
REVISTA INGENIERÍA E INVESTIGACIÓN VOL. 29 No. 1, ABRIL DE 2009 (69-75)

 69

The UNC-method: a problem-based software development
method

UNC-Method: un método de desarrollo de software basado en problemas

Carlos Mario Zapata Jaramillo1 y Fernando Arango Isaza2

ABSTRACT

Software engineers use development methods to guarantee on-time delivery, keeping to budget and quality in their software
applications. There are two kinds of development methods: plan-driven and agile methods. Both of them still have problems;
these refer to resolving problems instead of thinking about them, they use informal or semi-formal artefacts and they leave consis-
tency management to the analysts. The UNC-method (a problem-based software development method) is defined in this paper.
The UNC-method is currently being developed in the Universidad Nacional de Colombia; it has been used by students from the
School of Systems as part of their training in methodological software development during the last five years. The UNC-method is
a mixture of well-known artefacts (i.e. UML diagrams and graphical user interfaces) and non-traditional approaches (e.g. cause-
and-effect diagram, KAOS goal diagrams and pre-conceptual schemas) used in trying to overcome the aforementioned pro-
blems. A case study is also used for exemplification purposes.

Keywords: software development method, problem, goal, problem domain.

RESUMEN

Los ingenieros de software emplean los métodos de desarrollo para garantizar la entrega puntual, el cumplimiento de los presu-
puestos y la calidad de las aplicaciones de software. Existen dos tipos de métodos de desarrollo: los dirigidos por planes, y los á-
giles. Ambos, aún presentan problemas: se refieren a la solución en lugar de pensar en el problema, usan artefactos formales o
semiformales y dejan el manejo de la consistencia en manos de los analistas. En este artículo se define UNC-Method, un méto-
do de desarrollo de software basado en problemas, que se viene desarrollando en la Universidad Nacional de Colombia y que
se usa en la Escuela de Sistemas como parte del entrenamiento en desarrollo metodológico de software a los estudiantes de di-
cha universidad durante los últimos cinco años. UNC-Method combina artefactos tradicionales del desarrollo de software (como
los diagramas de UML y las interfaces gráficas de usuario) con enfoques no tradicionales en dicha disciplina (como los diagra-
mas causa-efecto, los diagramas de objetivos de KAOS y los esquemas preconceptuales) en un esfuerzo por resolver los proble-
mas antes mencionados. Además, se ejemplifica el método con un caso de estudio.

Palabras clave: métodos de desarrollo de software, problemas, metas, dominio del problema.

Recibido: junio 18 de 2008
Aceptado: marzo 2 de 2009

1 Ingeniero civil, Especialista en Gerencia de Sistemas Informáticos, M.Sc., en Sistemas y Ph.D., en Ingeniería, Universidad Nacional de Colombia. Profesor asociado,
Escuela de Sistemas, Facultad de Minas, Universidad Nacional de Colombia. cmzapata@unal.edu.co
2 Ingeniero civil, Universidad Nacional de Colombia. M.Sc., en Water Resources Planning and Management, Colorado State University, USA. Ph.D., en Informática,
Universidad Politécnica de Valencia, España. Profesor asociado, Escuela de Sistemas, Facultad de Minas, Universidad Nacional de Colombia. farango@unalmed.edu.co

Introduction

Gibbs (1994) described what happened to software at the end of
the 1960s; budgets were insufficient for development and delivery
dates were postponed over and over again. Gibbs used the term
“Software Crisis” for this situation. As a response, a special NATO
committee (Naur and Randell, Eds., 1969) created Software Engi-
neering which was a disciplined effort aimed at overcoming the
said software crisis. Software Engineering’s main principle was
quite simply to give software development a methodological
approach aimed at ensuring software accuracy and quality.

Software development still has problems forty years later. Despite
many software development initiatives coming onto the market,
budgets are still over-quoted and delivery dates are still not com-
plied with. However, software engineers are more conscious of
this situation nowadays. The use of software development me-
thods has grown throughout the years and people are beginning to
use these methods systematically.

