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ABSTRACT
Keywords: Borehole resistivity imaging, autodip, 
mean square dip, computer vision, Hough’s 
transform, clustering.

In this research computer vision techniques are applied to borehole resistivity imaging in order to establish an 
alternative procedure to the mean square dip (MSD) processing. The MSD is regularly applied to detect sinusoids 
and dips automatically in borehole imaging and dipmeter logs. The present proposal is based on Gabor’s filters, 
morphological transformations, Hough’s transform, and clustering techniques. The MSD and the computer vision 
proposal were tested in 1012 m of borehole images, showing 7.986% of false positives for the MSD processing 
and 0.879% for the computer vision approach. The present methodology tries to emulate the geologists behavior 
when they make image interpretation; instead correlations between resistivity curves like in the MSD processing. 
There are no special computer requirements, and it can be applied directly in the field for a quick well-site dip 
results. This procedure can be easily integrated into log units and most commercial borehole imaging software. 
The processing workflow was developed in python using standard libraries.

Palabras Cave: Imágenes Resistivas de pozo, 
buzamiento automático, buzamiento medio 
cuadrático, visión por computador, transformada 
de Hough, agrupamiento.
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RESUMEN

En esta investigación se aplicaron técnicas de visión por computador a imágenes resistivas de pozo para establecer 
un procedimiento alternativo al procesamiento del buzamiento medio cuadrático (BMC); BMC es regularmente 
empleado para detectar sinusoides y buzamientos automáticamente en registros de imágenes y de buzamiento. 
Esta propuesta se fundamenta en filtros Gabor, transformaciones morfológicas, transformada de Hough y téc-
nicas de agrupación. El método BMC y la propuesta de visión por computador fueron probados en 1012 m de 
imágenes de pozo, mostrando 7.986% de falsos positivos para el procesamiento BMC y 0.879% para el enfoque de 
visión por computador. La presente metodología metodología trata de emular el comportamiento de los geólogos 
cuando realizan interpretación de imágenes, en lugar de correlaciones entre curvas de resistividad como en el 
procesamiento BMC. No hay requisitos informáticos especiales y puede aplicarse directamente en campo para re-
sultados rápidos de buzamientos. Esta metodología puede integrarse fácilmente a unidades de registro, así como 
también a la mayoría de programas de procesamiento de imágenes de pozo. Todos los procesos se desarrollaron 
en Python utilizando librerías estándares.
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1. INTRODUCTION

In conventional and unconventional hydrocarbon reservoirs, borehole 
resistivity imaging is broadly applied in exploration and development 
wells; this log provides precise information regarding structural framework, 
sedimentological features, and stratigraphy of the drilled rock sequence. 
Furthermore, this log is a useful complement in petrophysical evaluation, 
geomechanical modeling, and characterization of naturally fractured reservoirs. 

Once these logs are acquired, their processing and interpretation can take 
several hours or even days because detection and classification of geological 
planes is usually a manual process performed by specialized geologists. This 
time consuming task often hinders decision-making at drilling sites, particularly 
in activities related to fractures detection, intervals selection for pressure or 
fluids tests, or geosteering programs. The lack of information provided by 
image logs might result in operational problems, and subsequent economic 
losses for field operators.

In order to get information shortly after image logs are acquired, several 
automatic dip picking or autodip techniques are employed; these techniques 
have been utilized since decades ago with resistivity data of dipmeter and 
borehole imaging tools (Grace, et al., 2000). These techniques cannot classify 
the detected dip and sinusoid, but they can give information about the structural 
framework and sedimentary features along the wells. The autodip approaches 
are based on correlation between resistivity curves around the borehole to 
identify displacements, which then define a surface across the borehole (Rider, 
2000). Among practical methods, the mean square dip (MSD) is one of the most 
commonly applied technique (Grace, et al., 2000).

