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Introduction 

Solving nonlinear optimisation complex problems represents an 
important practical and research field. Developing algorithms 
and practical implementation have led to applications in mathe-
matics, engineering, economics and computer sciences. Optimi-
sation is usually difficult due to (Pardalos and Resende, 2002): 

− Objective function complexity: analytical calculation of deri-
vates is difficult if not impossible; moreover, even though 
derivates may be available, there are no mathematical for-
mulas for estimating the overall optimum;  

− Restrictions imposed on the problem: these are related to a 
feasible solution’s complexity. Optimisation methods may be 
able to search inside such region and to discard unfeasible 
solutions; 

− The presence of so-called multiple local minima: this is re-
lated to the complexity of the surface generated by the ob-

jective function, so that it is very difficult to evade local opti-
mal points; and 

− The limitations of many optimisation methodologies: or, in 
other words, how the methods are affected by the previous 
aspects and in which particular conditions a specific method 
is able to find good solutions within the search space. 

The development, testing and implementation of heuristic-based 
optimisation algorithms is an important research field, especially 
for those based on stochastic optimisation (Pardalos and Re-
sende, 2002). Well-known examples would include classical 
paradigms such as simulated annealing (Kirkpatrick, Gelatt and 
Vecchi, 1983), random search (Matyas, 1965; Solis and Wets, 
1981) and genetic algorithms (Goldberg, 1989). However, new 
methodologies have emerged such as artificial immune systems 
(Farmer, Packard and Perelson, 1986; Bersiniand Varela, 1991), 
the fast clonal algorithm (Khilwani, Prakash and Shankar, 2008) 
and harmony search (Lee and Geem, 2005). 
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ABSTRACT 

This paper discusses using R-chaosoptimiser, an R language package for nonlinear optimisation based on gradient tech-
niques and chaos optimisation algorithms. Its implementation was based on three building blocks which could be executed 
alone or un combination: the first carrier wave algorithm, the chaos-based cyclical coordinate search method and the sec-
ond wave carrier algorithm. Using chaos optimisation algorithms allows the tool to break away from local optimal points 
and converge towards an overall optimum inside a predefined search domain. Within the previous components, a user 
would be specifying the BFGS algorithm for refining the current best solution.  Using the BFGS algorithm is not mandatory, 
so that its implementation was able to optimise problems having objective function discontinuities. However, the BFGS algo-
rithm is a powerful local search method, meaning that it is used to exploit current knowledge about an objective function for 
improving a current solution; an explanatory example is presented. 

Keywords: Keywords: Keywords: Keywords: optimisation, R language, gradient-based method, chaos, algorithm. 

RESUMEN 

En este artículo se discute la implementación de rchaosoptimizer, un paquete de R para la optimización no lineal basada en 
técnicas de gradiente y algoritmos de optimización caóticos. La implementación está basada en tres bloques constructivos 
que pueden ser ejecutados solos o combinados: 1) el algoritmo de primera onda; 2) el método de búsqueda por coorde-
nadas cíclicas basado en caos; y, 3) el algoritmo de segunda onda. El uso de algoritmos de optimización caóticos permite 
a la herramienta implementada escapar de puntos óptimos locales y converger al óptimo global dentro del domino predefi-
nido de búsqueda. Dentro de los componentes previos, el usuario podría especificar una llamada al algoritmo BFGS para 
refinar la solución actual. El uso del algoritmo BFGS no es obligatorio, tal que la implementación es capaz de optimizar 
problemas con discontinuidades en la función objetivo. Sin embargo, el algoritmo BFGS es un método poderoso de 
búsqueda local, tal que, él es usado para explotar el conocimiento sobre la función objetivo para mejorar la solución ac-
tual. Finalmente, en ejemplo exploratorio es presentado. 
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1. A logistic map:  

 

2. A new chaotic map: 

 

3. A sine map: 

 

4. A tent map: 

 

Algorithms used in this work 

This section describes optimisation algorithms used in the R-
chaosoptimiser programme. 

