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Introduction and the state of the art 

Robot manipulators are defined as all automatically programma-
ble systems which can position and orientate an object following 
variable trajectories inside a defined workspace. A robot ma-
nipulator is formed by different segments united through joints 
and system's movement capability depends on each joint's de-
gree of freedom. 

Manipulator trajectory tracking consists of determining the nec-
essary input (forces) in each system’s generalised coordinates to 
make the model move between one point and another following 
a defined path. The first step consists of specifying a sequence of 
points in the manipulator's work space; these points will become 
desired positions along such pathway and are integrated using an 
interpolation function (typically in polynomial form). Different 
techniques are used for trajectory planning: (i) final and ending 
positions are given regarding point-to-point motion, or (ii) work-
ing with a finite point sequence needs motion through a se-
quence of points. Both techniques give a time function that de-
scribes the desired behaviour (Siciliano, 2009, van Nieuwstadt, 
1997a). 

The second step consists of implementing such function in a 
dynamic model of the proposed system and verifying that trajec-
tory tracking is effectively given. A decision must be taken re-
garding whether the problem is going to be worked in the opera-

tional space or at each joint. The first solution could result in 
singularity problems and redundancy caused by the number of 
joints' degrees of freedom and the nonlinear effects could ham-
per prediction, given its generality. Meanwhile, joint position 
path parameterisation would seem more  suitable because this 
study allows working on each element, considering factors like 
movement restriction and each joint's degrees of freedom. 

Joints’ parameterised trajectory is defined by a q(t) function. This 
function is the source of a joint desired position for the manipu-
lator’s movement as time elapses. Control techniques, such as 
PD control with gravity compensation, inverse dynamic control 
(IDC) or adaptive control, enable manipulator movement along a 
defined path having minimal deviation (Marguitu, 2009, Carva-
jal, 2007, Spong, 1992, Wang, 2009). 

It has also been demonstrated that this mechanical system is 
differentially flat (Lévine, 2009), meaning that the system has a 
collection of outputs (called flat outputs) which, according to 
differential flatness, could describe the whole system (as well as 
its derivatives) (Fliess, 1994). 

The differential flatness concept was introduced by Michel Fliess 
and his group, using differential algebra terminology (Fliess, 
1994). A system is seen to be a differential camp generated by a 
set of variables (states and inputs). Subsequently, Martin (1997) 
redefined this concept within a whole geometric context with 
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ABSTRACT 

This paper proposes applying differential flatness to robot manipulator trajectory tracking. The trajectories for each general-
ised coordinate are proposed as a function and the corresponding input must be found to guarantee tracking. It is shown 
that the position in the generalised coordinates and their derivatives are flat inputs which, together with a PD controller, 
could determine (with some restrictions) manipulator movement having minimal deviation throughout its trajectory in both 
plane movements and in space. 
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RESUMEN 

Este documento propone una aplicación con Differential Flatness para el problema de seguimiento de trayectorias en mani-
puladores robóticos. Para cada coordenada generalizada, se proponen sus trayectorias como una función en el tiempo 
donde deben encontrar las entradas correspondientes para garantizar el seguimiento. Se demuestra que la posición de 
cada coordenada generalizada del manipulador robótico y sus correspondientes derivadas son salidas planas que, en con-
junto con un controlador PD pueden determinar, con algunas restricciones, los valores de fuerza para conseguir un movi-
miento en el manipulador con una mínima desviación a lo largo del trayecto, tanto en movimientos planos como en el es-
pacio. 
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The advantage of such structure is the small number of flat out-
put derivatives necessary to transform the system into a flat con-
cept. 

