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ABSTRACT

Usually, it is assumed in the continuous growth equation by coalescence, that mass and terminal velocity of the collected drops are negli-
gible in comparison with the mass and velocity of the collector drop. These assumptions, which are reasonable in warm cloud modeling, 
appear to be not so adequate for mixed phase clouds, where interactions between different categories (cloud water, rain water, crystal 
ice, graupel, hail) have to be considered.

When the above constraints are removed, new particular solutions of the continuous growth equation arise, which are presented in this 
paper. Two solutions are obtained by assuming a gamma droplet distribution. The first solution is obtained for a terminal velocity that is 
approximated by a power-law, while the second derives from a polynomial approximation.

These solutions may be of interest for use with explicit microphysical parameterizations in mesoscale models

Key words: Coalescence, Continuous growth, clouds, precipitation.

RESUMEN

En la ecuación de crecimiento continuo por coalescencia usualmente se asume que la masa y la velocidad de caída de las gotas cap-
turadas es despreciable en comparación con la masa y  la velocidad de la gota colectora. Estas hipótesis, las cuales son razonables en 
modelación de nubes calientes, no es tan adecuada para nubes mixtas donde se considera interacción entre diferentes categorías (agua 
de nube, de lluvia, cristales de hielo, nieve pedriscos y granizo).

Cuando esta limitación es removida de la ecuación, se obtiene nuevas soluciones, dos de las cuales se presentan en este trabajo. Ambas 
soluciones se obtuvieron asumiendo una distribución gamma, la primera  de ellas para una velocidad de caída de tipo potencial y la 
segunda para una aproximación polinomial de esta variable.

Estas soluciones pueden ser de utilidad para la parametrización de la microfísica explicita dentro de modelos de mesoescala.

Palabras Claves: cualescencia, crecimiento contínuo, nubes, precipitación.
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INTRODUCTION

One of the mechanisms leading to the growth of cloud droplets and 
the subsequent development of precipitation is gravitational co-
alescence. The accurate representation of this process is essential 
for the success of any parameterization scheme of microphysical 
processes in clouds and mesoscale models.

There are several approaches to the calculation of droplet growth 
by coalescence actually used in atmospheric models: one kind of 
approach involves the solution of the kinetic equation, see for ex-
ample Berry and Reinhardt (1974), and Tzivion et al. (1987). Ap-
plication of such a method within a fully tridimensional mesoscale 
model still demands prohibitive computational resources. Another 
method involving solutions for this equation was developed by 
Verlinde et al. (1980) and actually used in the RAMS model. How-
ever, the last method requires the use of “look up” tables, increas-
ing with this, computational needs. Also, it is not clear how this 
method performs regarding the coalescence between categories of 
similar sizes.

To a second kind of approach belong the methods based on the 
continuous growth equation. Due to its simplicity, this equation 
was used initially by Kessler (1969) and other authors to simulate 
warm rain processes and later by Rutledge and Hobbs (1983), Lin 
et al. (1983), and other authors, for mixed-phase cloud computa-
tions. 

It is assumed, in the continuous growth equation used in these 
works, that the mass and terminal velocity of the collected par-
ticles (for instance, cloud drops) are negligible in comparison with 
the mass and terminal velocity of the collector particle (rain drops, 
for example).  

Also, in many schemes it is assumed that the particles are distrib-
uted within the cloud and precipitation environment according to 
the power law first proposed by Marshall & Palmer (1948):

 (1) 

where, N(D) is a number density (number of drops of diameter D 
per unit volume per unit size interval), N0 is the intercept, and λ is 
the inverse of the mean drop diameter Dmx. 

Furthermore, in several schemes it is assumed that the particles fall 
with terminal velocity of power-law type of the form: 

(2)

where, D is particle diameter, ax  and  bx  are empirical adjustment-
parameters and the subscript x represents any category (cloud, wa-
ter, rain water, cloud ice, etc.). According to Reisner et al. (1998), 
for rain drops (x=r), ar =842 sec-1 and br =0.8.

The above-mentioned assumptions are valid for a parameterization 
of warm rain processes, and when the precipitation stage already 
exists. However, for mixed-phase clouds, where interactions be-
tween more than two categories (cloud water, rain water, cloud 

ice, snow, graupel, hail, etc.) take place, disregarding the mass and 
terminal velocity of the collected particle may lead to inaccuracies 
in the computation of the precipitation rate.

Some actual mesoscale models, as the one used by the Japanese 
meteorological office (see Murakami, 1990, Ikawa and Saito, 
1990), the Canadian mesoscale, and the MM5 models (see Reisner 
et al, 1998), base their parameterization schemes on the ideas of 
Rutledge and Hobbs (1983), Lin e.a (1983), and other authors. 

Thus it is appropriate to derive the continuous growth equation by 
removing the above-mentioned assumptions. 

