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In this study, we tried to estimate the optimum linear equations among the parameters associated with different 
earthquake fault mechanisms for Iranian earthquakes. For this purpose, we tested different curve fitting methods in 
order to present the most proper empirical relationships between several seismic parameters for different fault systems. 
In the present paper, 46 large and destructive Iranian earthquakes whose magnitudes change between 5.8 and 7.8 from 
1900 to 2014 were used for the analyses. A comparison was made by using four types of curve fitting techniques. 
The estimation procedures are considered as (1) L2 or Least Squares Regression, (2) L1 or Least Sum of Absolute 
Deviations Regression, (3) Robust Regression and, (4) Orthogonal Regression. Confidence intervals were selected 
as 95% for all types of regression relationships. In the selection of the best probability distribution, we considered 
the correlation coefficients of the linear regressions as a powerful and conceptually simple method. Correlation 
coefficients of all relationships change between 0.299 and 0.986 with Orthogonal regression, between 0.168 and 
0.792 with L1 regression, between 0.059 and 0.829 with Robust regression. For Iranian earthquakes, the most suitable 
and reliable empirical relationships between moment magnitude (Mw) and surface wave magnitude (Ms), Mw and 
surface rupture length (SRL), Mw and maximum displacement (MD), and SRL and MD were obtained by Orthogonal 
regression since it supplies stronger correlation coefficients than those of the other regression techniques in most 
estimates. The results show that estimated empirical relationships among the different fault parameters by using the 
Orthogonal regression method can be accepted as more up-to-date and more appropriate in comparison with the other 
regression norms. Consequently, these equations were suggested as more reliable in the estimation of the maximum 
surface displacement, maximum surface rupture length and associated with the maximum credible earthquakes for 
different areas of Iran. Furthermore, obtained relationships can be statistically significant for the assessment of seismic, 
tectonic and geologic activities, and they can be used to evaluate the rupture hazard of the Iranian Plateau.
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A comparison of alternative curve fitting techniques for different earthquake fault parameters of Iranian earthquakes

Comparación de técnicas de ajuste de curvas para diferentes parámetros de fallas en terremotos en Irán
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En este estudio, los autores se enfocaron en estimar las ecuaciones lineales óptimas para los parámetros asociados con 
diferentes mecanismos de fallas de terremotos en Irán. Con este propósito se evaluaron diferentes métodos de ajuste 
de curvas para presentar la relación empírica más apropiada entre varios parámetros sísmicos para diferentes sistemas 
de fallas. En el presente artículo se analizaron 46 terremotos ocurridos en Irán y con magnitudes entre 5.8 y 7.8, entre 
1900 y el 2014. Se realizó una comparación al usar cuatro tipos de técnicas de ajuste de curvas. La estimación de los 
procedimientos se consideraron así (1) L2 o Regresión de Mínimos Cuadrados, (2) L1 o Suma de Mínimos en Regresión 
de Desviaciones Absolutas, (3) Regresión Robusta y (4) Regresión Ortogonal. Se seleccionaron intervalos de confianza 
del 95 por ciento para todos los tipos de relaciones de regresión. En la selección de la mejor distribución de probabilidades 
se consideraron los coeficientes de correlación de las regresiones lineales como un método fuerte y conceptualmente 
simple. Los coeficientes de correlación de todas las relaciones cambian entre 0.299 y 0.986 con regresión ortogonal; 
entre 0.168 y 0.792, con regresión L1; y entre 0.059 y 0.829, con regresión robusta. Para los terremotos en Irán, las 
relaciones empíricas que más se ajustan y que son más confiables entre la magnitud de momento (Mw) y la magnitud de 
onda superficial (Ms), entre la magnitud de momento y la longitud de ruptura superficial (SRL), entre la magnitud del 
momento y el desplazamiento máximo (MD), y entre la longitud de ruptura superficial y el desplazamiento máximo se 
obtuvieron por la regresión ortogonal, ya que esta provee coeficientes de relación más fuertes que aquellos estimados 
por medio de otras técnicas de regresión. Los resultados muestran que las relaciones empíricas estimadas entre los 
diferentes parámetros de falla al usar el método de regresión ortogonal podría ser aceptado como el más actualizado y 
más apropiado con respecto a otras normas de regresión. Además, estas ecuaciones se sugieren como las más confiables 
en la estimación del desplazamiento máximo de superficie, de la máxima longitud de ruptura superficial y asociada 
con la fiabilidad máxima en terremotos para diferentes zonas de Irán. Adicionalmente, las relaciones obtenidas pueden 
ser estadísticamente significativas para la evaluación de las actividades sísmicas, tectónicas y geológicas, y pueden ser 
utilizadas para medir el riesgo de ruptura en el altiplano iraní.
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Introduction

Fitting of data points by parametric curves and surfaces is considered 
in many scientific fields such as mathematics, statistics, earth and computer 
sciences. Several standard statistical software has been used by the practitioners 
to fit the data sets and to estimate the suitable relationships between some 
response or dependent variable and hypothesized predictor or independent 
variables (Öztürk, 2014). The researchers want to develop a physical model 
from an obtained relationship and therefore, they need to determine the value of 
the response variable based on the estimated relationships. In many situations, 
however, it is not possible that these types of relationships are valid just by 
supposing a mathematical model of the relationship. In addition, these variable 
selection of regression norms cannot be directly applied to contaminated data 
sets with an ordinary estimation technique. Thus, it is necessary to be collected 
the data from the population of available data of these variables and then, an 
empirical relationship between the dependent and independent variables may 
be estimated from the data (Giloni & Padberg, 2002). 

In applied statistics, investigation of the validity of curve fitting methods 
to fit the observed data is a significant problem. Despite the differences of 
existing curve fitting techniques, the principal of the most techniques is based 
on the classical optimization theory and methods. However, the researchers 
encounter practical curve fitting problems in many quantitative oriented 
disciplines, and the solution needs to find the most reliable solution to an 
over determined system of linear equations (Cadzow, 2002). An effective and 
accurate alternative curve fitting technique has a great importance and serves 
as a basic module in practice. For this reason, the curve fitting is one of the 
most common tools in establishing the relationship between a response and 
an explanatory variable statistic for many social and engineering fields (Durio 
& Isaia, 2003). The ignoring of a significant component of variability and the 
equation error is one of the main problems with the usage of the curve fitting 
models for any data set. Therefore, this problem can lead to either over or  
under correction for measurement error depending upon the relative sizes 
of the variances included. The estimation of correlation coefficient for the 
curve fitting models is a simple tool, and the assessment of the curve fitting 
can be succeeded by means of the estimation of some criterion such as the 
calculation of coefficient for the curve fitting model. Many statistical analyzes 
show that it is not considered as a final model selection criterion. However, 
this calculation supplies an evidence of the conformity of the selected 
descriptive variables in estimating the response from the curve fitting model 
(Renaud & Victoria-Feser, 2010).

In many data processing applications, the linear equation systems 
under consideration are not consistent and researchers desired to estimate the 
most approximate solution. Many curve fitting techniques have been used 
in these types of analyses, for example: L1 Norm or Least Sum of Absolute 
Deviations Regression (Giloni & Padberg, 2002), L2 Norm or Least Squares 
Regression (Cadzow, 2002), Robust Regression (Huber, 1964), Total Least 
Squares or Orthogonal Regression (Carroll & Ruppert, 1996), Geometric Mean 
Regression (GMR, Leng et al., 2007), Principle Components Regression (PCR, 
Maronna, 2005), Covariate Adjusted Regression (CAR, Şentürk & Nguyen, 
2006) and Least Trimmed Squares Regression (LTS, Rousseeuw & Leroy, 
1987). The main purpose of this study is to estimate the most optimum and 
reliable curve fitting solutions for linear equations among the earthquake fault 
parameters of Iranian earthquakes. In this context, a comparison among the first 
four curve fitting techniques mentioned above was made in order to provide 
the optimum statistical model between different variables. We did not discuss 
the other methods such as PCR, GMR, LTS or CAR since they have been 
preferred in more distinctive applications and they have not generally been used 
in geophysical analyses. One can also find many details about all these curve 
fitting techniques in literature (e.g., Branham, 1982; Stefanski, 1991; Hartmann 
et al., 1997; Spiess & Hamerle, 2000; Shi & Lukas, 2005). Consequently, L1 
Norm, L2 Norm, Robust and Orthogonal regressions were tested for Iranian 
earthquakes in order to provide newer and more suitable empirical relationships 
among different earthquake fault parameters. By using these different statistical 
regression techniques, we aimed to make a thorough and consistent appraisal 
of maximum surface rupture length, maximum surface displacement and 
associated with the maximum credible earthquakes for different parts in Iran. 
Also, regional differences in these faulting parameters can be evaluated in terms 
of geologic, seismic and tectonic variations as the preliminary results of the 
future studies for the study region.