First carrier wave (fcw) algorithm 

The so-called first carrier wave algorithm is the most elementary 

procedure for generating candidate points xc  inside a feasible re-
gion; optimum, xl, is the candidate point having the lowest value 
for f (xc). The process is schematised in Figure 1. Candidate 
points xc  (line 05) were generated in domain  [L, U] by means 

of chaotic sequence vector  γ; each component of  γ, γ(i) was 
thus mapped linearly to interval [L(i), U(i)].  It has been as-
sumed in Figure 1 that the components of  γ were restricted to 
interval [0, 1] as occurs for the logistic map.  A new chaotic 
sequence vector was generated at each iteration using chaotic 

map H () (line 12); for example, each component was generated 
using γ(i) = 4γ(i) [1—γ(i)] , if H ()  were the logistic map. The 
current local optimum xl  was saved in line 09.  In addition, 
every f cw.C2   iterations the current local optimum would be 
refined by means of a gradient-based optimisation algorithm 

(line 14). In this case, g() was the implementation of the BFGS 
algorithm in R language optim function. The complete process 

was repeated f cw. C1  times (from line 02 to line 15). 

Figure 1. First carrier wave algorithm 

Enhanced cyclical coordinate search (CCS) algorithm 

Objective function f (x) was minimised along a unitary 
vector coinciding with one of the coordinates axes in the en-
hanced cyclical coordinate search algorithm (Figure 2) proposed 
by Velásquez (2010). A new candidate point was obtained from 

the current best solution (line 08) by changing the i-th compo-
nent for a random value inside the interval centred on the cur-

rent best value (for the  i-th  component) having radius r (line 

New optimisation methodologies based on using numerical se-
quences generated by means of a chaotic map (Li and Jiang, 
1997; Choi and Lee, 1998; Tavazoei and Haeri, 2007; Yang, Li 
and Cheng, 2007; Velásquez, 2010) have emerged recently 
instead of random number generators. They are called chaos 
optimisation algorithms (COA).   

This paper was aimed at introducing the R package R-
chaosoptimiser, which is a programme for solving nonlinear 

optimisation problems stated as f (x)  subject to L  ≤ x ≤ U , 
where x, L, U are vectors of n x 1, and f ()  is a nonlinear func-
tion, so that f: Rn → R .  Our programme consisted of four build-
ing blocks: 

1. The first wave carrier or basic chaos optimising algorithm (Li 
and Jiang (1997); 

2. The enhanced cyclical coordinate search method 
(Velásquez, 2010); 

3. Li and Jiang’s second wave carrier algorithm (1997); and 

4. The BFGS gradient-based optimisation algorithm, which is 
used within any of the previous blocks for enhancing the 
current best solution (Yang, Li and Cheng, 2007; Velásquez, 
2010). 

Using chaos optimisation algorithms (Blocks 1, 2 and 3) allows a 
tool to avoid local optimal points and converge towards an over-
all optimum within a predefined search domain. Using the BFGS 
algorithm is not mandatory, so that its implementation was able 
to optimise problems involving objective function discontinuities. 
However, the BFGS algorithm is a powerful local search method, 
meaning that it is used to exploit current knowledge about an 
objective function, thereby improving a current solution. 

Velásquez (2011) has analysed basic chaos optimising algorithm 
and first and second wave carrier patterns, with the optional use 
of gradient-based techniques, when four well-known nonlinear 
benchmark functions were optimised. The author concluded that 
the first wave carrier was unnecessary and the successful algo-
rithm was due to a combination of second wave carrier method-
ology and gradient-based optimisation. 

Velásquez (2010) has presented a new chaos optimisation algo-
rithm for which the sampling mechanism was based on coordi-
nate search methods and classical chaos optimisation algorithms; 
a gradient-based technique was used for refining the final solu-
tion. Evidence reported by Velásquez (2010) has indicated that 
the methodology so proposed was a strong alternative to other 
heuristic methods. 