Although the MSD may lack of accuracy and provide just a few 
samples in some cases, it is still one of the standard methods for automatic 

planar geologic feature detection in oil wells. This method is employed by 
most oilfield service companies when automatic image picking is required. In 
the latest years, several authors have proposed some methodologies based on 
computer vision and machine learning to automatize dip detection in borehole 
imaging, the most relevant to this research are Al-Sit, et al., 2015; Assous, et 
al., 2014.

 Al-Sit, et al., 2015 suggest multi-resolution texture segmentation and 
pattern recognition utilizing Gabor’s filters (Gabor, 1946). This processing is 
combined with an iterative adaptation of the modified Hough’s transform to 
enable non-distinct, partial, distorted, and steep fracture and layers identification. 
In this article, the tests were conducted using an optical televiewer tool, which 
provides 360° images of the wellbore wall. Image processing in this case did 
not require procedures of image reconstruction like the present work does.

Assous, et al., 2014 propose a gradient-based approach for edge detection 
with a phase congruency method for validation, followed by a sinusoid detection 
technique. The method was evaluated using borehole resistivity imaging from 
wireline and logging while drilling tools. The proportion of false positives 
reported, in the case of noisy data is less than 5%, improving to better than 
2% in case of good quality data. These authors do not employ Gabor’s filter, 
instead, they use an edge detection technique based on the Lindeberg algorithm 
(Lindeberg, 1996); moreover, they do not consider any clustering technique to 
debug the final results.

The present work proposes an automatic dip picking procedure based 
on bio-inspired image filters (Gabor’s filter), along with morphological 
transformations to highlight the edges. Furthermore, this work employs 
Hough’s transform to detect one-cycle sinusoidal objects and unsupervised 
machine learning (clustering) to refine the outcomes. This research shows 

Figure 1. Example of dynamic (left) and static (right) images.
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that computer vision techniques can replace the typical correlation between 
resistivity curves when automatic dip processing is required. Like in the MSD, 
detected sinusoids in this work are not classified, but they can be employed for 
structural, sedimentological, and natural fractures analyses. Next paragraphs 
explain the computer vision techniques employed in a friendly sequence of 
stages, easy to follow for borehole geologists and software developers.

2. BOREHOLE RESISTIVITY IMAGING

The resistivity images utilized in this research were acquired in water mud 
environment employing pad-based tools. This log represents a two-dimensional 
view of the borehole wall, it has vertical resolution of 5.0 millimeters and 
coverage of 80% (holes with 21.59 cm in diameter). Borehole imaging 
provides information about structural dip, sedimentary structures, thin layers, 
electrofacies, fracture networks, and horizontal stress orientation in the field, 
among other applications (Grace, et al., 2000). The image generation follows 
a regular sequence, beginning with log quality control, speed correction, 
and finally generation of the dynamic and static images from resistivity data 
normalization. The dynamic normalization is performed each foot or every 
two feet of log, providing a clear view of rock details along the well; the static 
normalization is performed on the whole logged interval, optimizing tool 
operations under extreme resistivity values (Figure 1). The gray gaps in Figure 
1 represent borehole sections not covered with the image tool, as this is a pad-
based tool. 

A color code is used to interpret resistivity images, where light colors 
represent high resistivity values often related to limestones, oil-bearing 
lithologies, calcite precipitations, etc. Dark colors indicate low resistivity 
measurements, regularly logged in conductive rocks, open pore space, 
borehole breakouts, and some minerals (e.g. clays, pyrite, etc.). The most 
common geologic events observed in image logs are well-defined planes that 
can be associated with bed boundaries, sedimentary structures, faults, and 
fractures. 

Except for the drilling-induced vertical fractures, the geological planes 
are observed as sinusoids in image logs. These sinusoids are the projection or 
trace of planar features in the borehole wall. The plane inclination (dip) can 
be determined from the sinusoid amplitude; the lowest point direction on the 
sinusoid represents the dip azimuth as shown the Figure 2.