Mathematical background of the curve fitting methods

Curve fitting problems are classified within the category of mathematical 
problems, and many different distance functions or metrics have been utilized to 
carry out linear curve fitting process. There are many mathematical techniques 
for the solution of these types of problems. However, since our aim is only to 
evaluate different models and to estimate the optimum relationships, we will not  
discuss the mathematical background in detailed. For this reason, we will  
give short and principal explanations for four different curve fitting models in 
this section, as well as their basic statistical features and quality of fit.

The curve fitting process for a given data set has a great importance 
in statistical data analysis. These types of data analyses are naturally related 
to distances in Euclidean geometry and by considering the linear algebra, 
an analytical result may be possible. Some metrics or distance functions 
may be useful to perform a linear equation to the data. In order to analyze 
a linear equation system, it is accepted m observations or measurements on 
the dependent variable y and some number n ≥1 of independent variables 
x1,….,xn. Each one of them is also known m values. It can be given as (Giloni 
et al., 2006):
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where y  R is a vector of m measurements and X is an m x n matrix of 
real frequently termed as the design matrix. In addition, x1,….,xn are column 
vectors with m components and x1,….,xm are row vectors with n components 
corresponding to the columns and rows of X, respectively. Linear equation 
system can be formulated statistically as in the following (Durio & Isaia, 2003):

y X= +β ε      (2)

where T = (1,……,n) is the vector of parameters of the linear system 
and T=(

1
,……,m)

 
a vector of m random variables corresponding to the error 

terms in the suggested equation. An upper index T denotes “transposition” 
of a vector or matrix. The dependent variable y is a random variable in the 
hypothesized model. The observations include some “noise” or observation 
errors and they are taken in the error terms e. However, we can write it for the 
linear equation that we want to solve:

y X r= +      (3)

where given several randomly fixed parameter vector b, the 
components ri of the vector rT=(r

1
,……,rm) are the residuals that result, 

given the measurements y, a fixed design matrix X, and the chosen vector  
  Rn. Consequently, the residuals, r, are in terms of the hypothesized model, 
realizations of the random error terms e given the particular measurements 
y and parameter settings b. Given y and X, the main purpose in linear fitting 
model is to estimate the parameter settings   Rp . This means that several 
suitable measure of the dispersion of the resulting residuals r  Rm must be as 
small as possible (Giloni & Padberg, 2002). 

It has completely possible that, e.g., x j1 1= , for all j  {1,……,m} in the 
design matrix X (Giloni & Padberg, 2002). In this situation, 1 is attributed as 
the “intercept term” and it is corresponded to the situation in the two parameter 
case, i.e., when n=2. If x j1 1= , for all j  {1,……,m} and n=1, the problem of 
estimating a “best” fitting scalar b1 means that we desire several good measure 
of “centrality” of the measurements y. 

Least Squares Method (L2 Norm)

Least squares (LS) method is the most preferred and the best well-known 
regression technique. This method is the most basic form of the LS optimization 
problems, and there are many applications in mathematics and statistical data 
analyses besides other scientific fields. The model estimates  are determined 
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well known that the L1 technique can resist some large errors in the data y for 
unlimited problem (Shi and Lukas 2005). When a small part of the data being 
evaluated is not reliable (i.e., contains data outliers), L1 model is suitable. L1 
model application may ignore some bad data points if it emphasizes the larger 
part of data points (Cadzow, 2002).

L1 model calculation of b is the solution to the problem for the linear 
model which has linear constraints:

minimize e r e rn
T

n
T+  

subject to X r r yβ − −+ =+ ,   (8)

                     free, r r+ ≥ ≥−0 0,    

In the equation (8), the residuals r of the general formulation (3) are simply 
replaced by a difference r+-r- of positive variables. The non-differentiability 
of the exact value target function is dissembled by the target function of (8). 
However, it accurately captures the target function of L1 norm. Because of the 
non-differentiability of the criterion function, L1 estimation is more difficult 
than L2 estimation. The statistical hypothesis improved for L1 method is less 
advanced than it is for L2 method (Rosenberg and Carlson 1977), whereas 

we have the formula β
−LS T TX X X= ( ) 1

 for the L2 norm estimates LS. It 

allow us to obtain the sample distribution of LS from the error distribution, 
and the dependence of the L1 norm estimator on the errors is more complex. 
The asymptotic theory for L1 norm is not as well-developed as for L2 norm. 
This theory is true to a certain degree. It is also true for high-breakdown model 
estimators. In addition, L1 norm estimator is not at all robust to measurements 
with unusual predictor values; that is, it has a low breakdown point (Giloni et 
al., 2006). Also, one can see Arthanari & Dodge (1981) for further mathematical 
background and discussion of the L1 approach.

Orthogonal Method (Total Least Squares Method)

Orthogonal regression (OR) is one of the best known methods for errors-
in-variables estimation in the simple linear curve fitting technique. This method 
is also sometimes named as the functional maximum likelihood estimator under 
the limitation of known error variance ratio. In an ordinary linear curve fitting 
model, the aim is to minimize the sum of the squared vertical distances between 
the y data values and the corresponding y values on the fitted line. However, the 
aim in OR is to minimize orthogonal (perpendicular) distances from the data 
points to the fitted line.

OR is derived a pure observation error perspective. It is supposed that 
there are theoretical constants y and X which are linearly related through 
(Carroll & Ruppert, 1996):

y X= + 0 1      (9)

Formulation (9) shows that y and X would be exactly linearly related if 
they could be measured. In a classical OR technique, instead of measuring (y, 
X), Carroll & Ruppert (1996) estimated them by corrupted by observation error:

Y y= + 

W X U= +      
(10)

where e and U are independent mean zero random variables with 
variances σε

2 and u
2, respectively. Equations (9) and (10) are combined, the 

result can be written as:

y X= + +β β ε0 1     (11)

The knowledge of error variance ratio is necessary for OR techniques:

η




σ

σ
ε=

( )
( ) =

Var Y X

Var W X u

2

2     (12)

Equation (12) is based on a sample of size n Y W Xi i i i
n, , ,( ) =1 and the course 

of X’s are unknown and unobserved. OR estimator is estimated by minimizing:

by minimizing the sum of squared residuals under the Euclidean (or L2) norm 

x j2
2= ∑  , i.e. The aim is to estimate the parameters    Rp such that:

S r y X y X y y X y X XT T T T T T T= ( ) ( ) = ( ) + ( )− β − β − β β β2  (4)

must be the minimum. This transformation is uniform and optimality is 
not affected from it. This minimized equation is positive semi-definite and thus, 
the first-order conditions achieve the process. For example, in order to minimize 
S, its gradient ∇S in accordance with  should be computed and adjusted as 
zero or can be formulated as (e.g., Cadzow, 2002; Giloni & Padberg, 2002):

1
2

0∇ − βS X y X XT T= + ( ) =    (5)

The statement X X XT T( ) =   should be analyzed for b  and is named 

as normal equations for L2 norm (Giloni & Padberg, 2002). Supposing that 

the rank of X is n, i.e., that r(X)=n, it means that X XT( )1
 exist and the ideal 

β= βLS  is stated as:

β
−LS T TX X X y= ( ) 1

    (6)

i.e., this regression yields an excellent level. The solution process is 
focused on the inversion of XTX, but a quantitative analyzer should accomplish 
the possible singularity of XTX. 

The statistical curve fitting techniques have been applied densely for a 
very long time. Although some significant progress has been made to evaluate 
the goodness of fit (GOF) besides the other statistical features of the linear 
curve fitting techniques, some features of the statistical curve fitting techniques 
require generally poor assumptions (Sen and Srivastava 1990). The estimates 
LS in the LS can be accepted as the best estimators when the error terms in the 
model have a normal distribution. However, the LS estimates depend generally 
on the presence of the second moment of the error distribution. As a result, 
this regression model is especially useful for all cases in which involve the 
analyses of great data sets and handle great samples with the constant numbers 
of outliers (Cadzow, 2002).

