of largest subsets is greater than the minimal one in probability 
measures, so, multiscale fractal spectrum shows a “left hook” shape. However, 
f values are systematically different for original, shuffled and surrogate 
temperature times series. Therefore, the source of multifractality in temperature 
depends on long-range temporal correlations and a fat-tailed probability 
distribution. However, both of them influence the multifractality. Moreover, the 
multifractality in temperature depends on the geographical position and the type 
of climate of the studied station. The value of f is not systematically reduced 
after the original series is shuffled and surrogated. Therefore, the shuffling and 
the surrogating procedure do not systematically imply the reduction in the 
degree of multifractality.

Conclusions

In this paper, the multifractal behavior of daily temperature time series 
for Benin synoptic stations from 1967 to 2012 is investigated by Multifractal 
Detrended Fluctuation Analysis (MFDFA) method. This is achieved through 
five multifractal parameters (Hurst exponent, Hölder exponent with maximum 
spectrum, spectrum asymmetry, spectrum width and singularity spectrum). The 
main and nontrivial findings obtained are the following:

1. Temperature time series exhibit long-range temporal correlation, 
which cannot be fully described by a single scaling exponent. They 
are long-term positively correlated, meaning that an increase in 
temperature is more likely to be followed by another increase. 

2. Temperature time series have a multifractal nature; however, weather 
conditions and the geographic position strongly affect the strength of 
their multifractality. Multifractality is stronger in subequatorial region.

Figure 5. Singularity spectrum f () as a function of the singularity strength 
function  for the temperature of original, shuffled and surrogated series at (a) Cotonou, 

(b) Bohicon, (c) Save, (d) Parakou, (e) Natitingou and (f) Kandi synoptic stations.

Figure 6. South-North distribution of the main multifractal parameters 
obtained for the original, shuffled and surrogate temperature times series. (a) 0 and 

the spectrum width, ; (b) the ratio ∆surrogated  to
 
�∆original   and the ratio 

∆shuffled  to
 
�∆original; (c)  spectrum asymmetry and (d) f values.
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3. Regarding the spectral asymmetry spatial distribution, it is observed 
that except in Kandi, the spectral asymmetry values are negative, 
therefore the spectrum is left-skewed.

4. Long-range temporal correlations for small and large fluctuations 
and a fat-tailed probability distribution are two major sources 
for multifractality of temperature; however, fat-tailed probability 
distribution contributes more to multifractality.

Future works will be focused on the investigation of the relationship 
between the predictability of the meteorological time series and their multifractal 
nature in different climatic conditions.
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