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In low permeability reservoirs, the conversion accuracy of the existing petroleum logging lithology identification 
method to small pore capillary pressure curve is not high, resulting in a low rock mass identification accuracy. Therefore, 
artificial intelligence technology is considered in this study to enhance the accuracy of lithology identification in low 
permeability reservoirs. Firstly, the radar mapping program is used to predict the position of reservoir oil logging, and 
then the small pore capillary pressure curve is converted by using the conversion method of piecewise power function 
scale to obtain the pore characteristics of low-permeability reservoir rocks. On this basis, the crossplot method is used 
to gather the pore characteristic data in well logging and form a plan, and the response parameters of well logging rock 
mass are obtained to realize the identification and analysis of lithology. The experimental results show that, compared 
with the existing identification methods, the accuracy of lithology identification in low-permeability reservoir logging 
is significantly increased after the application of artificial intelligence technology, and the identification process takes 
less time, which fully proves that the application of artificial intelligence technology is conducive to improving the 
performance of lithology identification.

ABSTRACT

Application of artificial intelligence in lithology recognition of petroleum logging in low permeability reservoirs

Aplicación de la inteligencia artificial en reconocimiento litológico de extracción de petróleo  
en yacimientos de baja permeabilidad
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En los yacimientos de baja permeabilidad, la precisión de conversión del método de identificación de litología de 
extracción de petróleo existente a la curva de presión capilar de poros pequeños no es alta, lo que da como resultado 
una baja precisión de identificación del macizo rocoso. Por lo tanto, en este estudio se considera la tecnología de 
inteligencia artificial para mejorar la precisión de la identificación litológica en yacimientos de baja permeabilidad. En 
primer lugar, el programa de mapeo de radar se usa para predecir la posición del registro de petróleo del yacimiento, 
y luego la curva de presión capilar de poros pequeños se convierte utilizando el método de conversión de la escala 
de función de potencia por partes para obtener las características de los poros de las rocas del yacimiento de baja 
permeabilidad. Sobre esta base, se utiliza el método de parcelas cruzadas para recopilar los datos característicos de los 
poros en el registro de pozos y formar un plan, y se obtienen los parámetros de respuesta del macizo rocoso del registro 
de pozos para realizar la identificación y análisis de la litología. Los resultados experimentales muestran que, en 
comparación con los métodos de identificación existentes, la precisión de la identificación litológica en el registro de 
yacimientos de baja permeabilidad aumenta significativamente después de la aplicación de tecnología de inteligencia 
artificial, y el proceso de identificación lleva menos tiempo, lo que demuestra plenamente que la aplicación de la 
tecnología de inteligencia artificial es propicia para mejorar el rendimiento de la identificación litológica.
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Introduction

With the development and progress of the society, the demand for energy 
in various fields is constantly increasing. Therefore, petroleum geological 
exploration technology is facing more severe challenges. Multi - channel, multi 
- means, multi - discipline cross - fusion has become the development trend of 
exploration and development technology (Deng et al., 2017).

The early geological exploration objects in China are mainly sand and 
mudstone reservoirs, and lithology identification is relatively simple. With 
the continuous development of geological exploration and development, the 
requirement of well logging technology is gradually improved, and in order 
to form a more reasonable well logging interpretation method, lithology 
identification technology is also improved. Lithology identification belongs 
to the category of logging engineering and is an important research content 
in reservoir description, formation evaluation and drilling monitoring. The 
commonly used methods to obtain formation lithologic information include 
cuttings logging, coring section analysis and comprehensive treatment of 
logging data (Wei et al., 2017). Among them, the quality of cuttings logging 
depends on the operation of technicians, which is greatly influenced by 
human factors. The process of core slice analysis is time-consuming and 
laborious, and it is difficult to describe the complete well formation profile. 
In terms of comprehensive processing of logging data, crossplot method can 
intuitively reflect the boundary interface and lithological distribution area of 
different lithologies, and has the advantage of intuitive reading. However, its 
operation process is complex, and it cannot identify the whole well or interpret 
lithological information of the well. The mathematical statistical method is 
suitable for well logging data with good physical characteristics, and has a good 
application effect when there are few core data and more logging data, but it is 
very difficult to obtain the empirical formula (Xie et al., 2018; Jia et al., 2018; 
Jiang et al., 2018).