Least Sum of Absolute Deviations Method (L1 Norm)

It is well-known that the LS method is very sensitive to unusual 
measurements in a data. Hence, a large number of robust estimators have 
been suggested as alternatives, and the least sum of absolute deviations (L1) 
technique was one of the earliest among them. In this method, coefficients 
are calculated by minimizing the sum of the absolute values of the residuals. 
Because L1 norm can be highly affected by a single measurement, it has been 
mostly disregarded as a robust alternative to L2 norm. It has many names in the 
literature such as LAD (least absolute deviation), LAE (least absolute error), 
LAR (least absolute residual), LAV (least absolute value), LSAD (least sum of 
absolute deviations), MAD (minimum absolute deviation), MSAE (minimum 
sum of absolute errors). L1 norm has an increasing interest as an alternative to 
L2 norm over the past 30 years or so, and it has been a new perspective since 
1960s by different researches (e.g., Fama, 1965; Mandelbrot, 1967; Blattberg 
& Sargent, 1971; Huber, 1987). More descriptive or remarkably illustrative 
results were provided in many cases by using the L1 norm. The estimates of 
the parameters   Rp of the linear curve fitting technique are achieved by 
minimizing the sum of the absolute residuals (Giloni & Padberg, 2002):

y X y xi i
i

n
− β − β1

1

=
=
∑     (7)

Instead of the L2 model, L1 model x x j1 = ∑  is used to minimize 

dispersion of the residuals. This target function is obviously non differentiable 
and computation does not assist (Giloni & Padberg, 2002). A significant 
advantage of L1 method in comparison with L2 regression is its stability. It is 
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Y X W Xi i i i
i

n
−β −β η −0 1

2 2

1

( ) + ( ){ }
=
∑ /   (13)

in the unknowns, namely  0 1 1, , , ,X Xn…… . Equation (13) is just the 
ordinary total Euclidean or perpendicular distance of Y Wi i i

n,( ) =1 from the line 
 0 1 1, , ,X Xi i i

n( ) =  if =1. However, equation (13) is a weighted perpendicular 

distance if 1. If S Sy w
2 2,  and Swy are the sample variance of the Y’s, the 

sample variance of the W’s, and the sample covariance between the Y’s and  
the W’s, respectively, OR estimate of slope is (Carroll & Ruppert, 1996):

  (14)

This well-known OR estimator is explained in many studies such as 
Madansky (1959), Kendal & Stuart (1979), Weisberg (1985), Fuller (1987) 
and Leng et al. (2007). The use of OR must include a careful analysis of 
equation error and is not only the usual estimation of the ratio of observation 
error variance. Also, OR fitting technique is an acceptable norm as long as  
in equation (4) is specified truly. If its assumptions hold, OR is a completely 
justifiable technique of estimation. Because OR method does not consider 
equation error, it frequently causes itself to misuse by careless as a technique 
(Öztürk, 2014).

Robust Method

The most important issue in the LS regression is non-robustness to 
outliers. If the error distribution is not normal, especially if the errors are 
heavy-tailed, linear LS calculations can produce unexpected results. Especially, 
if there are extremely incompatible data points, there can be a strong effect 
on the model parameters by these outliers and we can see it on the results. 
An easy solution can be obtained by repetitively weeding up these outliers 
and by calculating again the LS fit for the remaining points. Another method 
is to operate a different regression model which is not as vulnerable as LS to 
incompatible data and it is called as Robust Regression (RR). This technique 
was introduced by Huber (1964), and the best known and common technique 
for RR is M-estimation. If we take the general curve fitting model in equation 
(2) into account for the ith of m measurements:

yi i i k ik i= + + +……+ +α β χ β χ β χ ε1 1 2 2

= +xi i
′β ε      

(15)

The fitted model is formulated as:

yi a b b b ei i k ik i= + + +……+ +1 1 2 2  

= +x b ei i
      

(16)

The target function is minimized by the general M-estimator as follow: 

ρ ρ − ′e y x bi i i
i

n

i

b

( ) = ( )
==
∑∑

11

   (17)

If the derivative of r is accepted as y=r’, differentiating the target 
function according to the coefficients, b, and getting the partial derivatives to 0, 
yield a system of k+1 estimating equations for the coefficients:

ψ − ′ ′y x b xi i i
i

n

( ) =
=
∑ 0

1

    (18)

If we describe the weight function ω ψe e e( ) = ( ) /  and  i ie= ( ), then 
the estimating equations can be given as follow: 

ω − ′ ′
i i i

i

n

iy x b x( ) =
=
∑

1

0     (19)

Solving the estimating equations is a weighted LS problem, minimizing 

i ie
2 2∑ . However, the weights depend upon the residuals, the residuals 

depend upon the estimated coefficients, and the estimated coefficients depend 
upon the weights. One can find many details and mathematical backgrounds in 
Huber (1964).

Nonlinear curve fitting techniques play a significant role in many fields. 
The classical LS method is generally preferred in many cases for calculating 
the parameters of a nonlinear model. However, it is well known that these 
classical techniques are frequently very sensitive to extreme values. Most 
robust improvements on the estimation of curve fitting model are based on the 
generalizations of the LS or maximum likelihood methods. RR technique is 
less influenced by outliers. However, the methods of small sample asymptotes 
may be very helpful in evaluating the behavior of RR estimates. Several of RR 
methods are also explained in many studies such as Huber (1981), Field (1997), 
Sinha et al. (2003) and Abdelkader et al. (2010).

Estimation of correlation coefficient for curve fitting methods

In order to fit mathematical models to measured data, curve fitting 
applications have been extensively preferred by researchers in many different 
disciplines. When the error terms identically and independently show a 
normal distribution, the classic regression method of the LS is efficient. Real 
data frequently include the extreme values and these data points are covered 
by a majority of the data while the non-measured random disturbances in a 
curve fitting method are generally accepted as normally distributed. Many 
extreme values are controlled by genuinely thick-tailed or asymmetric error 
distributions, whereas these errors may be the result of observation mistakes or 
human recording error. Thus, a useful solution for the problem is to minimize 
the sum of residual error magnitude. If data vector includes a small number 
of data outliers, the sum of error magnitudes is of particular use in many 
applications. In these situations, the sum of squared errors criterion is wrongly 
influenced by these data outliers and therefore often leads to a poor selection of 
the coefficient vector. In fact, separating the extreme values is not appropriate 
since they can represent the correct data generating process in these types of 
situations (Boyer et al., 2003). 

The choice of an optimum probability function for a given data set is 
one of the most significant issues in curve fitting analyses. As seen in literature 
studies, different methods such as the chi-square test of homogeneity, the test 
of normality, Kendall and Spearman coefficients, Bayesian Interactive Model, 
Principal Component Analysis, Mutual Information Coefficient, Hoeffding 
method etc. can be applied and then, the most appropriate model can be selected. 
However, there is not any specific rule in the choosing the suitable distribution 
or parameter calculation methods. The choosing a suitable distribution in 
many cases is dependent on the GOF assessment. The GOF in a model can be 
defined as the technique for analyzing how well sample data compatible with 
an accepted probability distribution (Öztürk, 2014). Some tests for the GOF 
have been improved and one of the best known and the most frequently used 
criteria among them is called as correlation coefficient. This term is given as 
R2 or sometimes r is used, and it has a significant role in curve fitting analyses. 
As stated in Heo et al. (2008), it is not recommended to be used as a single 
tool for the GOF, but it can supply an acceptable and quick solution. Although 
correlation coefficient is only based on the covariance penalty, it is accepted as 
a substantially simple and effective tool. Alternative models were not used in 
this study despite many techniques as suggested in literature since these types 
of applications have been used for more certain fields and they have not been 
used in geophysical applications. 

Considering equation (2), we can assume that  is the predicted 
value for yi in the selected model with p<q explanatory variables (based on a 

LS) and  is the identical residual sum of squares. Thus, 

Gp can be given as (Renaud & Victoria-Feser 2010):
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  (20)

As mentioned above, a very simple and practice tool for the GOF is also 
provided by determination of correlation coefficient for the linear curve fitting 
models. If we assumed that x is random, we can describe as the parameter 
which is the squared correlation between y and the best linear combination of 
the x (Anderson, 1984):

φ β2 2= ( )max ,Corr y xT     (21)

The R2 is generally given as a quantity and it estimates the percentage of 
variance of the response variable explained by linear relationship. It is estimated 
as follow:

  (22)

where ESS, TSS and RSS denote the explained, total and residual sum 
of squares, respectively. If we have an intercept term in the linear model, 
estimation of R2 is essentially equal to the square of the R2 between yi and 
, i.e. (e.g., Greene, 1997):

  (23)

where  is the average values of the measurements yi and  is the fitted 
quantiles . This equation shows that R2 measures the GOF of the linear model 
by its ability to predict the response variable and its ability measured by the 
correlation. Moreover, this formulation denotes that the response distribution 
does not need to be Gaussian to allow for the interpretation of R2. It is also 
a direct estimator of the population parameter of equation (3). The scale and 
location of R2 do not change and this is statistically independent of the standard 
deviation and average, . In fact, R2 supplies a quantitative evaluation of fit and 
shows the linearity of the probability plot. As an important result, if R2 is close 
to 1.0, it is assumed that the measurements can be constructed from the fitted 
distribution (Heo et al., 2008).

