
INGENIERÍA E INVESTIGACIÓN VOL. 31 No. 3, DECEMBER 2011 (50-55)

 50

Introduction

Solving nonlinear optimisation complex problems represents an
important practical and research field. Developing algorithms
and practical implementation have led to applications in mathe-
matics, engineering, economics and computer sciences. Optimi-
sation is usually difficult due to (Pardalos and Resende, 2002):

− Objective function complexity: analytical calculation of deri-
vates is difficult if not impossible; moreover, even though
derivates may be available, there are no mathematical for-
mulas for estimating the overall optimum;

− Restrictions imposed on the problem: these are related to a
feasible solution’s complexity. Optimisation methods may be
able to search inside such region and to discard unfeasible
solutions;

− The presence of so-called multiple local minima: this is re-
lated to the complexity of the surface generated by the ob-

jective function, so that it is very difficult to evade local opti-
mal points; and

− The limitations of many optimisation methodologies: or, in
other words, how the methods are affected by the previous
aspects and in which particular conditions a specific method
is able to find good solutions within the search space.

The development, testing and implementation of heuristic-based
optimisation algorithms is an important research field, especially
for those based on stochastic optimisation (Pardalos and Re-
sende, 2002). Well-known examples would include classical
paradigms such as simulated annealing (Kirkpatrick, Gelatt and
Vecchi, 1983), random search (Matyas, 1965; Solis and Wets,
1981) and genetic algorithms (Goldberg, 1989). However, new
methodologies have emerged such as artificial immune systems
(Farmer, Packard and Perelson, 1986; Bersiniand Varela, 1991),
the fast clonal algorithm (Khilwani, Prakash and Shankar, 2008)
and harmony search (Lee and Geem, 2005).

1 PhD. in Engineering, Energy Systems Area, Universidad Nacional de Colombia, Medellín, Colombia (2009); Masters in Systems Engineering , Universidad Nacional de
Colombia, Medellín, Colombia (1997); Associate professor, Escuela de Sistemas, Facultad de Minas, Universidad Nacional de Colombia.. Director of the Applied Com-
puting Research Group, Facultad de Minas, Universidad Nacional de Colombia. jdvelasq@ unal.edu.co

RRRR----chaosoptimiser: an optimiser for unconstrained global nonlinear opti-chaosoptimiser: an optimiser for unconstrained global nonlinear opti-chaosoptimiser: an optimiser for unconstrained global nonlinear opti-chaosoptimiser: an optimiser for unconstrained global nonlinear opti-

misation written in R language for statistical computingmisation written in R language for statistical computingmisation written in R language for statistical computingmisation written in R language for statistical computing

RRRR----chaosoptimiserchaosoptimiserchaosoptimiserchaosoptimiser: : : : un optimizador global no lineal sin restricciones escrito en un optimizador global no lineal sin restricciones escrito en un optimizador global no lineal sin restricciones escrito en un optimizador global no lineal sin restricciones escrito en

lenguaje R para el calculo estadísticolenguaje R para el calculo estadísticolenguaje R para el calculo estadísticolenguaje R para el calculo estadístico

Juan David Velásquez H.1

ABSTRACT

This paper discusses using R-chaosoptimiser, an R language package for nonlinear optimisation based on gradient tech-
niques and chaos optimisation algorithms. Its implementation was based on three building blocks which could be executed
alone or un combination: the first carrier wave algorithm, the chaos-based cyclical coordinate search method and the sec-
ond wave carrier algorithm. Using chaos optimisation algorithms allows the tool to break away from local optimal points
and converge towards an overall optimum inside a predefined search domain. Within the previous components, a user
would be specifying the BFGS algorithm for refining the current best solution. Using the BFGS algorithm is not mandatory,
so that its implementation was able to optimise problems having objective function discontinuities. However, the BFGS algo-
rithm is a powerful local search method, meaning that it is used to exploit current knowledge about an objective function for
improving a current solution; an explanatory example is presented.

Keywords: Keywords: Keywords: Keywords: optimisation, R language, gradient-based method, chaos, algorithm.