Chaotic maps 

Chaos is understood to be complex, bounded and unstable be-
haviour caused by a simple deterministic nonlinear system or 
chaotic map so that generated sequences are quasi-random, 
irregular, ergodic, semi-stochastic and very sensitive to an initial 
value (Strogatz, 2000). Using chaotic sequences instead of quasi-
random number generators seems to be a powerful strategy for 
improving many traditional heuristic algorithms and their main 
use is to avoid local minima points (Caponetto, Fortuna, Fazzino 
and Xibilia, 2003). The following chaotic maps were used in the 
R-chaosoptimiser programme:  

 

 !+1 = # ! (1 −  ! ),   for 0 < # ≤ 4 (1) 

 !+1 = sin (2/ ! ) (2) 

 !+1 = sin (*  ! ) (3) 

 !+1 = 2 min( ! , 1 −  ! ) (4) 

01 initialize0, 123. 41, 123. 42, fcw.BFGS 
02 forforforfor(21 = 1, … , 123. 41) { 
03  letletletletnew.min.found = FALSEFALSEFALSEFALSE    
04  forforforfor(22 = 1, … , 123. 42) { 
05   letletletletA2 = B + 0(C − B) 
06   ifififif(21 == 1)letletletletAE = A2  
07   letletletletΔ1 = 1(H2) − 1(HE ) 
08   ifififif(Δ1 < 0){ 
09    letletletletAE = A2  
10    letletletletnew.min.found = TRUETRUETRUETRUE    
11   } 
12   letletletlet0 = M(0) 
13  } 
14  ifififif (fcw.BFGS == TRUETRUETRUETRUE&&new.min.found == TRUETRUETRUETRUE),letletletletAE =  O(AE ) 
15 }# end of algorithm 
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09). >This sampling was repeated ccs.K2 times (line 06), each 
time obtaining a better point and thus updating the best current 
solution (from lines 11 to 13). The complete cycle was repeated 

ccs.K1 times (line 02).  

− Straight: 

− Geometric: 

 

 

− Reciprocal: 

− Logarithmic: 

− None: a constant radius was used.  

Figure 2. Enhanced cyclical coordinate search 

Second carrier wave (scw) algorithm 

The second wave carrier algorithm (Figure 3) consisted of a local 

search around Xl. γ is a chaotic sequence vector and r is a scalar 
parameter related to the search radius around Xl.   r is calcu-
lated in each iteration by means of function Q() (line 04). Each 
candidate point was generated inside  hypercube [xl - r, xl + r],  

Each time a cycle was completed on the whole axis, the current 
best solution was optionally refined using the BFGS gradient-
based optimisation algorithm (line 17). The following methods 

were provided for calculating r: 

R =  22S. TU!UVUWE +  (22S. T1U!WE −  22S. TU!UVUWE)/(22S. X1  −  1)  ∗  (Z1  −  1) 

R =  22S. TU!UVUWE ∗  [ 22S. T1U!WE
22S. TU!UVUWE\

(Z1  − 1)
22S .X1  – 1

 

(5) 

(6) 

R =  22S. TU!UVUWE ∗  22S. T1U!WE ∗  (22S. X1  −  1)
22S. T1U!WE ∗  22S. X1  −  22S. TU!UVUWE +  (22S. TU!UVUWE −  22S. T1U!WE)  ∗  Z1

 
(7) 

(8) 

R
=  22S. TU!UVUWE ∗  22S. T1U!WE ∗  (log(22S. X1 + 1)  −  E^O(2))

22S. T1U!WE ∗  log(22S. X1  +  1) −  22S. TU!UVUWE ∗  log 2 +  (22S. TU!UVUWE −  22S. T1U!WE) ∗  log(Z1  +  1)

01 initialize0, 22S. X1 ,  22S. X2, 22S. _`ab, 22S. TU!UVUWE, 22S. T1U!WE, 22S. cdVℎ^f 
02 forforforfor(Z1 = 1, … , 22S. X1) { 
03  letletletlet!d3. gU!. 1^h!f = ijBkl  
04  letletletletR = m(Z1 , 22S. TU!UVUWE, 22S. T1U!WE, 22S. cdVℎ^f) 
05  for for for for (i = 1, …,n)  { 
06   forforforfor (Z2 = 1, … , 22S. X2)  { 
07    letletletletγ(U) = M(γ(U)) 
08    letletletletA2 = AE  
09    letletletletH2 (U) = Hc(U) + R [2 γ(U) − 1] 
10    letletletletΔ1 = 1(A2 ) − 1(AE ) 
11    ifififif(Δ1 < 0) { 
12     letletletletAE = A2  
13     letletletlet!d3. gU!. 1^h!f = noCl 
14    } 
15   } 
16  } 
17  ifififif(22S. _`ab == noCl&& !d3. gU!. 1^h!f == noCl), letletletletAE =  O(AE) 
18 }# end of algorithm 

since each component of γ (with domain [0, 1]) was mapped to 

interval [-r, r]. The local optima was updated each time a better 
point was found (lines 08 to 11) so that the procedure continued 
around the new optimum. The search procedure was similar to 
the simulated annealing technique where ascending movements 
were not allowed. The following methods were provided for 

calculating r : 