Data catalog of Iranian earthquakes and a brief definition  
of the seismotectonics 

The first aim of this study is to prepare a uniform data catalog taking 
the types of surface wave magnitude (Ms) and moment magnitude (Mw) 
into consideration. Then, the second aim is to estimate the new empirical 
relationships among the seismicity parameters of different earthquake 
faulting mechanisms such as Mw and surface rupture length (SRL), Mw 
and maximum displacement (MD), and SRL and MD. The data set used 
in the scope of this work is updated form Ghassemi (2016). Table 1 shows 
the details of parameters for different faulting mechanisms and is modified 
from Ghassemi (2016). He used 46 Iranian earthquakes whose magnitudes 
vary from 5.8 to 7.8 and which occurred between the time intervals 1900 
and 2014 (Figure 1). As an initial step in Ghassemi (2016), a catalog of 
Iranian earthquakes related to direct loses was used and the number of initial 
earthquake catalog was reduced to 41 events. Then, 5 more events were also 
added to complete the catalog and to extend it to 2014. The outcomes in the 

Table 1. Data set of fault parameters for Iranian earthquakes between 1900 and 2014 (for details, see Ghassemi, 2016). RLSS: right lateral strike-slip,  
LLSS: left lateral strike-slip, NF: normal fault, TF: thrust or reverse fault, SRL: surface rupture length, MD: maximum displacement, VDC: vertical displacement 

component, HDC: horizontal displacement component

No Date Longitude Latitude Rupture Mechanism Mw SRL MD

1 23.01.1909 49.13 33.41 RLSS-NF 7.3 >40 >1

2 18.04.1911 57.03 31.23 TF 6.3 18 vdc. >0.5

3 01.05.1929 57.81 37.73 RLSS 7.2 74 2

4 06.05.1930 44.60 38.24 NF-RLSS 7.1 16-30 4

5 16.02.1941 58.87 33.41 RLSS 6.3 8-10 0.5-1

6 27.11.1945 63.47 25.02 TF 7.8

7 23.09.1947 58.67 33.67 RLSS 6.8 20 vdc. 0.3-0.8 hdc. 1

8 05.07.1948 57.73 29.88 RLSS 6.1

9 05.10.1948 58.55 37.88 RLSS 7.1

10 12.02.1953 54.88 35.39 TF 6.5 >8 vdc. >1.4

11 02.07.1957 52.47 36.07 TF 6.8

12 13.12.1957 47.82 34.58 TF 6.7

13 16.08.1958 48.17 34.30 NF-RLSS 6.7 20 vdc. 1.5

14 01.09.1962 49.81 35.71 TF 7.1 80 vdc. 1.4 hdc. 0.6

15 31.08.1968 58.96 34.02 LLSS 7.1 80 vdc. 2.1 hdc. 4.5

16 01.09.1968 58.23 34.05 TF 6.4

17 30.07.1970 55.89 37.67 RLSS 6.5

18 10.04.1972 52.98 28.38 TF 6.9

(Continued)
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present study may differ from specific earthquakes which are used to estimate 
the relationships between Mw and SRL, Mw and MD, and SRL and MD 
since this catalog is not complete for SRL and MD. In general, magnitude 
scale is given as Ms in the original Iranian earthquake database. This data set 
includes 166 events for Ms and Mw types between 1962 and 2004. In order 
to prepare a uniform catalog covering Mw scale, new relationships between 
Mw and Ms were firstly obtained and then, the other empirical relationships 
among the faulting parameters were formulated by using the most suitable 
curve fitting technique. One can see Ghassemi (2016) for many details such 
as the geometry and kinematics of surface ruptures, the secondary ruptures 
associated with earthquake faulting mechanism, seismic properties of 
earthquake faulting and the previous relationships among these variables.

Iran is located within the Alpine-Himalayan orogenic belt in the active 
collision zone between the Eurasia to the north and Arabia to the south. The 
Iranian Plateau is consisted of different tectonic systems such as transpressive 

fold-and-thrust mountain belts with active strike slip and reverse faulting, an 
active subduction zone and recent volcanic activity; as a result, the plateau 
shows different crustal blocks of variable thickness and rigidity interspersed 
by relatively stable aseismic blocks of different sizes (Berberian, 2014). The 
Iranian Plateau shows active deformation, high elevation and earthquake 
activity with complex interactions of active strike-slip faults and thrusts, 
and different destructive earthquakes recorded in historical and instrumental 
periods. The most significant tectonic structures are mostly accommodated by 
shortening and strike-slip faulting in the mountain belts and can be given as 
the Great Caucasus, Zagros, Alborz, Kopeh-Dagh, active Makran subduction 
zone and also Azerbaijan (northwest Iran) seismotectonic province (Javidfakhr 
et al., 2011). Along the Iranian Plateau, fault ruptures from earthquakes show 
a large-scale typical changes and evaluation of them supply many practical 
understanding for surface rupture hazard in Iran (Ghassemi, 2016). It is well 
known that Iran was struck with strong and destructive earthquakes in the past 

Table 1. Data set of fault parameters for Iranian earthquakes between 1900 and 2014 (for details, see Ghassemi, 2016). RLSS: right lateral strike-slip,  
LLSS: left lateral strike-slip, NF: normal fault, TF: thrust or reverse fault, SRL: surface rupture length, MD: maximum displacement, VDC: vertical displacement 

component, HDC: horizontal displacement component

No Date Longitude Latitude Rupture Mechanism Mw SRL MD

19 02.07.1972 50.85 30.06 TF 5.5 1.5 vdc. 4

20 24.11.1976 44.02 39.12 RLSS 7.1 55 vdc. 0.5 hdc. 3.5

21 21.03.1977 56.45 27.59 TF 7.0

22 06.04.1977 50.76 31.90 TF 5.9

23 19.12.1977 56.61 30.90 RLSS 5.8 19.5 hdc. 0.2

24 16.09.1978 57.12 33.40 TF 7.3 85 < 1.7

25 16.01.1970 59.50 33.80 LLSS 6.5

26 14.11.1979 59.81 33.91 RLSS 6.6 20 1

27 27.11.1979 59.63 34.05 LLSS 7.1 68 2.5-4

28 11.06.1981 57.68 29.85 RLSS-TF 6.6 15

29 28.07.1981 57.77 29.97 TF 7.0 65 0.4

30 20.11.1989 57.72 29.90 RLSS 5.8 11 vdc. 0.01 hdc. 0.004

31 20.06.1990 49.23 37.00 LLSS 7.3 >80 vdc. 0.95 hdc. 0.6

32 06.11.1990 55.46 28.24 TF 6.4 15 vdc. 1.5

33 23.02.1994 60.54 30.78 TF 6.1 9.5 1.7

34 24.02.1994 60.51 30.79 TF 6.2

35 04.02.1997 57.31 37.73 RLSS 6.4 15 0.5-1.0

36 28.02.1997 48.07 38.12 RLSS 6.0

37 10.05.1997 59.81 33.85 RLSS 7.2 125 vdc. 0.9 hdc. 2.3

38 14.03.1998 57.59 30.14 RLSS-NF 6.6 23 hdc. 3

39 18.11.1998 57.58 30.33 RLSS 5.3 4

40 22.06.2002 49.01 35.62 TF 6.4 3 0.16

41 26.12.2003 58.27 28.90 RLSS 6.5 5 0.2

42 28.05.2004 51.57 36.29 TF 6.2

43 22.02.2005 56.79 30.71 TF 6.4 13 1

44 27.11.2005 55.83 26.75 TF 6.0

45 20.12.2010 59.19 28.33 RLSS 6.5 14 0.05

46 11.08.2012 46.78 38.41 RLSS 6.4 13 0.5-1
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and recent years and these earthquakes caused large damages and high loses in 
human life. Some of these earthquakes are 1909 Silakhor earthquake (Mw7.4), 
1945 Makran earthquake (Mw8.0), 1968 Ferdows earthquake (Mw7.4), 1990 
Manjil-Rudbar earthquake (Mw7.4), 2013 Ghosht (Mw7.7) earthquake. As a 
remarkable result, since this study does not include a seismotectonic evaluation 
or discussion on the earthquake fault rupture hazards in Iran, we did not give 
many details for the tectonic structures and seismicity of Iran. Thus, a brief 
and general information is provided in this section. Many readers can reach 
the knowledge on these subjects from different studies such as Mirzaei et al. 
(1997), Masson et al. (2005), Djamour et al. (2010), Ghassemi (2016), Öztürk 
et al. (2017).