Even though Van Nieuwstadt(1997b) and Rathinam (1997)
havedetailedsuchflat property in Lagrangian systems, Lévine
(2009) has demonstrated it. Starting from defining a robot ma-
nipulator having n degrees of freedom and n actuators, its dy-
namic model would be: 

 

 

where q are generalised coordinates and u system input repre-
sented by actuators. Assuming that system input and generalised 

coordinates have the same dimension and that  repre-

sents the inertial forces’ matrix, then C (q, ͘q) represents 

the centrifugal and centripetal forces’ matrix and  charac-
terises the actuators (e.g. arm location or the presence of mo-

toreductor units). If , equation (5) becomes a set of 
EDOs: 

 

 

 

If the Q dimension is n, all elements in(6) could be deleted, so 
the answer becomes reduced to the trivial form 0=0. Thus a set 
of inputs u could be: 

 

 

where x1 represents the flat output vector (each of the manipula-
tor's generalised coordinates); a system’s input representation 
depending on flat output may thus be obtained. The (7) formula 
is also known as computed torque or IDC, this being an inverse 
dynamics technique for determining the necessary amount of 
momentum to develop any kind of movement in a robot ma-
nipulator. 

It should be membered that not all system outputs are flat, so 
these must be differentiated from normal ones by the letter Z 
(Van Nieuwstadt, 1997b).Equation (7) can thus be represented 
as: 

 

 

Diffeomorphism is thus demonstrated.  

Flat output and trajectories 

Tracking trajectories do not present complications in a flat sys-
tem; as input and its states are defined in terms of flat output 
then paths can be created for defining its output behaviour and 
its respective derivatives, determining the inputs needed by the 
system to give a response approaching the one desired by the 
path. These paths could be polynomial or C∞ type functions, 
such as trigonometrics or exponentials (Rotella and Zambettakis, 
2008). Applying flat theories leads to transforming a differential 
equation system (7) into polynomial order n, thereby simplifying 
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which flat systems could be described in absolute equivalence 
terms. 

According to Fliess (1994), a system is defined as being flat if a 
set of outputs (having the same number of inputs), called flat 
outputs, can determine all system states and inputs without the 
need for integration. That means that a system of states  x  ∈ n 

and inputs   u ∈ m is flat if a set of outputs  y ∈ m can be found in 
the following form: 

 

 

so that: 

 

 

 

As seen in (2) and (3), all flat system states and inputs are defined 
regarding flat output and a finite number of its derivatives. This 
property has been called diffeomorphism by Fliess; such  asso-
ciation is helpful in situations where explicit trajectory generation 
is required (Martin, 1997), i.e.a system has desired behaviour 
which is achieved by using a defined path in the output space. 
Equations (2) and (3) determine appropriate input for developing 
such path. Several studies have illustrated the use of differential 
flatness, including mobile robots (Murray, 1995a, Deligiannis, 
2006, Defoort, 2006), mobile robot with n trailers (Siciliano, 
2009), Chua’s system (Aguilar-Ibañez, 2004), magnetic synchro-
nous motor (Achir, 2005), flexible beam (Barcyk, 2008) and 
robot manipulator (Murray, 1995b). All these systems can work 
with these theories because there is a relationship between flat 
input and output; a system's flatness thus depends on its configu-
ration, thereby making it an intrinsic property of the model itself. 

This paper highlights this property for trajectory tracking; the 
desired path has been formulated in each generalised coordi-
nated q, using a time function. Parameterisation, combined with 
differential flatness concepts and PD control, has determined the 
input set allowing manipulator movement control regarding such 
trajectory. 

Problem resolution 

Differential flatness in Lagrangian models  

Robot manipulator modelling can be addressed via two ap-
proaches: Lagrangian and Newton-Euler analysis. Both differ in 
procedure, the former using an energetic conservation concept 
whilst the latter analyses forces and equilibrium based on New-
ton’s second law. Both ideas provide the same answer: a differ-
ential equation system describing manipulator dynamics. 

A model obtained by Lagrangian theory would be defined as: 

 

 

It has been stated a Lagrangian system is fully actuated when it 
has the same number of actuators and generalised coordinates. 
A fully actuated model is a differential flat system (van 
Nieuwstadt, 1997b, Rathinam, 1997) since all states and non-
conservative forces F, could be determined from flat output q. 
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problem solution by making it into a completely algebraic solu-
tion. 