RESUMEN

En este artículo se discute la implementación de rchaosoptimizer, un paquete de R para la optimización no lineal basada en
técnicas de gradiente y algoritmos de optimización caóticos. La implementación está basada en tres bloques constructivos
que pueden ser ejecutados solos o combinados: 1) el algoritmo de primera onda; 2) el método de búsqueda por coorde-
nadas cíclicas basado en caos; y, 3) el algoritmo de segunda onda. El uso de algoritmos de optimización caóticos permite
a la herramienta implementada escapar de puntos óptimos locales y converger al óptimo global dentro del domino predefi-
nido de búsqueda. Dentro de los componentes previos, el usuario podría especificar una llamada al algoritmo BFGS para
refinar la solución actual. El uso del algoritmo BFGS no es obligatorio, tal que la implementación es capaz de optimizar
problemas con discontinuidades en la función objetivo. Sin embargo, el algoritmo BFGS es un método poderoso de
búsqueda local, tal que, él es usado para explotar el conocimiento sobre la función objetivo para mejorar la solución ac-
tual. Finalmente, en ejemplo exploratorio es presentado.

Palabras clave: Palabras clave: Palabras clave: Palabras clave: optimización, Lenguaje R, métodos basados en gradiente, caos, algoritmos.

Received: January 25th 2010Received: January 25th 2010Received: January 25th 2010Received: January 25th 2010
Accepted: October 6th 2011Accepted: October 6th 2011Accepted: October 6th 2011Accepted: October 6th 2011

VELÁSQUEZ H.

 INGENIERÍA E INVESTIGACIÓN VOL. 31 No. 3, DECEMBER 2011 (50-55) 51

1. A logistic map:

2. A new chaotic map:

3. A sine map:

4. A tent map:

Algorithms used in this work

This section describes optimisation algorithms used in the R-
chaosoptimiser programme.

First carrier wave (fcw) algorithm

The so-called first carrier wave algorithm is the most elementary

procedure for generating candidate points xc inside a feasible re-
gion; optimum, xl, is the candidate point having the lowest value
for f (xc). The process is schematised in Figure 1. Candidate
points xc (line 05) were generated in domain [L, U] by means

of chaotic sequence vector γ; each component of γ, γ(i) was
thus mapped linearly to interval [L(i), U(i)]. It has been as-
sumed in Figure 1 that the components of γ were restricted to
interval [0, 1] as occurs for the logistic map. A new chaotic
sequence vector was generated at each iteration using chaotic

map H () (line 12); for example, each component was generated
using γ(i) = 4γ(i) [1—γ(i)] , if H () were the logistic map. The
current local optimum xl was saved in line 09. In addition,
every f cw.C2 iterations the current local optimum would be
refined by means of a gradient-based optimisation algorithm

(line 14). In this case, g() was the implementation of the BFGS
algorithm in R language optim function. The complete process

was repeated f cw. C1 times (from line 02 to line 15).

Figure 1. First carrier wave algorithm

Enhanced cyclical coordinate search (CCS) algorithm

Objective function f (x) was minimised along a unitary
vector coinciding with one of the coordinates axes in the en-
hanced cyclical coordinate search algorithm (Figure 2) proposed
by Velásquez (2010). A new candidate point was obtained from

the current best solution (line 08) by changing the i-th compo-
nent for a random value inside the interval centred on the cur-

rent best value (for the i-th component) having radius r (line

New optimisation methodologies based on using numerical se-
quences generated by means of a chaotic map (Li and Jiang,
1997; Choi and Lee, 1998; Tavazoei and Haeri, 2007; Yang, Li
and Cheng, 2007; Velásquez, 2010) have emerged recently
instead of random number generators. They are called chaos
optimisation algorithms (COA).

This paper was aimed at introducing the R package R-
chaosoptimiser, which is a programme for solving nonlinear

optimisation problems stated as f (x) subject to L ≤ x ≤ U ,
where x, L, U are vectors of n x 1, and f () is a nonlinear func-
tion, so that f: Rn → R . Our programme consisted of four build-
ing blocks:

1. The first wave carrier or basic chaos optimising algorithm (Li
and Jiang (1997);

2. The enhanced cyclical coordinate search method
(Velásquez, 2010);

3. Li and Jiang’s second wave carrier algorithm (1997); and

4. The BFGS gradient-based optimisation algorithm, which is
used within any of the previous blocks for enhancing the
current best solution (Yang, Li and Cheng, 2007; Velásquez,
2010).