Results and discussions for the applications of alternative curve  
fitting methods

The main purpose of this study is to provide the new, up-to-date and 
reliable empirical relationships between Mw and Ms, Mw and SRL, MD and 
Mw, and MD and SRL considering the parameters of surface ruptures for 
Iranian earthquakes. In this scope, we used different regressions models such 
as L1, Orthogonal and Robust for different earthquake faulting mechanisms 
(strike-slip and thrust or reverse faults) in Iran. As stated in Öztürk (2014), 

measurements of surface ruptures generally accompany many large 
earthquakes and the logarithms of their length are linearly related to earthquake 
size. These empirical relationships can supply not only fault sizes for a specific 
magnitude, but also the maximum magnitude based on these sizes. Such types 
of results are also very useful for geotechnical, seismic risk and hazard, and 
seismotectonic studies. Many authors estimated these types of relationships 
between magnitude and earthquake faulting parameters for different parts of 
the world (e.g., Acharya, 1979; Wells & Coppersmith, 1994; Ambraseys & 
Jackson, 1998; Öztürk, 2014; Ghassemi, 2016). 

Ghassemi (2016) preferred the LS method for the analyses and provided 
several empirical relationships among Mw, MD and SRL based on different 
earthquake faulting mechanisms in Iran. In addition to the LS method, three 
different regression applications were used in this study for the same data in 
Ghassemi (2016). A comparison between the results of Ghassemi (2016) and 
the results of present study were given in Table 2. Many researchers in various 
scientific and engineering disciplines have used these types of curve fitting 
methods in order to estimate the mathematical formulation for observed data 
points. If we have an unusual error distribution in a data set, linear LS method 
cannot provide a good estimate (Öztürk, 2014). Therefore, the minimizing 
the sum of residual error size will be a more preferable and proper definition 
of the solution. For this purpose, correlation coefficients of the curve fitting 
models can be preferred as a trustworthy and acceptable tool in the evaluation 

Figure 1. Map showing locations of the earthquake events discussed in this paper. Numbers refer to the event numbers in Table 1. Circles show instrumental 
epicenters of the events. Where present, surface ruptures are shown in black lines. Instrumental epicenter for the Event No. 6 in Makran region lies outside the map area  

in Pakistan’s coast. Modified after Ghassemi (2016).
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of the results. As given in Table 2, OR technique provides stronger correlation 
coefficients than those of the other regression techniques in most estimates 
expect a few ones. A few poor correlation coefficients, for example R2=0.299 
between MD and Mw, and R2=0.411 between MD and SRL, were obtained 
in the estimations. However, these relationships can be suggested in the 
evaluation of seismic hazard in Iran. Ghassemi (2016) stated that these types of 
estimations are related to seismicity analyses and these relationships evidently 
present the probable range of versatility of faulting parameters. In addition, 
these relationships may supply an understanding to excessive limits for rupture 
hazard evaluations, and they may give practical insights in paleo-seismological 
surveys on active faults of the Iranian Plateau.

Table 2 shows the comparison of the empirical relationships calculated in 
this study with the relationships of Ghassemi (2016). Graphical representations 
of the whole empirical relationships obtained in this study with three 
regression models and their confidence intervals between Mw and Ms, Mw 
and SRL, MD and Mw, and MD and SRL were also plotted in Figures 2,  
3 and 4. The first numbers in the equations show the error terms and standard 
deviations of them (in parentheses) and the second numbers show the slopes 
of the related distributions and their standard deviations (in parentheses), 
respectively. Considering three curve fitting methods in addition to the LS 
method by Ghassemi (2016), the suggested linear-linear, log-linear and log-log 
relationships were given as the more reliable and optimum by OR method with 
their R2 in the following forms:

Mw=0.668(±0.177)+0.913(±0.014)*Ms, for all earthquake mechanisms 
(R2=0.986)

Mw=5.570(±0.234)+0.822(±0.077)*Log(SRL), for thrust and reverse 
faults (R2=0.945)

Mw=4.630(±0.359)+1.489(±0.078)*Log(SRL), for strike slip faults 
(R2=0.788)

Mw=4.972(±0.332)+1.248(±0.060)*Log(SRL), for all fault mechanism 
(R2=0.778)

Log(MD)=-3.002(±0.378)+0.419(±0.120)*Mw, for thrust and reverse 
faults (R2=0.299)

Log(MD)=-6.545(±0.324)+0.927(±0.073)*Mw, for strike slip faults 
(R2=0.779)

Log(MD)=-6.123(±0.364)+0.870(±0.066)*Mw, for all fault mechanism 
(R2=0.650)

Log(MD)=-0.630(±0.345)+0.421(±0.109)*Log(SRL), for thrust and 
reverse faults (R2=0.411)

Log(MD)=-1.909(±0.402)+1.287(±0.090)*Log(SRL), for strike slip 
faults (R2=0.697)

Log(MD)=-1.461(±0.406)+1.001(±0.074)*Log(SRL), for all fault 
mechanism (R2=0.588)

The selection of the confidence interval is quite optional and 90%, 95% 
or 99% are frequently selected in practice, however, 95% is used in general. 
As stated in Öztürk (2014), confidence intervals are designed to define the 
statistical properties of data and are may be used practically in many case. 
Thus, confidence intervals for all types of regression relationships are selected 
as 95% in this study. As seen in Table 2 and Figures 2 to 4, correlation 
coefficients of three regression fits are almost the same for the relationships 
between Mw and SRL in L2 norm (R2=0.797) and OR method (R2=0.788) for 
strike slip faults, and between Mw and SRL in L2 norm (R2=0.800) and OR 
method (R2=0.778) for all faulting types. Regional differences in SRL for a 
given magnitude can be commented in terms of the local changes in geologic, 
seismic and tectonic activities. These results suggest that seismic efficiency in a 
region can be dependent on the rupture length or magnitude. Also, if and when 
the error terms in the linear regression model follow a normal distribution, 
then the least squares curve fitting technique is better estimator under the 
most appropriate criteria. Traditional LS estimation is sufficient when error 
terms show an independently and identically distribution.  However,  the LS 
estimates can give bad fit when error distribution is abnormal. The usage of 

Table 2. Empirical equations with LS method of Ghassemi (2016) and all regression fits derived in this study. SS: strike-slip, TF: thrust or reverse fault, All: 
including SS+TF. Standard errors for all equations are also given.

Ghassemi (2016) using LS  method (L2) This study using L1  method This study using OR method This study using RR method Fault 
type

Mw=1.020+0.848Ms (R2=0.852) Mw=1.182(0.175)+0.818(0.014)
Ms (R2=0.792)

Mw=0.668(0.177)+0.913(0.014)Ms  
(R2=0.986)

Mw=1.084(0.174)+0.838(0.014)Ms
(R2=0.829) All

Mw=5.294(0.217)+0.966(0.151)
Log(SRL) (R2=0.873) 

Mw=5.412(0.265)+0.887(0.084)
Log(SRL) (R2=0.660)

Mw=5.570(0.234)+0.822(0.077)
Log(SRL) (R2=0.945)

Mw=5.651(0.238)+0.758(0.075)
Log(SRL) (R2=0.802) TF

Mw=5.658(0.152)+0.806(0.102)
Log(SRL) (R2=0.797) 

Mw=5.289(0.338)+1.057(0.074)
Log(SRL) (R2=0.590)

Mw=4.630(0.359)+1.489(0.078)
Log(SRL) (R2=0.788)

Mw=5.275(0.335)+1.051(0.073)
Log(SRL) (R2=0.576) SS

Mw=5.523(0.131)+0.870(0.089)
Log(SRL) (R2=0.800) 