3. CORRELATIONS BETWEEN RESISTIVITY CURVES – METHOD 
OF MEAN SQUARE DIP (MSD) 

A bedding plane can be identified by correlating the resistivity curves at 
known positions of the tool pads. The borehole in Figure 3 shows an example of 
intersection by a dipping plane; the plane has a different resistivity with respect 
to the formations above and below. The four pads in the example continuously 
record a resistivity or dip curve as the tool is pulled up the borehole. As each pad 
passes the intersection of the plane with the borehole wall, the corresponding 
dip curve shows a change of resistivity. The dip or slope of the plane causes the 
pads to encounter and record the change in resistivity at different depths on the 
log. The difference in depth or shift of the corresponding peaks on the curve 
allow the dip of the geologic plane to be calculated trigonometrically (Grace, 
et al., 2000).

The MSD method works on the basis of an interval correlation algorithm 
between selected pairs of sensors to compute displacement vectors that should 
all lie in the same dip plane. The MSD method considers the same depth 
interval on each curve and uses only the data within that interval to make 
correlations. In the case of low apparent dip it can be seen that nearly all the 
data points within the interval are considered when the correlation is made. 
As the apparent dip increases, less and less points enter into the correlation. 
In areas where high dips, or high apparent dips because of deviated borehole 
conditions are expected, an initial displacement, i.e., a focusing plan, can be 
defined by the interpreter. This focusing plane can be chosen as either a fixed 
plane with orientation defined by the analyst or a plane defined from a previous 
dip calculation. The button-to-button displacements are computed and the best-
fit plane through them is found (Grace, et al., 2000).

4. COMPUTER VISION TECHNIQUES

Computer vision can be defined as a scientific field that extracts 
information out of digital images. The type of information gained from an image 
can vary from identification, space measurements for navigation, or augmented 
reality applications (Ranjay, 2017). Another way of defining computer vision 
is through its application; computer vision is about building algorithms to 
understand the content of images enabling computers to see, identify and 
process images in the same way that human vision does. The diagram in Figure 
4 summarizes the sequence of computer vision techniques employed along 

Figure 2. Trace of planar feature as sinusoid in borehole image (Modified from Grace, et al., 2000).
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each analyzed well; the process begins with the dynamic image as input and 
ends with the same image with all detected sinusoids.

4.1 STAGE 1 - Inpainting

The process starts with an RGB color image from the dynamic 
normalization in scale of 1:10, with dimension of 300 pixels long by 360 
pixels wide (Figure 5A); this image is converted into a grayscale image, in 
which each pixel represents a single value with intensity information (Figure 
5B). Subsequently, an inpainting technique based on a fast marching method 
is applied. 

Digital inpainting provides a means for reconstruction of small damaged 
portions in images; this procedure starts from the boundary of the region to be 
inpainted and moves towards the damaged section, gradually filling everything 
in the boundary first. Each pixel is replaced by a normalized weighted sum of 
all the known pixels in its neighborhood. More weight is given to those pixels 
lying near the boundary of the missing parts, such as those near contours (Telea, 
2004). Once a pixel is inpainted, it moves to the next nearest pixel using the 
fast marching method, which ensures those pixels nearest to the known pixels 
are inpainted first (Khan, 2019). Digital inpainting in this work was employed 
to reconstruct the images in those sections not covered by the image tool. It is 
important to notice that inpainting processing in this research is not pursuing an 
exact 360° view of the borehole wall; instead, this processing is applied to guide 
the following steps related to edge map generation. Although Figure 5C shows 
some artifacts added by inpainting procedures, experimental iterations show 
that without image inpainting the final number of detected sinusoids decreases, 
and the number of false positive increase. Hence, consistent improvements 
were observed in the outcomes using inpainting, adding it permanently to the 
image processing pipeline.

4.2 STAGE 2 – Edge Detection

The objective of this stage is to map edges from the grayscale inpainted 
image by applying Gabor’s filters, image binarization, morphological 
transformations, and Gaussian denoising. The edges of a figure are those points 
at which the luminous intensity changes sharply, reflecting variations in image 
properties; edges are important to understand and identify particular features in 
the whole image (Neer and Mathur, 2016). 