Using chaos optimisation algorithms (Blocks 1, 2 and 3) allows a
tool to avoid local optimal points and converge towards an over-
all optimum within a predefined search domain. Using the BFGS
algorithm is not mandatory, so that its implementation was able
to optimise problems involving objective function discontinuities.
However, the BFGS algorithm is a powerful local search method,
meaning that it is used to exploit current knowledge about an
objective function, thereby improving a current solution.

Velásquez (2011) has analysed basic chaos optimising algorithm
and first and second wave carrier patterns, with the optional use
of gradient-based techniques, when four well-known nonlinear
benchmark functions were optimised. The author concluded that
the first wave carrier was unnecessary and the successful algo-
rithm was due to a combination of second wave carrier method-
ology and gradient-based optimisation.

Velásquez (2010) has presented a new chaos optimisation algo-
rithm for which the sampling mechanism was based on coordi-
nate search methods and classical chaos optimisation algorithms;
a gradient-based technique was used for refining the final solu-
tion. Evidence reported by Velásquez (2010) has indicated that
the methodology so proposed was a strong alternative to other
heuristic methods.

Chaotic maps

Chaos is understood to be complex, bounded and unstable be-
haviour caused by a simple deterministic nonlinear system or
chaotic map so that generated sequences are quasi-random,
irregular, ergodic, semi-stochastic and very sensitive to an initial
value (Strogatz, 2000). Using chaotic sequences instead of quasi-
random number generators seems to be a powerful strategy for
improving many traditional heuristic algorithms and their main
use is to avoid local minima points (Caponetto, Fortuna, Fazzino
and Xibilia, 2003). The following chaotic maps were used in the
R-chaosoptimiser programme:

 !+1 = # ! (1 − !), for 0 < # ≤ 4 (1)

 !+1 = sin (2/ !) (2)

 !+1 = sin (* !) (3)

 !+1 = 2 min(! , 1 − !) (4)

01 initialize0, 123. 41, 123. 42, fcw.BFGS
02 forforforfor(21 = 1, … , 123. 41) {
03 letletletletnew.min.found = FALSEFALSEFALSEFALSE
04 forforforfor(22 = 1, … , 123. 42) {
05 letletletletA2 = B + 0(C − B)
06 ifififif(21 == 1)letletletletAE = A2
07 letletletletΔ1 = 1(H2) − 1(HE)
08 ifififif(Δ1 < 0){
09 letletletletAE = A2
10 letletletletnew.min.found = TRUETRUETRUETRUE
11 }
12 letletletlet0 = M(0)
13 }
14 ifififif (fcw.BFGS == TRUETRUETRUETRUE&&new.min.found == TRUETRUETRUETRUE),letletletletAE = O(AE)
15 }# end of algorithm

R-CHAOSOPTIMISER: AN OPTIMISER FOR UNCONSTRAINED GLOBAL NONLINEAR OPTIMISATION WRITTEN IN R LANGUAGE FOR STATISTICAL COMPUTING

52 INGENIERÍA E INVESTIGACIÓN VOL. 31 No. 3, DECEMBER 2011 (50-55)

09). >This sampling was repeated ccs.K2 times (line 06), each
time obtaining a better point and thus updating the best current
solution (from lines 11 to 13). The complete cycle was repeated

ccs.K1 times (line 02).

− Straight:

− Geometric:

− Reciprocal:

− Logarithmic:

− None: a constant radius was used.

Figure 2. Enhanced cyclical coordinate search

Second carrier wave (scw) algorithm

The second wave carrier algorithm (Figure 3) consisted of a local

search around Xl. γ is a chaotic sequence vector and r is a scalar
parameter related to the search radius around Xl. r is calcu-
lated in each iteration by means of function Q() (line 04). Each
candidate point was generated inside hypercube [xl - r, xl + r],

Each time a cycle was completed on the whole axis, the current
best solution was optionally refined using the BFGS gradient-
based optimisation algorithm (line 17). The following methods

were provided for calculating r:

R = 22S. TU!UVUWE + (22S. T1U!WE − 22S. TU!UVUWE)/(22S. X1 − 1) ∗ (Z1 − 1)

R = 22S. TU!UVUWE ∗ [22S. T1U!WE
22S. TU!UVUWE\

(Z1 − 1)
22S .X1 – 1

(5)

(6)