Artificial intelligence is a branch of computer science. It is a technology 
used to simulate, extend and expand human intelligence. It can simulate 
human consciousness, thinking and information formation process. Research 
in this field includes robotics, language recognition, image recognition, 
natural language processing and expert systems. It can be said that artificial 
intelligence is a very challenging science, which requires not only computer 
knowledge, but also knowledge in fields such as psychology and philosophy 
(Deng et al., 2018). Artificial intelligence research, on the whole, one of the 
main goal is to make the machine to be able to do some human intelligence 
is needed to complete a complex work, namely through the use of computers 
to simulate human thinking process and intelligent behavior of the discipline, 
can say it is almost covered all subjects of natural science and social science, 
its scope has been far beyond the scope of computer science (Guzman & 
Aoyama, 2018).

In recent years, artificial intelligence has become one of the main 
methods of pattern recognition in various fields. For example, BP neural 
network and fuzzy cluster analysis method. Although the BP neural network 
method has some disadvantages such as local minimization, slow convergence 
rate and different structure selection, it has the ability of distributed processing, 
self-learning, self-organization, highly nonlinear mapping and fault tolerance, 
which greatly makes up for the deficiency of self-recognition performance.

Therefore, in order to improve the ability of identifying lithology of oil 
logging in low permeability reservoirs, artificial intelligence technology is 
introduced in this study.

Application research on reservoir oil logging location prediction

When predicting the location of reservoir oil logging, first of all, do not 
collect logging data. In this process, various interference factors inevitably 
exist, which affect the resolution of the signal. Linear combination of sensitive 
indexes with high correlation is an effective method to improve the accuracy of 
logging interpretation. Therefore, on the basis of selecting the logging data of 
the core well, the logging data is compared with the core data by the multi-index 
radar chart comparison method. The execution flow of the radar chart drawing 
program is shown in Figure 1.

According to the implementation process of the radar chart drawing 
program as shown in Figure 1, sensitive indexes that can reflect the lithologic 

change characteristics are selected, and then the correlation coefficient of the 
selected sensitive indexes is obtained, and the indexes with good correlation 
are combined linearly. Although the noise is random in the radar map drawing 
process, the linear combination process can enhance the formation characteristic 
information, and highlight the useful information by superposition signal, thus 
reducing the signal interference (Han et al., 2019).

The dimensions of different logging indicators are often different. 
In order to combine the indicators of different dimensions, it is necessary to 
normalize the indicators and then combine the dimensionless data to form new 
analysis indicators. Firstly, the radar map is used to analyze the logging data, 
and the log phase identification curve set is established through the standard 
well. Then, the logging location of the reservoir of the unknown well segment is 
identified by using the curve difference comparison, and the logging data of the 
core well is obtained after sorting out and correcting the analysis data, and the 
clustering normalization is completed. After calculation, the following results 
can be obtained:

X
x x
x x

=
−∗ ∗

∗ ∗
min

max min
 (1)

Among them, X represents the normalized log curve, x* represents the 
original log data, x*

min and x*
max represent the maximum and minimum values 

of the log curve respectively. It is easy to realize the linear normalization 
method with the powerful matrix operation of MATLAB, but in the transverse 
comparative analysis of multiple Wells, the difference of normalization results 
will be caused by the different selection of maximum and minimum values, 
thus affecting the analysis results. Therefore, data expansion or shift processing 
is carried out in this paper according to the value situation (Zhou et al., 2019; 
Jia & Deng, 2018). For example, after analyzing logging and core data, it can be 
seen that a certain reservoir is located in the second section, which is dominated 
by grayish-white medium-grain lithic sandstone, and its density (DEN) value 
is mostly around 2~3 g/cc. At this point, if we can extract the fractional part, 
magnify the difference between maximum and minimum, we will get a better 
comparison effect. On this basis, all the above density measurements were 
summarized and five parameters of AC, DEN, CNL, GR and RD were selected 
to depict the logging phase position radar map of the traveling gas layer, gas 
bearing layer and gas layer, as shown in Figure 2.