There are two types of software development methods according
to Boehm (2002): plan-driven and agile methods. Plan-driven me-
thods consist of large sets of documental artefacts intended for
carefully modelling a problem’s solution by means of a software
application. Agile methods try to use software developers’ expe-
rience for increasing software development speed and quality.

Both of these approaches consider software development to be a
disciplined and documented effort in the search for better, on-ti-
me and within-budget delivered software applications. Both of
them share common problems:

-They employ solution-based artefacts instead of problem-based
artefacts. This means that software engineers must conceive a so-
lution before using the required artefacts. The solution results from
a careful analysis of the problem; software development methods
do not help to conceive the solution;

THE UNC-METHOD: A PROBLEM-BASED SOFTWARE DEVELOPMENT METHOD

 REVISTA INGENIERÍA E INVESTIGACIÓN VOL. 29 No. 1, ABRIL DE 2009 (69-75) 70

-They use informal or semi-formal modelling languages. When
formalisms are absent from a software specification, problems re-
garding ambiguity arise; and

-They exhibit consistency problems. These methods do not usually
define rules for consistency checking and, consequently, they
leave consistency management to the analysts.

This paper defines the UNC-method (a special software develop-
ment method for analysing a problem) in an attempt to alleviate
some of the problems mentioned above; it is linked to
organisational goals and a solution is then proposed for it. The
UNC-method is slightly different from previous development me-
thods in the sense that it helps analysts to determine a solution to a
problem, according to how such problem has been analysed.

Software development methods: the state-of-
the-art

Plan-driven methods

Plan-driven methods are suitable for large-scale projects; they use
documentation artefacts for every aspect of the solution. The ar-
tefacts can be UML models, conceptual schemas, tables and infor-
mal stories. The purpose is to discuss, model, exemplify and spe-
cify the stakeholder’s needs and expectations before starting to
prepare the code. Plan-driven methods commonly use a waterfall
model and they define a set of deliverables to be validated by the
stakeholders when every phase of the waterfall model has been
concluded. Two of the most used plan-driven methods are Oracle
Corporation’s Custom Development Method (CDM, 2000) and
Rational Unified Process (RUP) (Kruchten, 1999), a UML-based
software development method.

CDM: Besides developing different tools for database manage-
ment, Oracle Corporation (2000) has created CDM, a develop-
ment method based on applying its own tools and diagrams. CDM
was designed for modelling software applications during every
phase of the software development lifecycle; these phases include
defining, analysing, designing, building, transition and production.
The models used by CDM are grouped into tasks and tasks are
grouped into processes. Every process belongs to a particular de-
velopment phase and it is reported by using a special document
called “deliverable.” CDM has exhaustive documentation and
every deliverable has defined standards. CDM is suitable for large-
scale data-oriented software projects. Figure 1 shows the complete
CDM method; rows are processes and columns are phases in this
Figure. Though the amount of documentation required depends
on the size of the project, the deliverables commonly contain too
much information and they constantly need stakeholder validation.
These deliverables’ validation is sometimes difficult to achieve and
the reason is that stakeholders do not know what technical
languages deliverables are written in.

The first CDM model is the process diagram, a model describing
the functions of the organisation when the software is being im-
plemented. The use of this diagram represents a contradiction for
software development; it tries to represent the solution and the
solution is not completely defined during the first phases of soft-
ware development.

RUP: Unified modelling language (UML) (OMG, 2008) was born
in the mid-1990s and is considered the de-facto standard for soft-
ware modelling; RUP was created at the same time (Kruchten,

1999). RUP consists of UML diagrams for modelling the solution to
a problem throughout the software development life-cycle. RUP is
also a documentation-based software development method and it
has been declared to be iterative and incremental. Differing from
CDM, RUP is based on UML (the standard modelling language
adopted by OMG). RUP’s starting point is the elicitation process
which uses case diagrams. An analyst must build a complete set of
UML-based artefacts from these diagrams to iteratively refine the
software application.

Figure 2 shows RUP architecture. Rows represent flows of pro-
cesses and columns represent phases (inception, elaboration,
construction and transition) and iterations throughout the process.

Use cases are, again, descriptions of the solution to a problem by
means of information systems and the solution result from a careful
analysis of the available information concerning the problem.