Mw=5.303(0.309)+0.997(0.056)
Log(SRL) (R2=0.693)

Mw=4.972(0.332)+1.248(0.060)
Log(SRL) (R2=0.778)

Mw=5.396(0.309)+0.950(0.056)
Log(SRL) (R2=0.630) All

Log(MD)=-2.230(2.432)+0.320(0.364)
Mw (R2=0.114)

Log(MD)=-1.455(0.376) 
+0.217(0.119)Mw (R2=0.168)

Log(MD)=-3.002(0.378) 
+0.419(0.120)Mw (R2=0.299)

Log(MD)=-1.074(0.363) 
+0.162(0.115)Mw (R2=0.059) TF

Log(MD)=-7.435(1.345)+1.105(0.199)
Mw (R2=0.658)

Log(MD)=-5.767(0.318) 
+0.824(0.071)Mw (R2=0.652)

Log(MD)=-6.545(0.324) 
+0.927(0.073) Mw (R2=0.779)

Log(MD)=-5.101(0.307) 
+0.737(0.069)Mw (R2=0.628) SS

Log(MD)=-6.320(1.208)+0.938(0.179)
Mw (R2=0.532)

Log(MD)=-3.471(0.338) 
+0.523(0.062)Mw (R2=0.308)

Log(MD)=-6.123(0.364) 
+0.870(0.066)Mw (R2=0.650)

Log(MD)=-4.142(0.336) 
+0.623(0.061)Mw (R2=0.436) All

Log(MD)=-0.559(0.361)+0.352(0.256)
Log(SRL) 
(R2=0.240)

Log(MD)=-0.257(0.352) 
+0.230(0.111)Log(SRL) 

(R2=0.186)

Log(MD)=-0.630(0.345) 
+0.421(0.109)Log(SRL) (R2=0.411)

Log(MD)=-0.337(0.337) 
+0.243(0.107)Log(SRL) (R2=0.132) TF

Log(MD)=-0.927(0.242)+0.751(0.158)
Log(SRL) (R2=0.616)

Log(MD)=-1.184(0.356) 
+0.876(0.080)Log(SRL) 

(R2=0.554)

Log(MD)=-1.909(0.402) 
+1.287(0.090)Log(SRL) (R2=0.697)

Log(MD)=-1.173(0.351) 
+0.867(0.078)Log(SRL) (R2=0.494) SS

Log(MD)=-0.778(0.211)+0.609(0.141)
Log(SRL) (R2=0.457)

Log(MD)=-0.753(0.358) 
+0.564(0.065)Log(SRL) 

(R2=0.294)

Log(MD)=-1.461(0.406) 
+1.001(0.074)Log(SRL) (R2=0.588)

Log(MD)=-0.822(0.357) 
+0.620(0.159)Log(SRL) (R2=0.355) All
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Figure 2. Estimated relationships with Least sum of absolute deviations (L1) method between (a) Mw and Ms for all faulting types, (b) Mw and SRL for thrust and 
reverse faults, (c) Mw and SRL for strike-slip faults, (d) Mw and SRL for all faulting types, (e) MD and Mw for thrust faults, (f) MD and Mw for strike slip-faults, (g) MD 

and Mw for all faulting types, (h) MD and SRL for thrust faults, (i) MD and SRL for strike-slip faults, and (j) MD and SRL for all faulting types.
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any curve fitting criterion is preferred when it was doubtful that a small part of 
the data which is analyzed includes data outliers and thus is not reliable. Curve 
fitting criterions have the capability of strongly ignoring some bad data points 
while selecting the majority of data points which put forth the true nature of 
the data more suitable. The minimizing the sum of residual error magnitude 
is a reasonable and helpful process for the solution of problem. If the dataset 
contains a small number of data, the sum of error magnitudes is of particular 
use and in these situations, these data outliers extremely influence the sum of 
squared errors criterion. However, the sum of error magnitudes tends to ignore 
the data outliers on condition that they have relatively few numbers (Öztürk, 
2014). Also, Öztürk (2012) suggested for the statistical regression techniques 
on different dataset that representation of empirical relationships can be made 
as more appropriate and trustworthy with Least Sum of Absolute Deviations 
or Robust Regressions for the clustered data while it can be more suitable and 
reliable with Least Squares or Orthogonal Regressions. 

To investigate the maximum surface rupture length (MSRL) and the 
related maximum credible earthquakes (MCE) in Iran, we studied major 
earthquake sources in different seismotectonic regions in conjunction with the 
empirical relationships by OR method of our research. The resulting data were 
summarized in Table 3. The values are different from those of Ghassemi (2016) 
in some respects as a result of differences in revised selected earthquake sources 
as well as difference in the applied regression methods.

As it is noticed for the analysis of data on surface ruptures of thrust (and 
reverse) faults using OR method (Figure 3b), the regression line has a small 
slope with a coefficient of 0.945. This may be partly because of rarity of data 
on surface ruptures associated with thrust events. As a result, it appears that 
the relationship may underestimate the earthquake magnitude for major (long) 
thrust faults, especially when value of SRL is used for blind and/or deep-seated 
faults. To compensate for such apparent deficiency, we have used the positive 
side of the standard errors in SRL-magnitude equations for estimation of MCE 
resulting from active thrust faulting in different seismotectonic regions of Iran. 
Considering our objective to estimate the MCE for each region, the biggest 
potential seismic sources are picked for each region. Therefore, it should be 
kept in mind that in dealing with any seismic hazard approach which does 
not involve such extreme seismic sources, the MCE would be less than the 
suggested values in this section (i.e. values in Table 3).

A major potential seismic source in the Kopeh-Dagh region is the 
Maraveh-Tappeh thrust fault (ca. 260 km long). Considering a rupture which 
involves half the length (130 km) along the geological fault, a maximum 
magnitude (MCE) of ca. 7.7 is suggested for the Kopeh-Dagh region. The Ashk-
Abad fault, which forms the northern border of the Kopeh-Dagh geological 
province within the Turkmenistan territory, is apparently capable of producing 
earthquakes of magnitudes as large as 8.2 (e.g. the 1895 Krasnovodsk-Uzun 
Ada earthquake; Ambraseys, 1997).

North of Central Iran, Alborz and Azerbaijan region include major strike-
slip and thrust faults which are capable of great earthquakes. These include the 
Doruneh, Meyamey, Torud, Astaneh, Mosha, Eivanekey, Ipak, Soltanieh and 
Tabriz faults, among many other. Length of the above-mentioned faults and/or 

their segments attain lengths up to 170 km, and some of them have produced 
historical earthquakes as large as magnitude 7.9 (the 856 Kumesh earthquake; 
Ambraseys & Melville, 1982). Therefore, we consider a magnitude 8.0 as the 
MCE for the northern Central Iran, Alborz and Azerbaijan region.

Within the Zagros region (except for the High Zagros region) emergent 
geological faults are rare, and therefore most of attempts for earthquake hazard 
analyses use folds above blind thrust faults as the source for potential earthquakes. 
As a result, the surface rupture length used in the related calculations, in fact is 
not really on the surface but it is related to rupture of a blind fault at some depth 
(see Berberian, 1995). Following the same approach, we have considered the 
Kabir-Kuh anticline as the biggest seismic source in folded Zagros region with 
a length of 166 km, and anticipating rupture of half of the related thrust fault 
(83 km), an MCE of 7.5 is suggested for Zagros folded region. Therefore, we 
suggest that for the Zagros folds (and related faults) which are longer than the 
suggested value in Table 3, the related maximum SRL of 83 km to be used for 
deterministic evaluation of the magnitude attributed to the fold seismic sources.

The Eastern Iran seismotectonic region is dominated by active strike-slip 
faulting, and less frequent thrust faults. Surface ruptures are highly manifested 
in this part of the country as compared to other seismic regions. As a result, 
relationship between SRL and magnitude in this region shows a greater slope, 
therefore we have used OR method without including an upper standard error 
limit to estimate MCE. No historical or instrumental earthquake greater than 
7.3 has been reported for the region, therefore we used a maximum length of 
ca. 100 km for OR of all fault type, suggesting a MCE of magnitude 7.5 for the 
Eastern Iran region.

Central Iran region has a very low seismicity as compared to other parts 
of the country, and no historical or instrumental record of earthquakes greater 
than magnitude 6.2 has been reported for this region. Therefore, a MCE of 6.5 
appears to be appropriate for the region.