The first step in this stage consists in applying a Gabor’s filter bank (Figure 
6D); this filter was originally introduced by Dennis Gabor in 1946 and currently 
has wide application in image processing (Arora and Sarvani, 2017). The 
Gabor’s filter detects image gradients of a specific orientation; the convolution 
of image patches with different scales and orientations (filter bank) allows 
extraction and encoding of local texture information usable for classification 
(Maynberg and Kush, 2013). Frequency and orientation representations of 
Gabor’s filters are similar to those of the human visual system, particularly 
appropriate for texture representation and classification. In the spatial domain, 
a 2D Gabor’s filter is a Gaussian kernel function modulated by a sinusoidal 
plane wave. Simple cells in the primary visual cortex of mammalian brains 
can be modeled by Gabor functions. Thus, image analysis with Gabor’s filters 
is thought to be similar to perception in the human visual system (Arora and 
Sarvani, 2017). 

The filter has a real and an imaginary component representing orthogonal 
directions. The two components may be formed into a complex number or used 
individually, modeled by the Equations (1) for complex, (2) for real, and (3) 
for imaginary.

 	 (1)

	 (2)

 	 (3)

Where:

Figure 3. Correlation between resistivity curves (Modified from Grace, et al., 2000).
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And:

In the above equations:
λ – Wavelength of the sinusoidal component.
θ – The orientation of the normal to the parallel stripes of Gabor function.
ψ – The phase offset of the sinusoidal function. 
σ – The standard deviation of the Gaussian envelope 
γ – The spatial aspect ratio and specifies the ellipticity of the support of 

Gabor function.
After Gabor’s filter is applied in several scales and orientations (filter 

bank, Figure 6D), the resulting image is thresholded and converted into a matrix 
of one (white) and zero (black).

In the second step of this stage two kinds of morphological transformations 
are employed, skeletonization and dilation (Figure 6E). Morphological 
transformations are simple operations based on the image shape, normally 
performed on binary images. The skeletonization reduces binary objects to 
one-pixel wide and can be useful for feature extraction; this morphological 
transformation converts white sections into a one-pixel wide skeleton, with the 
same connectivity as the original figure. Although the skeleton image in this step 
seems to be clean and optimal for the following Hough’s transform processing, 

it is still a low-quality image and has not enough white pixels for sinusoid 
recognition. Once the skeleton image is created, morphological transformations 
of dilation are used to highlight the edges. Morphological dilation augments the 
white sections by enlarging bright regions of the image (Pratt, 2007).

The final step in this stage can be considered as an initial cleaning step 
(Figure 6F); the objective is to generate an edge map clean enough for Hough’s 
transform processing. In order to do so, a second Gabor’s filter is employed, 
but this time with a fixed angle and kernel. This filter removes noise or 
artifacts aligned 90° in the image; these vertical artifacts can be produced by 
previous inpainting processes applied over sections without resistivity data in 
the borehole wall. At this point, some salt and pepper noise can remain in the 
image and a Gaussian blur is applied to remove it. Gaussian blur is a smoothing 
technique to eliminate noises, where the image is convolved with a Gaussian 
kernel.

4.3 STAGE 3 – Sinusoid Detection

This stage includes computation of all parameters of the Hough’s 
transform for sinusoid detection, and according to the Equation (4) they include: 

	 (4)

Figure 5. Computer vision. Processing in the stage – 1 (Inpainting).

Figure 4. Image processing pipeline.
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x, y – Pixel position (x, y) 
Amp – Amplitude
ω - Frequency (One cycle sinusoids; ω = 1)
θ – Phase
y0 – Depth

After denoising processing in Stage - 2, this stage continues with the 
generation of two equal-size images from the edge map. The first image can be 
created from the left side of the edge map, having 300 pixels long by 180 pixels 
wide (from pixel 1 to pixel 180); the second image has the same shape, but its 
width goes from pixel 181 to pixel 360. Afterward, these images are added 
using a function for image addition. The bright spots in the resulting image are 
added at each level (i axis), and its values are represented as a curve at the left 
side of the added image (Figure 7G). The spikes in this curve are likely levels 
where a sinusoid might be present, and they can be considered as likely “y0” 
values in Equation (4).