Implementation in a human arm-type manipulator 

The behaviour of a human arm-type robotic manipulator should 
be studied to implement this theory (such system emulating hu-
man arm performance) as this forms the basis for exoskeleton 
and upper limb prosthesis research. Akinematic model has been 
studied (Veslin, 2009)and is described in Figure 1; it is a multi-
body system formed by 2 segments.L1is the arm and is formed by 
joint (P0) that is analogous to a human shoulder. It has three 
degree of freedom, allowing the system’s free movement around 
the shoulder. L2 is the forearm (P1)and only has one degree of 
freedom, rotation around the Y-axis, a movement known as 
flexion. Hand movements have not been considered but pa-
rameters like mass and length will be added to the forearm, turn-
ing the forearm-arm system into a single body one. 

Arm movement was studied regarding the sagittal plane where 
the shoulder and forearm rotate to produce flexion (rotations 
around the Y axis) and then movement using all degrees of free-
dom (four). Figure 1 describes the elements exerting influence, 
such as the position of the segment’s centre of mass (defined by 
C1andC2),system orientation on the axis and rotations. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Human arm structure on which the dynamic study was based 

Plane movements 

Plane movement means movements developed by the system in 
one direction without the intervention of other shoulder rota-
tions. It means both articulations move around the same axis. 
This system was modelled (9,10)taking into account that rotation 
axis angular and kinetic velocities did not influence the model, 
thereby being considered null. The following was obtained for 
the first segment: 

 

 

 

 

 
and the following for the second segment: 

 

 

 
where m1 and m2, were the mass of each articulation and sn and 
cn were sen(qn) and cos(qn), respectively, for reducing the equa-
tion's complexity. The inertia tensor was not considered, as dy-
namics studies have shown that it becomes reduced to a precise  
force located in the centre of mass, thereby having no strong 
influence on simulation model behaviour (Veslin, 2010). Both 
equations represented a nonlinear system, and according to (8), 
a differential flat system having flat outputs q1andq4, correspond-
ing to the model’s generalised coordinates. Henceforth, these 
outputs will be denoted as z1(t)andz4(t), to emphasise that output 
was used to apply the flat system concept. This led to: 

 

 

 

 

 

 

 

The next step consisted of applying differential flat theories to 
the model; the general objective was to control system behav-
iour regarding a desired action. This behaviour was parameter-
ised regarding a particular trajectory. Such trajectories could be 
easily implemented with knowledge of a system's flat output. The 
model demonstrated in (9) and (10) shows that system input can 
be interpreted by knowing its flat output behaviour until the 
second derivative; this function and its derivatives were thus 
added to the model. For example, if the arm is to rise starting 
from an original position with gradual positioning variation, then 
a cubic function could be used to command its behaviour, 
2007), i.e.: 

 

 

 

Equation (14) led the arm from its original positionat0° to a posi-
tion at 18° in equation (13) to 30° (Fig. 3).Both segments had 
zero speed at the beginning and the end and took 10 seconds to 
move. These equations were derived twice and the following 
was obtained for the first flat output: 

 

 

 

and the following for the second flat output: 

 

 

If these equations were inserted into (11) and (12) then this 

(9) 

( )
( )

2 2
2 2 2 2 1 2 2 4 2 2 1 1 4

2 2 2
2

14

2 1 1 2 24 2 2 1 2 41/12 1/12

m g C m C q m C q m C q L c

m C q L s m L q m L q

s

U

− + + +

+ + + =

&& && &&

& && &&

(10) 

( )
( ) ( ) ( )

( ) ( )( )

( )

2 2 2
2 14 2 2 2 1 2 2 4 2 1 1 1 1 1

2 2
2 2 1 1 4 2 1 1 1 1 1 1 1 1

2
2 2 4 1 4 2 2 1 4 1 4 2 2 1

22
2 2 4 2 2 4 1 4 1

1
2

12
1

2
12

1

12

z z z

z z z

z z z

m gs C m C m C m L m gc C

m C L c m gs L m C m L

m C L c m C L s m L

m L m C L

z

z z Us

+

+

+

− + + + −

− + +

−

− =

+

&& && &&

&& && &&

&& & & &&

&& &

(11) 

( )
( )

2 2
2 2 2 2 1 2 2 4 2 2 1 1 4

2 2 2
2 2 1 1 4 2 2 1 2 2

14

241/12 1/12

m g C m C m C m C L c

m C L s m L m L

s z z z

z z z U

− + + +

+ + + =

&& && &&

& && &&

(12) 