− Straight: 

 

− Geometric: 

 

R =  S23. TU!UVUWE +  (S23. T1U!WE −  S23. TU!UVUWE)/(S23. c1  −  1)  ∗  (g1  −  1) (9) 

R =  S23. TU!UVUWE ∗  [ S23. T1U!WE
S23. TU!UVUWE\

(g 1  − 1)
S23 .c1  – 1

 (10) 
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Example 

An example of using the R-chaosoptimiser programme with 
Rosenbrock function minimisation is given below: 

 

 

This has been plotted in Figure 4. The above function would be 
generalised to n-dimensions by means of the following transfor-
mation: 

 

 
A function was first created for optimising (14): 

> Rosenbrock.fcn <- 

+ function(z) { 

+   s = 0 

+   for (k in 1:(length(z)-1)) { 

+     x = z[k] 

+     y = z[k+1] 

+     s = s + 100 * (y^2 - x)^2 + (1 - x)^2  

+   }       

+   return(s) 

+ } 

The second carrier wave algorithm was just applied for optimis-
ing this function; R-chaosoptimiser was then used using this 
function: 

> r = rchaosoptimiser(fn = Rosenbrock.fcn, N = 2, LB = 
-10, UB = 10, 

+   chaos.map = 2, fcw.C1 = 0, fcw.C2 = 0, ccs.K1 = 0, 
ccs.K2 = 0, 

+   scw.M1 = 10, scw.M2 = 100, scw.Rinitial   = 0.2, 
scw.Rfinal = 0.001, 

+   scw.Rmethod = "straight", scw.BFGS = FALSE, quiet = 
FALSE) 

Figure 4. Rosenbrock’s function in equation (13) 
 

The first argument in this example was the function to be opti-
mised, the second argument was the number of objective func-
tion dimensions, the third and fourth arguments were the lower 
and upper limits for independent variables, the fifth argument 
was the logistic map and the remaining arguments were the 
values for the constants described in the algorithms shown in 
Figures 1, 2 and 3. The last argument produced a verbose output 
for the current run. 

The output produced by the above was as follows: 

11/25/09 14:34:18  

 

− Reciprocal: 

 

 

− Logarithmic: 

 

− None: a constant radius was used.  

 

 

 

 

Figure 3. Second wave carrier 
algorithm 

 

 

 

 

R =  22S. TU!UVUWE ∗  22S. T1U!WE ∗  (22S. X1  −  1)
22S. T1U!WE ∗  22S. X1  −  22S. TU!UVUWE +  (22S. TU!UVUWE −  22S. T1U!WE)  ∗  Z1

 
(11) 

R
=  S23. TU!UVUWE ∗  S23. T1U!WE ∗  (log(S23. c1 + 1) −  E^O(2))

S23. T1U!WE ∗  log(S23. c1  +  1) −  S23. TU!UVUWE ∗  log 2 +  (S23. TU!UVUWE −  S23. T1U!WE) ∗  log(g1  +  1)
(12) 

01 initialize  S23. c1 , S23. c2, S23. TU!UVUWE, S23. T1U!WE, S23. cdVℎ^f, 0 
02 forforforfor(g1 = 1, … , S23. c1) { 
03  letletletlet!d3. gU!. 1^h!f = ijBkl  
04  letletletletR = m(g1 , S23. TU!UVUWE, S23. T1U!WE, S23. cdVℎ^f) 
05  forforforfor(g2 = 1, … , S23. c2) { 
06   letletletletA2 = AE + R(20 − 1) 
07   letletletletΔ1 = 1(A2 ) − 1(AE ) 
08   ifififif(Δ1 < 0) { 
09    letletletletAE = A2  
10    letletletlet!d3. gU!. 1^h!f = noCl 
11   } 
12  } 
13  letletletlet0 = M(0) 
14  ifififif(S23. _`ab == noCl&& 
      ( !d3. gU!. 1^h!f == noCl  || (21 == 1 &&22 == 1))), letletletletAE =  O(AE ) 
15 }# end of algorithm 