Figure 1. Radar chart drawing program execution flow diagram
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Figure 2. Logging locations corresponding to different density values

Table 1. Rock mass characteristic data table

Serial 
number of 
rock mass

Porosity/ 
%

T2cutoff/
ms

NMR bound 
water 

saturation/ %

Maximum 
throat radius

/μm

Mean throat 
radius/μm

Sorting 
coefficient

Expulsion 
pressure/

Mpa

T2LM/
ms

Permeability/ 
10-3μm-2

12-1 6.71 22.68 64.26 11.92 0.44 0.14 0. 26 1.70 0.07
61-1 6.77 21.99 65.77 11.41 0.60 0.16 0.31 1. 26 0.13
64-1 7.89 11.01 73.22 575 0.55 0.05 -0.31 1.36 0.11
62R 13.50 16.26 43.01 21.25 1.00 0.05 -0.43 0.75 0. 56

18.00 6.90 7.90 42.21 11.06 1.22 0.04 -0.66 0.61 0. 28
51B 10.60 18.00 40.60 26.24 1.15 0.12 -0.18 0.65 0.42
9-35 6.99 2.66 52.40 3.96 1.19 0.02 -0.94 0.63 0.68
70-1 5.62 1.55 57.21 1.93 0.33 0.00 -0.86 2.28 0.08
19-1 9.73 16.79 41.10 28.16 1.17 0.06 -0.31 0.64 0.23
34-4 12.77 5.85 46.97 9.78 2.60 0.21 -0.20 0.29 3.59
52-1 11.37 10.54 83.37 3.01 0.34 0.05 -0.42 2.21 0.15
64-1 8.12 7.41 64.15 6.47 0.89 0.07 -0.46 0. 84 0.41
93-1 16.65 8. 26 42.68 17.19 20.06 0.17 -0.53 0. 20 42.30
115-1 14.92 10.39 52.38 10.46 3.81 0.03 -0.74 0.56 4. 85
9-1 11.57 6. 80 61.11 5.54 1.35 0.07 -0.32 0.17 0.91

20-1 11.76 6.67 46.52 9.32 4.29 0.91 0.41 0.98 17.27
68-1 6.38 2.75 85.97 1.09 0.76 0.02 -0. 94 1.39 157

137.00 10.45 7.77 79.32 2. 98 0.54 0.03 -0.75 1.40 0.79
152-1 8.35 40.30 83.07 7.01 0.54 0.04 -0.48 0.98 0.87

3-1 6.26 27.35 67.35 9.17 0.76 0.30 0.81 2.01 0.63
30-1 5.52 1.68 91.38 0. 87 0.37 0.04 -0.40 0.22 0.52
91-1 10.56 13.81 45.54 15.45 3.35 0.19 -0.20 1. 26 3.38
144-1 8.21 61.52 67.08 35.12 0.60 0.10 -0.02 1.09 0.70
216-1 9.47 52.66 59.96 41.56 0.69 0.17 0.23 1.23 0.97
236-1 8.17 36.92 62.34 27.80 0.61 0.16 0.34 1. 20 0.85
257-1 6.90 46.74 56.18 42.06 0.63 0.21 0.62 0. 20 0.42

According to the different density ranges shown in Figure 2, it is obvious 
that CNL can reflect different density differences to a certain extent, which 
corresponds to the location of oil logging in low-permeability reservoirs. Samples 
of rock sections are randomly selected within the determined location range to 
determine the pore characteristics of rocks in low-permeability reservoirs.