In the second step of this stage, the sinusoid phase (θ) must be determined. 
To compute the “θ” values, each likely “y0” level must be analyzed using the 
Figure 6F. The first pixel (≥ 1) from left to right at a position (i, j) in each likely 
“y0” level, must have another projected pixel (≥ 1) at the position (i, j+180). 
If this condition is accomplished, two square regions of 10 x 10 pixels are 

inspected around the points (i, j) and (i, j+180), respectively (Figure 7H). In each 
square region, a Hough’s transform algorithm for line detection is applied, in 
which only “y0” levels with slope combinations (+, -) and (-, +) are considered 
as potential level with a sinusoid. The “j” or “j+180” coordinate at each potential 
“y0”, in the points (i, j) or (i, j+180), will be the phase (θ) of that sinusoid if the 
square region at that point has a line with positive slope (Figure 7H). 

The Hough’s transform is a feature extraction technique used in image 
analysis, computer vision, and digital image processing. The purpose of the 
technique is to find perfect or imperfect instances of objects within a certain 
class of shapes by a voting procedure. This voting procedure is carried out in a 
parameter space, from which object candidates are obtained as local maximum 
in a so-called accumulator space that is explicitly constructed by the algorithm 
(Shapiro and Stockman, 2001). The basic Hough’s transform is typically applied 
to identify parameterized curves, such as lines, circles, ellipses, parabolas, or 
other parameterized shapes. In this step it was applied in its simplest form to 
detect line-shape objects in the 10 x 10 pixels regions.

At this point, the “y0” depth and the phase “θ” of Equation (4) are already 
calculated for each detected level with a sinusoid. Next, the basic Hough’s 
transform employed to recognize lines was edited to detect one-cycle sinusoidal 
objects. In the final step of this stage, all detected “y0” and “θ” were arranged 
in a list of dictionaries with form: [{y1:θ1}, {y2:θ2}, {y3:θ3]}… {yn:θn}], and 

Figure 6. Computer vision. Processing in the stage – 2 (Edge Detection).

Figure 7. Computer vision. Processing in the stage – 3 (Sinusoid Detection).
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the Hough’s transform for sinusoids detection was applied using this list to the 
Figure 6F.

In order to detect sinusoids in the image, the Hough’s transform uses an 
accumulator matrix of two dimensions (Amp, θ). The sinusoidal candidates 
are produced by voting in the Hough space, in which high-voted candidates 
have local maxima in the accumulator matrix. The algorithm scans through 
the image, and if an edge point is found, the sine equation is solved for the 
amplitude, using all combinations of “yn” and “θn” in the list of dictionaries, 
Equation (6).

 	 (6)

The algorithm fits the Equation (6) to each edge in the image, and when a 
sinusoid is found, the accumulator increase at that point (Amp, θ); consecutively, 
the algorithm passes to another white pixel saving all results. Figure 7I shows  
unfiltered sinusoids detected until this stage.

4.4 STAGE 4 – Final Image

After Hough’s transform is solved for the Equation (6), unsupervised 
machine learning techniques are applied to filtrate multiple detected sinusoids 
related to the same geologic feature. The density-based spatial clustering of 
applications with noise (DBSCAN) and K-means clustering are applied. These 
steps remove duplicate sinusoids related to equal geological planes at the same 
depth (y0). It is important to notice that sinusoid parameters are arranged in 
a three-dimensional array with shape: [Amp, θ, y0]. The DBSCAN method 
is applied to find the number of high-density regions in previous array; this 
clustering technique produces a partitional clustering, in which the number of 
clusters is automatically determined by the algorithm (Tan, et al., 2006). In the 
DBSCAN, the high-density regions are separated from another of low-density 
as shown the Figure 8J. The number of regions detected by this method will be 
the “K” input of the following K-means clustering.