Agile methods

The most common agile methods for software development are
suitable for low-to-medium size projects. Agile methods rely on
the programmers’ experience for making software having the
required quality. Programmers work together with stakeholders on
this task. Agile methods use an iterative approach, with few arte-
facts for software modelling. Two of the most used agile methods
are extreme programming (XP) (Beck, 2000) and feature-driven
development (FDD) (Coad et al., 1999).

XP: XP was created by Beck (2000) as an alternative method to
plan-driven methods. Software development in XP is completed by
means of establishing a close relationship between programmers,
stakeholders (called “customers” in this method) and managers.

The documentation required for developing software is restricted
to comments (added to the source code) and user stories. User
stories are short descriptions of the system’s behavior from the
system user’s point of view. User stories are descriptions of the
solution and must be jointly developed by the programmers and
the stakeholders. Figure 3 shows the XP circle of life which is the
process followed by programmers and customers in a successful XP
project; the actors’ duties are defined in this Figure. It should be
noted that the process is conducted by a special dialogue; stake-
holders express their needs through user stories and developers
exhibit results by means of prototypes. User stories need stake-
holders who know the solution’s domain and this kind of stake-
holder is difficult to find, given that they need technical knowledge
about software development.

FDD: FDD (Coad et al., 1999) is a software development method
based on software features. FDD has a lower documentation level
than plan-driven methods. This method also needs experienced
analysts and programmers for establishing future software
functionality with the help of stakeholders. Figure 4 presents the
typical phases of an FDD project. FDD is also an iterative method
but it only covers a software development life cycle’s design and
building phases.

The first FDD phase (developing an overall model) must be made
by the stakeholders. A description of the model in terms of use
cases or functional specs is required during this phase. Such
descriptions can only be made by stakeholders having profound
knowledge of modelling languages, and this kind of stakeholder is
difficult to find.

ZAPATA, ARANGO

 REVISTA INGENIERÍA E INVESTIGACIÓN VOL. 29 No. 1, ABRIL DE 2009 (69-75) 71

Figure 1. An overview of CDM

Figure 2. RUP architecture

Figure 3. XP circle of life

Figure 4. Typical phases of an FDD project

Disadvantages of software development methods

-Software development methods begin with solution-related arte-
facts, for example use cases, process diagrams, user stories and
functional specifications. The methods mentioned above fail at the
beginning of the process when they try to adequately model the
problem and intend linking it to a particular organisation; they
demand a great amount of technical knowledge from the
stakeholder.

-Software development methods use informal or semi-formal mo-
delling languages. Use cases and process diagrams are semi-formal
diagrams and user stories and functional specifications are informal

artefacts. Lack of formalism leads to problems of
ambiguity, in turn leading to difficulties in trans-
lating specifications to code.

-Software development methods exhibit consis-
tency problems; these methods do not usually
define precise rules for consistency-between-
artefacts and they leave consistency manage-
ment to the analysts.

-Agile methods require highly-experienced pro-
grammers and documentation is located within
the software.

-Plan-driven methods are documentation-exten-
sive, recommended for large-scale projects, but is not suitable

for intermediate or small-scale projects.

UNC-method artefacts

The UNC-method (Universidad Nacional de Colombia – soft-
ware development method) tries to surpass the disadvantages
listed above for plan-based and agile software development
methods. UNC-method is a combination of artefacts aimed at
implementing a smooth transition from the organisational
context (in which software takes place) to the formal spe-
cification of the conceptual schema. The UNC-method has
four phases: software context, problem analysis, solution pro-
posals and conceptual schema.

Software context

The first step towards achieving agreement between analysts
and stakeholders lies in selecting a common vocabulary. The UNC-
method employs pre-conceptual schemas (Zapata et al., 2006) and
domain models (Larman, 2002) to establish this common ground.
Differing from traditional software development methods, the
UNC-method begins the use of its phases with a detailed
description of the problem domain. We do not need to know a
thing about the solution but we do need to carefully represent the
organisational domain in which stakeholders are completing
functions and processes to begin using the method.