Pore characteristics of low permeability reservoir rock

When judging non-uniform properties of low permeability reservoirs, 
pressure pump experiments should be carried out in low permeability reservoirs 
according to thin sections obtained by well logging, and rock characteristic data 
information should be obtained by nuclear magnetic test. The characteristic 
data are shown in Table 1.

Referring to the data information in Table 1, the “three porosity 
component percentage method” was used to process the above 26 rock samples, 
to qualitatively classify the pore types of the rock samples, and to draw the 
corresponding cross plot of pore structure parameters (Wang & Siau, 2019), as 
shown in Figure 3.

By referring to the cross plot of pore structure parameters shown in 
Figure 3, it can be seen that the T2 spectrum measured by NMR consists of three 
kinds of transverse relaxation time, that is, the T2 spectrum observed is:

1 1 1 1
T T T TB D S2 2 2 2
= + +  (2)
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Where, T2 denotes transverse relaxation time, T2B denotes volumetric 
(free) relaxation time of the fluid, T2D  denotes diffusive relaxation time, and 
denotes surface relaxation time. T2S  and T2D were characterized by specific 
surface area, diffusion coefficient, magnetic field gradient, echo interval and 
other parameters, and then:

1 1
122T T

S
V

D GT

B

E

2 2

2
'= + +

( )
ρ

γ







  (3)

Among them, 
2
 represents the transverse surface relaxation strength of 

the rock, S represents the surface area of pores, V represents the volume of 
pores, V represents the specific surface area of characterized rock samples, D 
represents the diffusion coefficient, G represents the magnetic field strength, TE 
represents the echo interval,  represents the magnetic rotation ratio, and the 
remaining parameters remain unchanged. For the uniform magnetic field with a 
small echo interval, Equation (2) can be transformed into:

ρ
ρ

2
21S

V T2









= =' F

RS c
 (4)

Where, FS represents the geometric shape factor, and for spherical pores, 
the value of FS is 3; For columnar pores, FS has a value of 2. RC  represents the 
pore radius.

Generally speaking, the relaxation time of pore fluid is related to the size 
and shape of pore space (Grzonka et al., 2018; Gobashy et al., 2020). Since 
there should be a corresponding transverse relaxation time for a particular 
RC , T2 and RC  should have a one-to-one correspondence. However, due to the 
constant change of FS , the corresponding relationship between T2 and RC  also 
changes. For medium - high porosity and permeability reservoirs, reservoir 
heterogeneity is weak, and the corresponding relationship between T2 and RC  
has little change. However, for tight sandstone reservoirs with complex pore 
structure and pore type, the corresponding relationship between T2 and RC  
changes greatly due to their strong reservoir heterogeneity.

According to fluid mechanics, there is a certain relationship between 
capillary pressure and pore radius:

P
Rc
c

=
2σ θcos

 (5)

Where, Pc represents capillary pressure,  represents fluid interfacial 
tension, and  represents wetting contact Angle. For mercury-air system, 
Equation (4) can be rewritten as:

P
Rc
c

'
.


0 735  (6)

The comprehensive calculation formulas (3) and (5) can be obtained as 
follows:

C Pc= ×T2  (7)

Where, C represents the conversion coefficient, and. Therefore, if the 
conversion coefficient can be accurately calculated by using the well log, the 
capillary pressure curve at different depths of the whole well can be evaluated 
by using the NMR log, and the variation of various pore structure parameters 
with depth can also be evaluated (Zibret, 2019).