R = 22S. TU!UVUWE ∗ 22S. T1U!WE ∗ (22S. X1 − 1)
22S. T1U!WE ∗ 22S. X1 − 22S. TU!UVUWE + (22S. TU!UVUWE − 22S. T1U!WE) ∗ Z1

(7)

(8)

R
= 22S. TU!UVUWE ∗ 22S. T1U!WE ∗ (log(22S. X1 + 1) − E^O(2))

22S. T1U!WE ∗ log(22S. X1 + 1) − 22S. TU!UVUWE ∗ log 2 + (22S. TU!UVUWE − 22S. T1U!WE) ∗ log(Z1 + 1)

01 initialize0, 22S. X1 , 22S. X2, 22S. _`ab, 22S. TU!UVUWE, 22S. T1U!WE, 22S. cdVℎ^f
02 forforforfor(Z1 = 1, … , 22S. X1) {
03 letletletlet!d3. gU!. 1^h!f = ijBkl
04 letletletletR = m(Z1 , 22S. TU!UVUWE, 22S. T1U!WE, 22S. cdVℎ^f)
05 for for for for (i = 1, …,n) {
06 forforforfor (Z2 = 1, … , 22S. X2) {
07 letletletletγ(U) = M(γ(U))
08 letletletletA2 = AE
09 letletletletH2 (U) = Hc(U) + R [2 γ(U) − 1]
10 letletletletΔ1 = 1(A2) − 1(AE)
11 ifififif(Δ1 < 0) {
12 letletletletAE = A2
13 letletletlet!d3. gU!. 1^h!f = noCl
14 }
15 }
16 }
17 ifififif(22S. _`ab == noCl&& !d3. gU!. 1^h!f == noCl), letletletletAE = O(AE)
18 }# end of algorithm

since each component of γ (with domain [0, 1]) was mapped to

interval [-r, r]. The local optima was updated each time a better
point was found (lines 08 to 11) so that the procedure continued
around the new optimum. The search procedure was similar to
the simulated annealing technique where ascending movements
were not allowed. The following methods were provided for

calculating r :

− Straight:

− Geometric:

R = S23. TU!UVUWE + (S23. T1U!WE − S23. TU!UVUWE)/(S23. c1 − 1) ∗ (g1 − 1) (9)

R = S23. TU!UVUWE ∗ [S23. T1U!WE
S23. TU!UVUWE\

(g 1 − 1)
S23 .c1 – 1

 (10)

VELÁSQUEZ H.

 INGENIERÍA E INVESTIGACIÓN VOL. 31 No. 3, DECEMBER 2011 (50-55) 53

Example

An example of using the R-chaosoptimiser programme with
Rosenbrock function minimisation is given below:

This has been plotted in Figure 4. The above function would be
generalised to n-dimensions by means of the following transfor-
mation:

A function was first created for optimising (14):

> Rosenbrock.fcn <-

+ function(z) {

+ s = 0

+ for (k in 1:(length(z)-1)) {

+ x = z[k]

+ y = z[k+1]

+ s = s + 100 * (y^2 - x)^2 + (1 - x)^2

+ }

+ return(s)

+ }

The second carrier wave algorithm was just applied for optimis-
ing this function; R-chaosoptimiser was then used using this
function:

> r = rchaosoptimiser(fn = Rosenbrock.fcn, N = 2, LB =
-10, UB = 10,

+ chaos.map = 2, fcw.C1 = 0, fcw.C2 = 0, ccs.K1 = 0,
ccs.K2 = 0,

+ scw.M1 = 10, scw.M2 = 100, scw.Rinitial = 0.2,
scw.Rfinal = 0.001,

+ scw.Rmethod = "straight", scw.BFGS = FALSE, quiet =
FALSE)

Figure 4. Rosenbrock’s function in equation (13)

The first argument in this example was the function to be opti-
mised, the second argument was the number of objective func-
tion dimensions, the third and fourth arguments were the lower
and upper limits for independent variables, the fifth argument
was the logistic map and the remaining arguments were the
values for the constants described in the algorithms shown in
Figures 1, 2 and 3. The last argument produced a verbose output
for the current run.

The output produced by the above was as follows:

11/25/09 14:34:18

− Reciprocal:

− Logarithmic:

− None: a constant radius was used.