A pre-conceptual schema (Zapata et al., 2006) is a representation
of concepts, relationships, conditionals and implications of the real
world in a graphical controlled language. Pre-conceptual schemas
must be constructed by analysts with the help and validation
provided by stakeholders. A domain model (Larman, 2002) shows
a set of meaningful conceptual classes, their attributes and asso-
ciations with each other. According to Larman (2002), a domain
model inspires designing the objects in a future software appli-
cation and is intended to be developed by analysts. Both diagrams
are complementary and are helpful for the analyst to understand
and capture the domain vocabulary.

Problem analysis

Whilst analysts and stakeholders have a common ground for ex-
pressing their ideas, the UNC-method uses diagrams to express an
organisation’s goals, processes and problems.

Goals are organised in a hierarchical structure, ranging from high-
level organisational goals to low-level software goals (represented
by software requirements and stakeholder expectations). These
goals are presented in a goal diagram (Lamsweerde, 2000).

THE UNC-METHOD: A PROBLEM-BASED SOFTWARE DEVELOPMENT METHOD

 REVISTA INGENIERÍA E INVESTIGACIÓN VOL. 29 No. 1, ABRIL DE 2009 (69-75) 72

Organisational processes are depicted in a process diagram
(ORACLE, 2000), the first of the CDM diagrams; the UNC-method
has a special version of the process diagram, just belonging to a
description of the stakeholders’ functions.

Organisational analysis provides the fishbone chart (Ishikawa,
1986), a special cause-and-effect diagram for establishing an orga-
nisation’s main problems and relate them to their causes.

The UNC-method links each of these diagrams by means of a
special artefact: the Process Explanatory Table. Analysts can list an
organisation’s processes, the goals it must achieve and the causes
of its problems on this Table. The UNC-method also includes two
more artefacts (the Business Rules Table and the Data Dictionary)
for representing some of the constraints linked to the process and
organisational information structure.

Solution proposals

One particular problem can have many solutions and some of
these solutions can be obtained from information systems. The
UNC-method uses three artefacts to represent the set of possible
solutions: the process diagram, the use case diagram and the
graphical user interface model. The process diagram representing
the solution is slightly different from the same one representing
organisational processes. The changes are fewer but meaningful;
automated processes and stores are represented by means of the
same symbols, but the borders are thick-lined. Furthermore, chan-
ges in organisational context and functions are also represented in
the process diagram. Automated processes lead to the second dia-
gram to represent the solution: the use case diagram (OMG,
2008). The actors from a particular organisation are linked (in this
diagram) to the functions they will execute when the new software
becomes implemented; actors and interactions give a stakeholder
a special idea about the software’s future functioning. This diagram
is commonly explained by means of a use case description, a spe-
cial chart with the detailed functioning of the use case. The afo-
rementioned description leads to the third of the diagrams for re-
presenting the solution: the graphical user interface model. There
are formularies and dialogue windows representing (in the future
software application) the interactions included in the use case
diagram. The UNC-method also defines a tree-based chart for
linking graphical user interfaces: the interface navigation chart.

The artefacts for representing the solution are complemented by
appraisal of software value and cost. Software value is estimated by
following Zapata and Arango’s approach (2004). Software cost is
valued in terms of use case points (Karner, 1993). These estima-
tions are followed by the success of every solution’s critical factors
which include lists of possible problems occurring when imple-
menting the future software solution.

Conceptual schema

The final step in the elicitation process is the specification of the
solution by means of formal or semi-formal methods. The UNC-
method uses a combination of semi-formal methods (class dia-
gram, communication diagram, state machine diagram and se-
quence diagram, OMG, 2008) and formal methods (the expression
of queries, transactions, derivations, constraints, events and ope-
rations, in terms of predicate logic). The graphical user interface
model is the artefact selected for linking the use cases presented in
the solution to the class diagram drawn up in the conceptual
schema. The analyst must specify (in predicate logic) every e-
lement of the graphical user interface, for example buttons, text
boxes, lists, etc. The specification must be consistent with class

diagram elements (classes, attributes, operations and relationships).
Actions defined by buttons must be specified in the form of class
diagram operations, or transactions of the use case diagram.
Derivations are special calculations from class diagram attributes
and constraints are special rules covering business rules, software
or hardware restrictions, special formulas and many other things
expressed by means of different UML diagrams. Several elements
have the same specification (operations and transactions, in con-
junction with derivations and constraints) and they are woven
together by means of UML diagrams.