Generally, the pseudo-capillary pressure curve and the capillary pressure 
curve of the pore segment cannot be superimposed together, because of the 
accumulation of thin film bound water with large pores in T2 distribution to 
small pores (Zhang, 2019). Based on this idea, a piecewise power function 
calibration method is proposed to solve the problem of low precision of 
pressure curve conversion of small pore capillary. In theory, the specific surface 
area has a linear relationship with the pore size, but for the actual formation, the 
pore structure is very complex, and the specific surface and pore size often have 
a nonlinear relationship, which can be expressed as follows:

f Rc( )=
ρ2
1
T2

 (8)

Where, f(RC ) represents the function of RC . According to Equation (5) 
and Equation (7), the function of T2 spectrum can be calculated as follows:

g Pc
1
T2









=  (9)

According to the above formula, the pore characteristics of low-
permeability reservoir rocks can be divided into large pores and small pores, 
and the pore characteristics can be described as follows:
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 (10)

Where, a1 and b1 represent the corresponding parameters of small pores, 
and a2 and b2 represent the corresponding parameters of large pores. Referring 
to the pore characteristics obtained, crossplot method can be used to obtain 
logging response characteristics that can represent lithology.

Obtain logging rock mass response parameters

The cross-plot method is used to summarize the pore data obtained 
above and form a plan. According to the coordinates of the intersection point, 
the numerical value and aggregation trend of the parameters can be seen. In 
the process of using the crossplot method to identify lithology, two groups of 
appropriate logging data are first selected, and coordinate points are drawn in 
the crossplot coordinate system according to the changes of logging data. The 
aggregation trend of coordinate points is expressed in the form of intuitive data, 
and the distribution range and boundary of different lithology can be reflected 
visually. The crossplot drawn should be compared with the coring lithology 
data for better accuracy of lithology identification. Cross-graphs such as GR-PB 
and GR-AC can be made according to the core analysis data. According to these 
cross-graphs, the positions of different measured lithologic points, the lower 
limit of lithologic logging parameters and the lithologic distribution trend can 
be determined. Referring to logging rock masses of different densities and using 
the ratio of spectral intensity of elements, structural logging rock characteristic 
parameters are as follows:

Figure 3. Cross plot of pore structure parameters
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Z
R

Sp
=

×φ0 5421
1 0458

0 3181

. .

.  (11)

Among them, Z represents logging rock characteristic parameters,  
represents porosity calculated above, R represents average pore throat radius, 
Sp represents sorting coefficient, and two constants represent permeability 
measured. Logging rock characteristic parameters were defined to be around 
80-110, and the acoustic wave presented high value, which was generally 
above 67, with the development of porosity structure. When the characteristic 
parameters of logging rocks are above 120 and the acoustic values are generally 
above 70, the fused tuff appears in the logging interior. When the characteristic 
parameters of logging rocks are distributed around 40-120 and the acoustic 
values are generally below 65, the characteristic values cannot be determined, 
and the rock mass is also a fused tuff. According to the calculated logging rock 
characteristic parameters, the cross map of Gr-ρb within the logging location 
was obtained, as shown in Figure 4.

As can be seen from the logging characteristic parameters shown in 
Figure 4, different rock assemblages have great differences in layers, and their 
electrical properties are also different. Therefore, before obtaining the response 
characteristics in the logging, linear transformation should be adopted to 
normalize the electrical properties in the logging characteristic parameters, and 
the standardization process is as follows:
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Where, Where, 111 represents the n the standardized value of xi , x̄i  
represents the mean value of the electrical variable, i  represents the standard 
deviation of the electrical variable, and N represents the number of logging 
characteristic parameters. The response values of acoustic time difference 
(AC), natural gamma (GR) and resistivity (RT) obtained by using the above 
standardized electrical property values combined with the curve overlap 
method are comprehensively judged. The difference, acoustic time difference 
(AC), natural gamma (GR) and resistivity (RT) of porosity D and N  extracted 
by the overlapping method are shown in Table 2.