( ) 2 3
1 0,0094 0,0006 13z t t t= − (13) 

( ) 2 3
4 0,0157 0,001 14z t t t= − (14) 

( )

( )

2
1

1

0,0188 0,0018
                                                                                

0,0188 0,0036

z t t t

z t t

= −

= −

&

&&

(15) 

( )

( )

2 2
4

4

0,0314 0,003
                                                                                

0,0628 0,006

z t t t

z t t t

= −

= −

&

&&

(16) 

−�2��14�2 + �2�2
2
�4 + �2(
�1)�1

2 − �1��1�1

+ 2�2�2(
�1)�1 �4 − �2��1�1  

+  �1(
�1)�1
2 +  

1

2
�1(
�1)�1

2

+ �2�2(
�4)�1�4

− 2�2�2(
�1)(
�4)�1�4 +
1

2
�2�2

2 
�1

+
1

12
�2�2

2 
�4 − �2�2(
�4)2�1�4 =  �1 



VESLIN, SLAMA , DUTRA , LENGERKE , TAVERA   

                                                                                                                 INGENIERÍA E INVESTIGACIÓN VOL. 31 No. 2, AUGUST 2011 (84-90)     87 

would lead to a set of polynomial equations, transforming differ-
ential equations into an algebraic-type system. The system must 
be solved in a given time to determine inputs Un. 

Figure 2. Set of inputsU1 andU2 used for the desired trajectory 

The response provided by Figure 2shows a set of outputs applied 
to a system and displace it according to the behaviour imple-
mented in equations (13) and (14). The system was rewritten as 
a set of ordinary differential equations, similar to (6) and its offset 
response is described in Figure 3. 

Figure 3. System response for U1a and U2 input 

Figure 3presentsinputbehaviourspecified for equation system 
(11) and (12) and compares it to the set of cubic equations (13) 
and (14), demonstrating that the system effectively displayed the 
desired behaviour. The trajectories' difference can be seen in 
Figure 4, showing an oscillatory error trend, maximum difference 
being 10-2. 

Figure 4.Tracking error for q1 and q4 

While the response obtained was desirable, stability problems 
were encountered for position tests following the same cubic 
behaviour which were caused by a leak in the desired path sys-
tem involving random movement (Figure 5), when trying to 
move both segments from 0° to 90°.  

It was demonstrated that the presence of gravitational forces 
were one of the main causes of path deviation when trying to 
resolve the aforementioned problem; removing them led to 

establishing track near the desired trajectory. The 
resulting magnitudes in U1 and U2 did not offer a satis-
factory solution since their value was really low. 

This did not mean that flat system theory could not be 
applied to certain positions, only that such  solutions 
did not guarantee the tracking and the necessary sta-
bility if applied in an open-loop. The focus of this 
moment had to be changed to take advantage of this 
scheme's benefits by implementing a controller that 
fedback information from real state and compared it 
to desired output. This difference produced a control 
action allowing the system to track the desired trajec-
tory with minimum error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Trajectory deviation for q1 and q4 in higher moves 

Degrees of freedom control 

 

 
Figure 6.Two degrees of freedom control system (Van Nieuswtadt, 
1997b) 

A two degrees of freedom control (Fig. 6)is any closed-loop sys-
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tem containing a controller and a trajectory generator. The con-
troller modifies output regarding existing error between actual 
output and nominal or desired output (Van Nieuwstadt, 1997b). 

This system actually had three degrees of freedom. A higher level 
produced output depending on desired behaviour paths, an 
intermediate level generated input based on these outputs and a 
lower level stabilised the system concerning nominal trajectory. 
Uncertainty was defined as variation caused by gravitational, 
frictional and nonlinear forces in the model. 