Case study

A previous example, reported by Juristo et al., (1999) was modified
from its source to be represented by the UNC-method. A brief
description of this example in the controlled UN-Lencep language
(Zapata et al., 2006) would be as follows:

Sales_employee is a kind of vendor
Company is a kind of vendor
Sales_employee has a base_salary
A vendor has a commission
An order has a number
An order has a customer
An order has a vendor
When a vendor makes a sale, a vendor reports the order
When the vendor reports the order, the assistant confirms the
order
When the assistant confirms the order, the company delivers
the order
When day=Friday, the company delivers the order

Figure 5 depicts the pre-conceptual schema generated from the
above UN-Lencep description.

Figure 5. Pre-conceptual schema for the case study

Figure 6 shows the domain model automatically obtained from
Figure 5’s pre-conceptual schema.

Figure 7 shows the translation of Figure 5 pre-conceptual schema
into the process diagram and Table 1 summarises the explanatory
process diagram Table.

The explanatory process diagram table, the goal diagram and the
fishbone chart require additional information to be acquired from
the stakeholder. Table 1 shows the explanatory process diagram
table, Figure 8 shows the goal diagram and Figure 9 shows the
fishbone chart.

ZAPATA, ARANGO

 REVISTA INGENIERÍA E INVESTIGACIÓN VOL. 29 No. 1, ABRIL DE 2009 (69-75) 73

Figure 6. Domain model of the pre-conceptual schema shown in Figure 5

Figure 7. Translation of PS to Process Diagram

For the sake of simplicity, we can assume that the UN-Lencep
discourse about the case study also represents the solution to the
problem. In the real world, a solution commonly differs from the
domain discourse. Figure 7 processes can be represented by thick-
lined boxes in such cases. The solution is also represented in the
UNC-method by means of use case diagrams (see Figure 10) and
graphical user interfaces (see Figure 11). Some expressions were
added to Figure 11 (in predicate logic) for exemplification pur-
poses.

Figure 8. Case study goal diagram

The final UNC-method diagrams for representing the solution of
the case study are integrated by class, communication and state
machine diagrams which can be respectively viewed in Figures 12,
13 and 14.

Figure 9. Case study fishbone chart

Table 1. Explanatory Process Diagram Table

Process Goal
Where and

how it is used
Problems

Business
rules

Makes a
sale

O5
guaranteeing
completion

of sale

In the
company.

Every time an
agreement

occurs

Stock is
not

available
to cover

the
demand

BR01 the
company
only sells
what it

produces

Reports
order

O6 fostering
the

monitoring
of the sales’

process

In the
company.

Every time an
agreement

occurs

Reporting
orders is
done by

hand

BR02 every
order must
be reported

so that
commissions
may be paid
to vendors

Confirms
order

O5
guaranteeing
completion

of sale

In the
company.

Every time an
agreement

occurs

There are
often

differences
between

confirmed
orders and
products

to be
dispatched

Delivers
orders

O5
guaranteeing
completion

of sale

Every Friday

Dispatches
are taking

longer
than they

were
expected

to do

BR03 all
dispatches

are made by
an external
company

It should be noted that all the
diagrams and artefacts descry-
bed for the case study are con-
sistent. Some of the artefact
consistency rules are given be-
low:

-Concepts in pre-conceptual
schemas are represented by
stores in the process diagram,
classes or attributes in the class
diagram, classes of objects or
message arguments in the
communication diagrams, ob-
jects of use cases in the use
case diagram and state machine

names in state machine diagrams.

-Dynamic relationships in pre-conceptual schemas are represented
by processes in the process diagram, operations in the class dia-
gram and messages in the communication diagrams. They are also
represented by use cases in the use case diagram and states (ex-
pressed using the past participle) in state machine diagrams.

THE UNC-METHOD: A PROBLEM-BASED SOFTWARE DEVELOPMENT METHOD

 REVISTA INGENIERÍA E INVESTIGACIÓN VOL. 29 No. 1, ABRIL DE 2009 (69-75) 74

-Conditionals in pre-conceptual schemas are represented by guard
conditions in communication diagrams and state machine dia-
grams.