The data shown in Table 2 are integrated into the calculation formula of 
logging response characteristic parameters, as shown below:
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t t
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φ φ
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∆ ∆  (13)

Among them, tf represents acoustic time difference of pore fluid, tma  
represents acoustic time difference of rock skeleton, ma represents pore fluid 
density, ma represents neutron porosity of rock skeleton, and nf represents 
neutron porosity of pore fluid. By referring to the calculation results of different 
characteristic parameters, the response values of corresponding logging 
lithology were calculated, as shown in Table 3.

Table 3. Response values of logging lithology
Logging 
lithology

AC 
(us/ft)

DEN 
(g/cm3)

CNL 
(p.u.)

GR 
(API)

Cloud mass 
limestone 45.25~47 2.17~2.79 -1~0 10

Gray dolomite 43.5~45.25 2.79~2.81 0~1 10
Limestone 48 2.71 -1 10
Dolomite 43.50 2.87 1 10
Argillaceous 
Limestone 59 2.12 21.50 57.50

Anhydrite 49.30~51.80 2.91~3.02 -2 1.50~6
Paste dolomite 43.50~46.75 2.87~2.91 -1~0.50 5.80~10
Cream quality 
Limestone 49 2.71~2.915 -1.50~1 5.80~10

Corresponding to the response values of different characteristics shown 
in Table 3, the properties of different logging rocks can be determined. Thus, 
the application of artificial intelligence in lithology identification of low 
permeability reservoirs is completed.

Simulation experiment and result analysis

In order to verify the practical application performance of the low 
permeability reservoir logging lithology identification method designed in this 
paper by using artificial intelligence, the following simulation experiment is 
designed for verification.Figure 4. Gr-ρb cross map of oil logging in low permeability reservoir

Table 2. Parameter set matrix table

Overlapping 
layer D − N

The mean 
AC(us/ft)

The mean 
GR(API)

The mean 
RT(·m)

1 -0.179 53.094 49.902 230.441
2 -0.143 53. 512 54.729 235.899
3 -0.135 53. 539 52.784 238.887
4 -0.132 53. 539 47.642 242.040
5 -0.089 52. 870 42.829 253.606
6 -0.011 51.491 39.953 263.617
7 -0.056 50.794 41.874 268.003
8 -0.081 50.525 45.082 285.795
9 -0.105 50.318 47.851 321.116
10 -0.108 50.347 45.627 337.462
11 -0.110 50.453 45.927 339.846
12 -0.109 50.542 43.827 294.277
13 -0.121 50.374 42.100 263.586
14 -0.085 53.412 49.902 213.427



260 Fuhua Shang, Maojun Cao1, Caizhi Wang

The experiment to prepare

Firstly, a basic LIBS detection system is set up, which mainly includes 
light source, light splitting system, photoelectric detector, timing control 
module, collimation, focusing light path, light collection lens group, sample 
table and so on. Imaging of laser-induced plasma is also required during the 
experiment, so imaging modules should be set up in the LIBS detection system. 
The experimental platform structure is shown in Figure 5.

Figure 5. Experimental platform structure diagram

As shown in Figure 5, the main performance parameters of the ME5000 
medium-step grating spectrometer in the experimental platform are shown in 
Table 4.

Table 4. Main performance parameters of ME5000 medium - step grating 
spectrometer

Parameter Data

Escher 

spectrometer

Focal length (mm) 195
Aperture F7

Wavelength range (nm) 230~950
Wavelength accuracy (nm) ±0.05

Focal plane size (mm) 13.3×13.3
Stray light 1.5×10-4

ICCD

Active pixel 1024×1024
Effective pixel size (Nm) 13

Effective area (mm) 13.3×13.3
Peak quantum efficiency up to 18%

Total insertion delay (NS) ~35

DDG

Insert delay (NS) ~19
Gate delay 0~25s

Delayed resolution 25ps
Width of the gate 1ns~25s
Width resolution 25ps

Under the control of the performance parameters shown in Table 4, 8 
logging blocks as shown in Figure 6 are prepared.