Afterward, the K-means algorithm is applied to the same sinusoid 
parameters array to find the centroids of each high-density region detected by 
the previous DBSCAN. K-means is a proto-type-based, partitional clustering 
technique that attempts to find a “K” number of clusters, which are represented 
by their centroids (Tan, et al., 2006), as shown the Figure 8K. The centroids 
found in the previous step are finally plotted over the original RBG image, 
where each sinusoid has a centroid for its amplitude (Amp), phase (θ), and 
depth (y0), respectively (Figure 8L).

5. RESULTS AND COMPARISON

In order to test the automatic dip picking proposed in this work, the MSD 
processing and the computer vision technique were evaluated in 1012 m of 

wireline-acquired borehole imaging. The test included several wells in clastic 
and carbonate environments, using two kinds of imaging devices (pad with flap 
and only-pad tools), as shown the Figure 9 and Figure 10, respectively.

The metric employed to compare both results was the number of false 
positives found by each method; a false positive occurs when the method finds 
a sinusoid and it does not exist, in other words, the method places a sinusoid 
and it does not represent any geologic feature (e.g. bed boundary, fracture or 
sedimentary structure). The false positives recognition in both methods was 
performed by a specialized geologist according to regular borehole imaging 
interpretation procedures. Once the methods were executed, the number of false 
positives for the MSD was 90 in a total of 1127 recognized sinusoids (7.986%); 
while the computer vision approach had 28 false positives in a total of 3186 
recognized sinusoids (0.879%). Moreover, is particularly important to notice 
the number of detected samples by each method, 1127 for MSD versus 3186 
for the method proposed in this research.

Figures 9 and 10 show examples of how computer vision procedures 
can differentiate low amplitude sinusoids in the background from those of 
high amplitude in the front. The computer vision picking further shows better 
patterns related to deformations, such as in Figure 9 (414 m), where some 
deformations due to concretions are depicted. According to these results, there 
is no evidence that different tool types have positives or negative impact on the 
outcome. Two different image tools were employed to conduct the tests, and 
there was not any increase or decrease in false-positive proportions. 

The processing time using the computer vision approach takes around 30 
minutes for 500 m of borehole imaging; it was achieved employing a personal 
computer with a core i5 processor and 8 GB of random access memory (RAM). 
Neither special nor high-resolution graphic cards are required; the standard 
graphic devices provided in current computer configurations are enough for 
this processing.

6. CONCLUSIONS & RECOMMENDATIONS

The method proposed in this research is more accurate than the typical 
MSD processing; additionally, it can be applied in the field soon after image 
data is acquired. The input is a dynamic normalized image, which can be 
generated by the logging engineer in the field.

The computer vision approach was able to recognize high amplitude 
sinusoids in the same interval where low amplitude sinusoids are; this can be 
very useful during image interpretation when natural fractures and faults must 
be differentiated from beddings or sedimentary structures. 

The computer vision processing can be easily integrated into logging 
units; there are no special graphic card requirements, processor, or memory 
(RAM). Furthermore, the entire code was developed using programming 
standard tools of common application (Harris, et al., 2020, McKinney, et al., 
2010, Bradski, et al., 2000, and Van der Walt, et al., 2014).

Figure 8. Computer vision. Processing in the stage – 4 (Final Image).
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Figure 9. Comparison between MSD and computer vision results using a pad with flap tool.

Figure 10. Comparison between MSD and computer vision results using an only-pad tool.
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Parallelized processing is recommended during application of Hough’s 
transform algorithm to reduce processing times. The methodology proposed 
is highly dependent on the employed edge detection techniques; the better the 
edge detection is, the better will be the detected sinusoids in the image.

In this work all detected sinusoids are not classified, according its geologic 
origin. In order to solve this issue, classification methods based on machine 
learning are recommended; these machines can be trained with geologic inputs 
from experts, borehole logs data, and fractal attributes of borehole imaging, as 
methods proposed by Leal, et al., 2022, Leal, et al., 2018, and Leal, et al., 2016.
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