A feedback law has been established for the controller (Franch, 
2003): 

 

with n=1,2; this equation was selected to search for nomi-
nal state Xn following desired path Zn in line with correct 
choice kp and kd constants. Proportional constant kp pro-
duced an action that modified input from flatness system 
control. Derivative constant kd removed variation 
(oscillations) caused by this correction. Figure 5 shows that 
there were jumps in position ranging from 100° to 800° in 
less than a second, i.e. abrupt change in proportional con-
trol action and, consequently, oscillations in the model. If 
each segment had its own control loop, with constant 
kp=25 and kd=0.5 for the arm segment and kp=2.5 and 
kd=0.5 for the forearm, then Figure 7 shows how these 
values would be implemented. The paths so obtained very 
nearly followed the desired paths. Figure 8shows arm perform-

ance according to input. 

Figure 7.Trajectory tracking using a controller 

Figure 8.Model behaviour using input defined by diffeomorphism 

Once a controller had been defined, it was easier to control the 
system using other trajectories. Any position within a manipula-
tor workspace could be parameterised by a polynomial for dif-
ferential flatness system theory. For example, if the arm were to 
make a movement oscillating from a cosine function (18) the 
forearm would be lifted to a 90° position following the same 
method for the previous path's behaviour. 

 

 

The set of inputs described in Figure 9 was obtained by applying 
function (18) and its derivatives (11) and (12). 

Figure 9. Force trajectories obtained by diffeomorphism 

Figure 10 and Figure 11 show the input trajectories 
implemented in the system. The model's behaviour 
affected the magnitude of the forces applied, proving 
the oscillatory form shown in Figure 9. The controller 
was responsible for ensuring that the system moved 
through the desired trajectory and stability in move-
ment without influencing the result generated by dif-
feomorphism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. System behaviour using the desired trajectories 
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Figure 11. Model behaviour using diffeomorphism-defined input 

Space control 

The concept was also applicable to systems having more degrees 
of freedom and, although equations of motion are more com-
plex, paths and behaviour could be tracked. Figure 12present-
sthe same system with four degrees of freedom (generalised 
coordinates q1, q2, q3 and q4). The equations of motion took 
rotations on the Z-plane and shoulder X into account and deter-
mined equations of motion.  

The implemented trajectories were cube shaped using the con-
troller mentioned in the previous paragraph to ensure follow-up, 
thus reducing path system error.  

Figure 12. Behaviour of the system for each trajectory. The dashed line 
describes actual movement while the continuous line describes the 
desired trajectory. 

Implementation presented difficulties. Input equations regarding 
four outputs were extensive and prevented an acceptable result 
being achieved for extended times. This error forced the use of a 
controller. The open-loop system presented difficulties during 
follow-up. The controller made modifications imperceptible 
regarding input but enough so that there was a stable trajectory. 

 

 

 

 

 

 

 

 

 

 
 

Figure13. Simulation model behaviour 

The ability to follow-up trajectories using differential flatness 
systems for robotics manipulators depends on the quality of 
input values. It was found that small changes in these settings 
offered better performance, proving that input resolution is an 
important part of the results. Models were analysed in 0.01 sec-
ond increments in previously carried out tests. However, testing 
with greater increases did not provide appropriate behaviour 
(see Figure 14).This hampered determining the controller's con-
stant values or, even worse, prevented it. This restriction on 
using short times made it difficult to calculate input due to high 
consumption of computing resources; a strategy for resolving this 
situation was thus reconfigured. 
 

Figure 14.Behaviourfor a model having longer time period (showing 
difficulty in following-up  desired output) 

Conclusions 

This article has examined the application of differential flatness 
system theories to robotic manipulators' trajectories. The model's 
generalised coordinates concerned system flatness output; as 
flatness output can establish a relationship with output and ob-
tain an input set implemented in the manipulator, this led to 
trajectory planning. 
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The study showed that the system could execute any parameter-
ised trajectory regarding all the system’s generalised coordinates 
for certain conditions. A PD controller had to be included which 
influenced the system’s behaviour, thereby ensuring necessary 
control for following a route with minimum deviation. 

However, for complex systems the extension of motion equa-
tions generated an increase in the consumption of computational 
resources, preventing an implementation for a long time. Never-
theless, the analysis showed that the system had the necessary 
input and using the controller enabled following up the desired 
trajectory. Future work should be aimed at finding a new solu-
tion to apply differential flatness to complex robotics manipula-
tors, such as the application of another controller. 
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