Use as shown in Figure 6 to mudstone, shale, sandstone, dolomite, asphalt, 
volcanic ash, conglomerate and paste rock, in the experimental environment, 
were used in this paper, design of using artificial intelligence low permeability 
oil reservoir logging lithology identification method and the traditional lithology 
recognition method based on laser induced breakdown spectroscopy, logging 
lithology recognition method based on Boosting Tree algorithm comparing 
experiment, from lithology recognition accuracy and recognition process takes 
two Angle compared three methods of recognition performance.

Experimental results and analysis

Taking mudstone samples as an example, based on the above experimental 
preparation, the standard reference spectrum of mudstone samples was first 
obtained by using ME5000 medium-step grating spectrometer, as shown in 
Figure 7.

Figure 7. Standard reference spectra of mudstone samples

After obtaining the standard spectrum of mudstone samples, under the 
same experimental conditions, used respectively in this paper, the design of 
the use of artificial intelligence in the low permeability oil reservoir logging 
lithological identification method and the traditional lithology recognition 
method based on laser induced breakdown spectroscopy, logging lithology 
recognition method based on Boosting Tree algorithm for mudstone samples of 
spectral information. In order to avoid the spectral line position drift caused by 
temperature change, the experimental room temperature should be controlled 
within the range of 25-30 °C. On this basis, the similarity between the spectral 
information of mudstone samples obtained by three different identification 
methods and the standard spectra was compared. When the position and relative 
strength of spectral lines between the three different identification methods 
were consistent, the recognition was deemed as a success. The recognition 
results obtained by the three recognition methods are shown in Table 5.

According to the experimental results shown in Table 5, the three 
identification methods can be used to identify the same number of different 
types of logging rock mass information, and the three identification methods 

Figure 6. Experiment to prepare rock samples
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show different identification capabilities. After applying the logging lithology 
identification method based Boosting Tree algorithm, the number of rock 
masses identified is too small and the identification accuracy is low. However, 
the identification accuracy of lithology based on laser-induced breakdown 
spectroscopy has been improved, but the information of other rock masses has 
not been fully identified except for the gypsum rock. After the application of 
this method, except dolomite and shale, the information of other rock mass 
is correctly identified, and the correct identification rate of this method is the 
largest among the three methods. Based on the above experimental results, it 
can be seen that the rock mass identification method designed in this paper with 
artificial intelligence technology can avoid the deficiency of identifying too few 
rock masses, and the identification accuracy is higher, which is suitable for the 
identification of lithology of oil logging in low-permeability reservoirs.

On this basis, the identification performance of the three methods is 
verified by taking the identification process time as the index. The results are 
shown in Figure 8.

Figure 8. Time - consuming comparison diagram of different methods to identify 
the process

According to the experimental results shown in Figure 8, the three 
identification methods can be used to identify the same number of different 
types of logging rock mass information, and the time of the three identification 
methods is greatly different. The well logging lithology identification method 
based on Boosting Tree algorithm has a identification process of 8-12min. The 
lithology identification method based on laser induced breakdown spectroscopy 
technology is higher and keeps between 12-15min. However, the identification 
process of the method in this paper takes the least time among the three 
methods, which is always kept below 7min. Based on the above experimental 
results, it can be seen that the rock mass identification method designed in this 

paper with artificial intelligence technology can quickly identify the lithologic 
characteristics of oil logging in low-permeability reservoirs.

Conclusion

Automatic identification of lithology is based on the combination of 
mathematical theory and computer software. This process fully embodies 
the interdisciplinary application, which can be used as a supplement to the 
conventional lithology identification method and promote the development of 
the lithology identification technology with multiple approaches, methods and 
angles. The appearance of artificial intelligence lithology identification software 
plays a powerful role in promoting the technology of complex formation 
lithology classification. In this paper, the application of artificial intelligence 
technology to low permeability reservoir oil logging lithology identification 
is proposed. It has been proved by practice that this method can effectively 
improve the accuracy of lithology identification in low permeability reservoir, 
and the identification process is time-consuming.
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