In this work, two new forms of the continuous growth equation are 
derived that have not been presented in the literature. They were 
obtained assuming a gamma distribution and by retaining the mass 
and terminal velocity of the collected particles. The first solution is 
obtained assuming a power-law terminal velocity, and the second 
for a polynomial approximation. In the following section, basic 
assumption are made. Next, the general form of the continuous 
growth equation will be presented, the solution for a power-law 
terminal velocity will then be obtained, and finally, in section 5, 
the solution for the polynomial approximation will be derived. 

BASIC ASSUMPTIONS

In contemporary models, a more general distribution function is 
used - the gamma function: 

(3)

where Nx is the drop concentration per unit volume (m-3), and  G 
the gamma function with αx  as a free parameter and λx named the 
slope parameter for the category x, is related to αx and the mean 
diameter by the relation:

 (4)

It is easy to show, through the moments of the distribution (3), that 
for αx = 1 and 

N0 = Nxλx  (5)

the distribution (3) reduces to the Marshall & Palmer distribution 
(1).

It is also not difficult to show that for the distribution (3) the ex-
pression for the mixing ratio can be written in the form;

(6)

where ρ and  ρ
w

 are the densities of air and water respectively.
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Fig.1. Terminal velocity for raindrops: Serie 1- Experimental data 
of  Gunn and Kinzer (1949), serie 2, - polynomial approximation (7)  
and serie 3 – power-law approximation (2).

Empirical studies have shown that the terminal velocity for large 
drops is better represented by a polynomial approximation rather 
than by a power law, as suggested by Rutledge and Hobbs (1983): 

  (7)

Figure 1 shows a comparison between the relations (2) and (7) and 
the experimental data of Gunn & Kinzer (1949). The Figure clear-
ly shows that the polynomial approximation fits the observational 
data of Gunn & Kinzer better than the power-law approximation, 
specially for large raindrops.

GENERAL FORM OF THE CONTINUOUS GROWTH 
EQUATION

The increase in volume of a collector particle of radius Rx falling 
within an environment of smaller cloud particles of radius Ry and 
fall velocity u(Ry) reads (see for instance Rodgers & Yau, 1979):

where f(Ry)  is the distribution of the smaller particles and  Exy is the 
coalescence coefficient. 

In meteorological models, the effect of coalescence usually is ex-
pressed in terms of the mixing ratio qx. Thus, multiplying the above 
expression by  ρ

w
f(Rx)dRx/ρ, and taking into account that this factor 

does not depend on time we have, after integrating from 0  to ,

Assuming that Rx >Ry, this expression may be written as, 

This equality may be written as a function of the diameter D instead of 
the radius using the conservation condition, f(R)dR=f(D)dD. Then for  Dx 
> Dy.

(8a) 
When Dy >Dx, the expression (8a) must be written in the form

(8b)

The expressions (8a) y (8b) represent the general form of the continuous 
growth equation by coalescence.

The expression presented in Rutledge and Hobbs (1983) for continuous 
growth, may be obtained from (8a), neglecting the radius and terminal 
velocity of the collected particles.
The following derivations will be presented only for the case Dx >Dy.

EQUATION FOR THE CONTINUOUS 
GROWTH FOR THE POWER-LAW VELOCITY 
APPROXIMATION 

Expanding in the expression (8a) the difference and then the square of the 
sum, the following expression is obtained,
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(9)

Replacing into this expression the distribution (3) and the terminal 
velocity (2), and using the definition of the gamma function for a 
mean collision coefficient, the following expression is obtained in 
terms of the mixing ratio:

(10)
For Dx > Dy.

If the gamma distribution reduces to a Marshall – Palmer law thus, 
the correctness of this expression in the limit can be confirmed: 
indeed, if the above assumptions are retained, only the first term is 
conserved and for a=1 we obtain: 

Taking now into account the equality (5), the following expression 
is obtained:

which is the common equation used by Rutledge and Hobbs (1983) 
and other authors, when a Marshall – Palmer law and power-law 
approximation to fall velocity is assumed. 

EQUATION FOR THE CONTINUOUS GROWTH WITH 
THE POLYNOMIAL APPROXIMATION

Replacing into (8a) the polynomial form (7) and realizing that the 
integrals preceded by the coefficient 0.267 disappear, the follow-
ing expression is obtained,

Replacing now the distribution (3) in each of these integrals 
and taking into account the definition of the gamma function, 
again in terms of the mixing ratio, after some rearrangements the 
following expression is obtained:



Gerardo de Jesús Montoya Gaviria

40

     (11)

When the radius and fall velocity of the collected drops are negli-
gible, only the first terms appear as well as the term with the coef-

ficient 0.267. Thus, the above expression is written as 

This equation is similar to the one presented by Reisner et al. 
(1998). 

CONCLUSIONS

Two new solutions for the continuous growth equation were ob-
tained for the case when neither the mass nor the terminal velocity 
of the collected particles may be neglected. The first solution was 
obtained for a power-law approximation of the fall velocity and 
the second one with a polynomial approximation.

These solutions may be of interest for use in mesoscale models 
with explicit but simplified microphysical parameterizations.
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