1(H, q) = 100 (q2 − H)2 + (1 − H)2 (13) 

O(r) = s 1(r[U], r[U + 1])
!−1

U=1
 (14) 
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Limitsfor variables 

 

-1.00000000E+01  <= x[  1 ] <=  1.00000000E+01  

-1.00000000E+01  <= x[  2 ] <=  1.00000000E+01  

 

Chaos map        =  logistic-map 

------------------------- First carrier wave parameters 
------------------------ 

 fcw.C1         =  0 

 fcw.C2         =  0 

fcw.BFGS=  FALSE 

--------------------------- Cyclical coordinate search 
------------------------- 

 ccs.K1         =  0 

 ccs.K2         =  0 

ccs.Rinitial=  0.2 

ccs.Rfinal=  1e-04  

ccs.Rmethod=  straight 

ccs.BFGS=  FALSE 

------------------------- Second carrier wave parame-
ters ----------------------- 

 scw.M1         =  10 

 scw.M2         =  100 

scw.Rinitial=  0.2 

scw.Rfinal=  0.001 

scw.Rmethod=  straight 

scw.BFGS=  FALSE 

 

 

Optimal value for objective function:  0.01066103  

 

Optimal values for variables 

 

x[  1 ] :  +9.057025e-01  

x[  2 ] :  +9.538912e-01  

 

The printed output consisted of the following blocks: run date 
and time, the variables’ limits, the chaos map used, the algo-
rithm’s parameters’ values, the objective function optimal value 
and the  variables’ optimal values. 

The search procedure was refined by using the BFGS algorithm 
inside the second carrier wave algorithm, as follows:  

> r = rchaosoptimiser(fn = Rosenbrock.fcn, N = 2, LB = 
-10, UB = 10, 

+   chaos.map = 2, fcw.C1 = 0, fcw.C2 = 0, ccs.K1 = 0, 
ccs.K2 = 0, 

+   scw.M1 = 10, scw.M2 = 100, scw.Rinitial   = 0.2, 
scw.Rfinal = 0.001, 

+   scw.Rmethod = "straight", scw.BFGS = TRUE, quiet = 
FALSE) 

 

The output generated by rchaosoptimiser was: 

11/25/09 21:32:43  

 

Limits for variables 

 

-1.00000000E+01  <= x[  1 ] <=  1.00000000E+01  

-1.00000000E+01  <= x[  2 ] <=  1.00000000E+01  

 

Chaos map        =  logistic-map 

------------ First carrier wave parameters ------------ 

 fcw.C1         =  0 

 fcw.C2         =  0 

fcw.BFGS=  FALSE 

------------- Cyclical coordinate search -------------- 

 ccs.K1         =  0 

 ccs.K2         =  0 

ccs.Rinitial=  0.2 

ccs.Rfinal=  1e-04  

ccs.Rmethod=  straight 

ccs.BFGS=  FALSE 

------------ Second carrier wave parameters ----------- 

 scw.M1         =  10 

 scw.M2         =  100 

scw.Rinitial=  0.2 

scw.Rfinal=  0.001 

scw.Rmethod=  straight 

scw.BFGS=  TRUE 

 

Optimal value for objective function:  1.008543e-08  

 

Optimal values for variables 

 

x[  1 ] :  +9.999000e-01  

x[  2 ] :  +9.999495e-01  

 

Conclusions  

This paper has discussed R-chaosoptimiser, an R language pack-
age for nonlinear optimisation based on gradient techniques and 
chaos optimisation algorithms.  Our implementation was based 
on three building blocks which could be executed alone or com-
bined: the first carrier wave algorithm, the chaos-based cyclical 
coordinate search method and the second wave carrier algo-
rithm. Chaos algorithms are used for defining solution space 
sampling mechanism and allow an algorithm to avoid using local 
optimal points. Gradient-based techniques were used to refine 
the current solution. A user would specify the BFGS algorithm for 
refining the current best solution inside the previous building 
blocks. Using the BFGS algorithm is not mandatory, so that our 
implementation was able to optimise problems involving discon-
tinuities in the objective function.   
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