-The main problem of every fishbone chart must be related to a
goal diagram objective.

Other consistency rules can be consulted in Zapata et al., (2006).

Figure 10. Use case diagrams of the case study

Figure 11. An example of case study graphical user interfaces (including
predicate logic)

Figure 12. Case study class diagram

Figure 13. Case study communication diagram

Conclusions and future work

Well-known software development methods exhibit some pro-
blems from scratch; the starting point is related to the solution

instead of the problem itself and leaves consistency management
to analysts who must manually complete consistency analysis.

Figure 14. Case study state machine diagrams

The UNC-method is defined and presented in this paper as an
effort to overcome problems related to both plan-driven and agile
software development methods.

The UNC-method uses an analysis of problems and causes and a
summary of the organisational goals as a starting point for an in-
formal description of the domain; other methods (like CDM, RUP,
XP and FDD) use descriptions of the solution to a problem as a
starting point and they do not assist the analyst in obtaining a
solution.

Furthermore, the UNC-method sets out some consistency rules to
guarantee that the elements in the discourse will be preserved
during the requirement elicitation process and they will be care-
fully integrated into the different diagrams.

We have presented an example of how the UNC-method may be
used, as it has been used by students from the Universidad
Nacional de Colombia’s School of Systems during the last five
years. Some of these UNC-method users are currently spreading
the main ideas implicit in this method throughout the Colombian
software industry since they are useful as a good approach to
software requirement elicitation when consistent and refined arte-
facts are concerned.

Some issues still need to be dealt with by analysts for improving
the UNC-method. For example:

-Incorporating metrics into the UNC-method which will be used in
the measuring artefact quality;

-Developing new processes to be included in the UNC-method.
For example, we need a special process for calculating the im-
portance of certain problems within a particular organisation;

-Defining the diagrams belonging to design and implementation
phases; and

-Constructing a special tool for managing all the artefacts and
consistency rules involved in the UNC-method. This tool can be
engineered to help in creating artefacts and monitoring fulfillment
of consistency rules.

Bibliography

Beck, K., Extreme Programming Explained: Embrace Change,
Reading., Addison-Wesley, 2000.

Boehm, B., Get ready for agile methods, with care., Computer,
Vol. 35, No. 1, 2002, pp. 64–69.

ZAPATA, ARANGO

 REVISTA INGENIERÍA E INVESTIGACIÓN VOL. 29 No. 1, ABRIL DE 2009 (69-75) 75

Coad, P., LeFebvre, E., De Luca, J., Java Modeling in Color with
UML- Enterprise Components and Process., Upper Saddle River,
Prentice Hall, 1999.

Gibbs, W., Software’s chronic crisis., Scientific American, Sept.
1994, pages 86-101.

Ishikawa, K., Guide to quality control., Asian Productivity
Organization, Tokyo, 1986.

Juristo, N., Morant, J., and Moreno, A., A formal approach for
generating oo specifications from natural language., Journal of
Systems and Software, Vol. 48, No. 2, 1999, pp. 139–153.

Karner, G., Metrics for Objectory., Diploma thesis, University of
Linköping, Sweden. No. LiTH-IDA-Ex-9344:21, 1993.

Kruchten, Ph., Rational Unified Process—An Introduction. Reading.,
Addison-Wesley-Longman, 1999.

OMG., UML 2.0 Superestructure Specification., Available in
http://www.omg.org/uml/ [last access: May 2008].

Oracle ® Corporation., Oracle MethodSM CDM Quick Tour.,
Redwood City, Oracle Corporation, 2000.

Zapata, C. M., Arango, F., Alineación entre Metas
Organizacionales y Elicitación de Requisitos del Software., DYNA,
No. 143, 2004, pp. 101-110.

Naur, P., Randell, B., (Eds.), Software Engineering: Report of a
conference sponsored by the NATO Science Committee.,
Garmisch, Germany, 7-11 Oct. 1968, Brussels, Scientific Affairs
Division, NATO, 1969.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