The greatest earthquakes in the Makran region may occur on the 
subduction zone at depth. The whole length of the subduction zone is ca. 850 
km, which if half of the whole length (425 km) is combined with a width of 180 
km and a related 20 m of average displacement, gives a MCE of magnitude 9.1.

We made a comparison for two important relationships suggested for 
global and Iranian earthquakes, including SRL-Mw (Figure 5) and SRL-MD 
(Figure 6) relationships. Slope of our regression line for SRL-Mw relationship 
greatly conforms to those of Nowroozi (1985) and Wells and Coppersmith 
(1994), however it is less than that of Ghassemi (2016) (Figure 5). A similar 
comparison between the graphs for SRL-MD indicates that slope calculated in 
this study is very similar to those of Nowroozi (1985) and Wells & Coppersmith 
(1994), however the regression has a lower intercept value than those of 
aforementioned studies. As seen in Figure 6, both slope and intercept values  
of our study are smaller than that of Ghassemi (2016).

Many studies were made for surface rupture hazard in Iran and some 
empirical relationships were provided among different earthquake faulting 
parameters by different researchers such as Berberian (1976), Nowroozi (1985), 
Wells & Coppersmith, (1994), Berberian (2014), Ghassemi (2016). The only 
comprehensive analysis of Iranian earthquakes was made by Nowroozi (1985). 
Also, more detailed quantitative assessments of surface rupture hazard of 
Iranian earthquakes including historical and instrumental period were provided 
with Berberian (2014) and Ghassemi (2016). When we compared the empirical 
relationships estimated in this study with the most up-to-date relationships of 
Ghassemi (2016), the results in this study present higher R2 among magnitude 
and different faulting parameters in OR method. Correlation coefficients of the 
relationships in Ghassemi (2016) changes between 0.114 and 0.873 with L1 norm, 
whereas correlation coefficients with OR technique in present study vary from 
0.299 to 0.986. From the observations in this study and in Ghassemi (2016), we 
can conclude that these estimations for OR method can be thought as good and 
reliable relationships, and one can use them for the other seismicity analyses or 
rupture hazard evaluations of the Iranian Plateau. As a remarkable result, we did 
not make a detailed discussion on the earthquake fault rupture hazards in Iran 
since this study does not aim to evaluate and discuss this subject. Many details 
can be found in Ghassemi (2016) for the insights of earthquake surface rupture 
hazards. For this reason, a short and general comparison of three different curve 
fitting techniques is provided for the data of Ghassemi (2016). Furthermore, the 
effectiveness of the different estimation techniques was examined in this study 
and the relative predictive validity of four regression techniques was compared 
for different faulting parameters. These detailed analyses show that empirical 

Table 3. Maximum surface rupture length (MSRL), maximum surface 
displacement (MSD), and related maximum credible earthquakes (MCE) suggested 

for different seismotectonic regions of Iran. See text for further explanation.

Region MSRL (km)
MSD (m)

MCE (Mw)
TF SS All

Kopeh-Dagh 130 1.8 6.4 4.5 7.7

Northern Central Iran, 
Alborz, Azerbaijan 170 2.0 9.1 5.9 8.0

Zagros 83 1.5 3.6 2.9 7.5

Eastern Iran 100 1.6 4.6 3.5 7.5

Central Iran 16 0.8 0.4 0.6 6.5

Makran 425* 20 - - 9.1

* Length quoted for Makran is rupture length at depth
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Figure 3. Estimated relationships with Orthogonal regression (OR) method between (a) Mw and Ms for all faulting types, (b) Mw and SRL for thrust and reverse 
faults, (c) Mw and SRL for strike-slip faults, (d) Mw and SRL for all faulting types, (e) MD and Mw for thrust faults, (f) MD and Mw for strike slip-faults, (g) MD and Mw 

for all faulting types, (h) MD and SRL for thrust faults, (i) MD and SRL for strike-slip faults, and (j) MD and SRL for all faulting types.
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Figure 4. Estimated relationships with Robust regression (RR) method between (a) Mw and Ms for all faulting types, (b) Mw and SRL for thrust and reverse faults, 
(c) Mw and SRL for strike-slip faults, (d) Mw and SRL for all faulting types, (e) MD and Mw for thrust faults, (f) MD and Mw for strike slip-faults, (g) MD and Mw for all 

faulting types, (h) MD and SRL for thrust faults, (i) MD and SRL for strike-slip faults, and (j) MD and SRL for all faulting types.
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relationships estimated by OR method in the present study can be thought  
and used as more appropriate and more trustworthy for Iranian earthquakes and 
the other mentioned applications. We finally hypothesized that OR estimation 
technique can provide more stabilized interpretations for the rupture properties, 
variability of the earthquake fault rupture geometry and kinematics by using 
these empirical relationships among different faulting parameters.

Conclusions

This study focused on the applications of different regression techniques 
and a comparison of the empirical relationships of the data set on the surface 
ruptures of Iranian earthquakes was made. Using a database of Iranian 
earthquakes, some empirical relationships were estimated among different 
parameters such as moment magnitude, surface wave magnitude, surface 
rupture length and maximum displacement for different faulting types. For this 
purpose, three curve fitting methods are applied as (a) Least Sum of Absolute 
Deviations, (b) Robust Regression and (c) Orthogonal Regression. In order to 
decide how we can select the best curve fitting method for a given data set, 
we calculated separately the correlation coefficients for the thrust or reverse 
faults, strike slip faults and all faulting types since it is an easy applicable and 
a practical technique. For the analyses, 46 strong and large earthquakes with 
magnitudes ≥ 5.8 between 1900 and 2017 were used. In order to estimate the 
statistical properties of different data sets, 95% confidence intervals were used 
for each regression relation. Using the above-mentioned techniques, we derived 
linear relationships among different faulting parameters for Iranian earthquakes. 
Correlation coefficients varies from 0.299 to 0.986 with Orthogonal regression, 
from 0.168 to 0.792 with L1 regression, from 0.059 to 0.829 with Robust 
regression. These results show that Orthogonal regression fits give more 

powerful coefficients and can be thought more suitable equations as compared 
to the other curve fitting techniques. 

Resulting equations are proposed as more suitable and reliable in 
the estimation of the maximum surface rupture length, maximum surface 
displacement and associated maximum credible earthquakes for different areas 
of Iran. As a general conclusion, detailed analyses for the data sets of different 
faulting mechanisms show that more appropriate, more trustworthy more up-
to-date representations of empirical relationships can be done with Orthogonal 
regression. In addition, these types of relationships may supply significant 
insights in the estimation of the maximum surface rupture length, maximum 
surface displacement, and associated maximum credible earthquakes for 
different seismotectonic regions of Iran. We suggested that these relationships 
may also provide important outputs in the estimation of earthquake magnitudes 
in paleo-seismological studies.

Acknowledgements 

The author wish to thank the anonymous reviewers for their useful and 
constructive suggestions in improving this paper. Also, the computer programs 
used in this study are partially covered by Gümüşhane University Scientific 
Research Project (GUBAP, Turkey) with project no 2012.02.1717.2.

References 

Abdelkader, G., Ali, L., & Rachida, R. (2010). Robust nonparametric estimation 
for spatial regression. Journal of Statistical Planning and Inference, 
140, 1656-1670.

Acharya, H. K. (1979). Regional variations in the rupture-length magnitude 
relationships and their dynamical significance. Bulletin of the 
Seismological Society of America, 69(6), 2063-2084.

Ambraseys, N. N. (1997). The Krasnovodsk (Turkmenistan) earthquake of 8 
July 1895. Journal of Earthquake Engineering, 1(2), 293-317.

Ambraseys, N. N., & Jackson, J. A. (1998). Faulting associated with historical 
and recent earthquakes in the Mediterranean region. Geophysics 
Journal International, 133, 390-406.

Ambraseys, N. N., & Melville, C. P. (1982). A history of Persian earthquakes. 
Cambridge University Press, Cambridge.

Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis. 
Second ed., Wiley, New York. 

Arthanari, T. S., & Dodge, Y. (1981). Mathematical Programming in Statistics. 
Wiley, New York. 

Berberian, M. (1976). Documented earthquake faults in Iran. Geological 
Survey of Iran, 39, 143-186.

Berberian, M. (1995). Master “blind” thrust faults hidden under the Zagros 
folds: active basement tectonics and surface morphotectonics. 
Tectonophysics, 241, 193-224.

Berberian, M. (2014). Earthquakes and coseismic faulting on the Iranian 
Plateau: A historical, social and physical approach. Elsevier Series 
Development in Earth Surface Processes, 17, p. 628.

Blattberg, R. C., & Sargent, T. (1971). Regression with non-Gaussian stable 
disturbances: Some sampling results. Econometrica, 39, 501-510. 

Boyer, B. H., McDonald, J. B., & Newey, W. K. (2003). A comparison 
of partially adaptive and reweighted least squares estimation. 
Econometric Reviews, 22, 115-134.

Branham, R. L. Jr. (1982). Alternatives to least-squares. Astronomical Journal, 
87, 928-937. 

Cadzow, J. A. (2002). Minimum l1, l2 and l

 norm approximate solutions to an 

overdetermined system of linear equations. Digital Signal Processing, 
12, 524-560.

 Carroll, R. J., & Ruppert, D. (1996). The use and misuse of orthogonal 
regression estimation in linear errors-in-variables models. The 
American Statistician, 50, 1-6. 

Djamour, Y., Vernant, Ph., Bayer, R., Nankali, H. R., Ritz, J. F., Hinderer, 
J., Hatam, Y., Luck, B., Moigne, N. L., Sedigh, M., & Khorrami, F. 
(2010). GPS and gravity constraints on continental deformation in the 
Alborz mountain range, Iran. Geophysical Journal International, 183, 
1287-1301.

Figure 5. Comparison among different regressions of moment magnitude 
(Mw) versus surface rupture length (SRL in km) for Iranian earthquakes of all 
rupture mechanisms (26 events). P: present study, W: Wells and Coppersmith 

(1994), N: Nowroozi (1985), G: Ghassemi (2016).

Figure 6. Comparison among different regressions of surface rupture length 
(SRL in km) versus maximum displacement (MD in m) for Iranian earthquakes of 
all rupture mechanisms (24 events). P: present study, W: Wells and Coppersmith 

(1994), N: Nowroozi (1985), G: Ghassemi (2016).



472 Serkan Öztürk, Mohammad R. Ghassemi, Mahmut Sarı

Durio, A., & Isaia, E. D. (2003). Parametric regression models by minimum L2 
criterion. A study on the risks of fire and electric shocks of electronic 
transformers. Developments in Applied Statistics, 19, 69-83.

Fama, E. F., (1965). Portfolio analysis in a stable Paretian market. Management 
Science, 11, 404-419.

Field, C. A. (1997). Robust regression and small sample confidence intervals. 
Journal of Statistical Planning and Inference, 57, 39-48.

Fuller, W. A. (1987). Measurement Error Models. John Wiley and Sons, New 
York.

Ghassemi, M. R. (2016). Surface ruptures of the Iranian earthquakes 1900-
2014: Insights for earthquake fault rupture hazards and empirical 
relationships. Earth Science Reviews, 156, 1-13.

Giloni, A., & Padberg, M. (2002). Alternative methods of linear regression. 
Mathematical and Computer Modeling, 35, 361-374.

Giloni, A., Simonoff, J. S., & Sengupta, B. (2006). Robust weighted LAD 
regression. Computational Statistics and Data Analysis, 50, 3124-
3140.

Greene, W. (1997). Econometric Analysis. Third ed. Prentice-Hall, Englewood 
Cliffs, NJ.

Hartmann, C., Vankeerberghen, P., Smeyers-Verbeke, J., & Massart, D. L. 
(1997). Robust orthogonal regression for the outlier detection when 
comparing two series of measurement results. Analytica Chimica Acta, 
344, 17-28.

Heo, J. H., Kho, Y. W., Shin, H., Kim, S., & Kim, T. (2008). Regression 
equations of probability plot correlation coefficient test statistics from 
several probability distributions. Journal of Hydrology, 355, 1-15

Huber, P. J. (1964). Robust estimation of a location parameter. Annals of 
Mathematical Statistics, 35, 73-101. 

Huber, P. J. (1981). Robust Statistics. Wiley, New York.
Huber, P. J. (1987). The place of the L1 norm in robust estimation. In: Dodge, 

Y. (Ed.), Statistical data analysis based on the L1 norm and related 
methods. North-Holland, Amsterdam, pp. 23-33.

Javidfakhr, B., Bellier, O., Shabanian, E., Siame, L., Léanni, L., Bourlès, D., 
& Ahmadian, S. (2011). Fault kinematics and active tectonics at the 
southeastern boundary of the eastern Alborz (Abr and Khij fault zones): 
Geodynamic implications for NNE Iran. Journal of Geodynamics, 52, 
290-303.

Kendal, M. G., & Stuart, A. (1979). The advanced theory of statistics. 4th 
edition, vol. 2, Hafner, New York. 

Leng, L., Zhang, T., Kleinman, L., & Zhu, W. (2007). Ordinary Least Square 
Regression, Orthogonal Regression, Geometric Mean Regression and 
their Applications in Aerosol Science. Journal of Physics, Conference 
Series, 78 (1), article ID. 012084, 5 pp.

Madansky, A. (1959). The fitting of straight lines when both variables are 
subject to error. Journal of the American Statistical Association, 54, 
173-205. 

Mandelbrot, B. (1967). The variation of some other speculative prices. Journal 
of Business, XL, 393-413.

Maronna, R. (2005). Principal components and orthogonal regression based on 
robust scales. Technometrics, 47, 264-273.

Masson, F., Chery, J., Hatzfeld, D., Martinod, J., Vernant, P., Tavakoli, F., & 
Ghafory-Ashtiani, M. (2005). Seismic versus aseismic deformation in 
Iran inferred from earthquakes and geodetic data. Geophysical Journal 
International, 160, 217–226.

Mirzaei, N., Gao, M., & Chen, Y. T. (1997). Seismic source regionalization for 
seismic zoning of 565 Iran: major seismotectonic provinces. Journal 
Earthquake Prediction Research, 7, 465-495.

Nowroozi, A. A. (1985). Empirical relations between magnitudes and fault 
parameters for earthquakes in Iran. Bulletin Seismological Society of 
America, 75, 1327-1338.

Öztürk, S. (2012). An analysis on the application of statistical regression 
methods for different data set. Gümüşhane University Journal of 
Science and Technology Institute, 2(2), 55-67. 

Öztürk, S. (2014). A new empirical relation between surface wave magnitude 
and rupture length for Turkey earthquakes. Earth Sciences Research 
Journal, 18(1), 15-26. 

Öztürk, S., Ghassemi, M. R., & Sarı, M. (2017). Empirical relationships 
between the surface wave magnitude and moment magnitude for the 
Iranian earthquakes, International Conference on Mathematics and 
Engineering, 10-12 May, 2017, (ICOME 2017), 127 pp., İstanbul, 
Turkey.

Renaud, O., & Victoria-Feser, M. P. (2010). A robust coefficient of determination 
for regression. Journal of Statistical Planning and Inference, 140, 
1852-1862.

Rosenberg, B., & Carlson, D. (1977). A simple approximation of the 
sampling distribution of least absolute residuals regression estimates. 
Communications in Statistics-Simulu Computa, 136(4), 421-437. 

Rousseeuw, R. J., & Leroy, A. M. (1987). Robust Regression and Outlier 
Detection. Wiley, New York. 

Sen, A., & Srivastava, M. (1990). Regression analysis: Theory, methods, and 
applications. Springer-Verlag, New York.

Shi, M., & Lukas, M. A. (2005). Sensitivity analysis of constrained linear 
L1 regression: perturbations to response and predictor variables. 
Computational Statistics and Data Analysis, 48, 779-802.

Sinha, S. K., Field, C. A., & Smith, B. (2003). Robust estimation of nonlinear 
regression with autoregressive errors. Statistics and Probability 
Letters, 63, 49-59.

Spiess, M., & Hamerle, A. (2000). A comparison of different methods for the 
estimation of regression models with correlated binary responses. 
Computational Statistics and Data Analysis, 33, 439-455.

Stefanski, L. A. (1991). A Note on high-breakdown estimators. Statistics and 
Probability Letters, 11, 353-358.

Şentürk, D., & Nguyen, D. V. (2006). Estimation in covariate-adjusted 
regression. Computational Statistics and Data Analysis, 50, 3294-
3310.

Weisberg, S. (1985). Applied Linear Regression. Second edition. John Wiley 
and Sons, New York.

Wells, D., & Coppersmith, J. K. (1994). New empirical relationships among 
magnitude, rupture length, rupture width, rupture area, and surface 
displacement. Bulletin of the Seismological Society of America, 84(4), 
974-1002.