Figure 3. Second wave carrier
algorithm

R = 22S. TU!UVUWE ∗ 22S. T1U!WE ∗ (22S. X1 − 1)
22S. T1U!WE ∗ 22S. X1 − 22S. TU!UVUWE + (22S. TU!UVUWE − 22S. T1U!WE) ∗ Z1

(11)

R
= S23. TU!UVUWE ∗ S23. T1U!WE ∗ (log(S23. c1 + 1) − E^O(2))

S23. T1U!WE ∗ log(S23. c1 + 1) − S23. TU!UVUWE ∗ log 2 + (S23. TU!UVUWE − S23. T1U!WE) ∗ log(g1 + 1)
(12)

01 initialize S23. c1 , S23. c2, S23. TU!UVUWE, S23. T1U!WE, S23. cdVℎ^f, 0
02 forforforfor(g1 = 1, … , S23. c1) {
03 letletletlet!d3. gU!. 1^h!f = ijBkl
04 letletletletR = m(g1 , S23. TU!UVUWE, S23. T1U!WE, S23. cdVℎ^f)
05 forforforfor(g2 = 1, … , S23. c2) {
06 letletletletA2 = AE + R(20 − 1)
07 letletletletΔ1 = 1(A2) − 1(AE)
08 ifififif(Δ1 < 0) {
09 letletletletAE = A2
10 letletletlet!d3. gU!. 1^h!f = noCl
11 }
12 }
13 letletletlet0 = M(0)
14 ifififif(S23. _`ab == noCl&&
 (!d3. gU!. 1^h!f == noCl || (21 == 1 &&22 == 1))), letletletletAE = O(AE)
15 }# end of algorithm

1(H, q) = 100 (q2 − H)2 + (1 − H)2 (13)

O(r) = s 1(r[U], r[U + 1])
!−1

U=1
 (14)

R-CHAOSOPTIMISER: AN OPTIMISER FOR UNCONSTRAINED GLOBAL NONLINEAR OPTIMISATION WRITTEN IN R LANGUAGE FOR STATISTICAL COMPUTING

54 INGENIERÍA E INVESTIGACIÓN VOL. 31 No. 3, DECEMBER 2011 (50-55)

Limitsfor variables

-1.00000000E+01 <= x[1] <= 1.00000000E+01

-1.00000000E+01 <= x[2] <= 1.00000000E+01

Chaos map = logistic-map

------------------------- First carrier wave parameters

 fcw.C1 = 0

 fcw.C2 = 0

fcw.BFGS= FALSE

--------------------------- Cyclical coordinate search

 ccs.K1 = 0

 ccs.K2 = 0

ccs.Rinitial= 0.2

ccs.Rfinal= 1e-04

ccs.Rmethod= straight

ccs.BFGS= FALSE

------------------------- Second carrier wave parame-
ters -----------------------

 scw.M1 = 10

 scw.M2 = 100

scw.Rinitial= 0.2

scw.Rfinal= 0.001

scw.Rmethod= straight

scw.BFGS= FALSE

Optimal value for objective function: 0.01066103

Optimal values for variables

x[1] : +9.057025e-01

x[2] : +9.538912e-01

The printed output consisted of the following blocks: run date
and time, the variables’ limits, the chaos map used, the algo-
rithm’s parameters’ values, the objective function optimal value
and the variables’ optimal values.

The search procedure was refined by using the BFGS algorithm
inside the second carrier wave algorithm, as follows:

> r = rchaosoptimiser(fn = Rosenbrock.fcn, N = 2, LB =
-10, UB = 10,

+ chaos.map = 2, fcw.C1 = 0, fcw.C2 = 0, ccs.K1 = 0,
ccs.K2 = 0,

+ scw.M1 = 10, scw.M2 = 100, scw.Rinitial = 0.2,
scw.Rfinal = 0.001,

+ scw.Rmethod = "straight", scw.BFGS = TRUE, quiet =
FALSE)

The output generated by rchaosoptimiser was:

11/25/09 21:32:43

Limits for variables

-1.00000000E+01 <= x[1] <= 1.00000000E+01

-1.00000000E+01 <= x[2] <= 1.00000000E+01

Chaos map = logistic-map

------------ First carrier wave parameters ------------

 fcw.C1 = 0

 fcw.C2 = 0

fcw.BFGS= FALSE

------------- Cyclical coordinate search --------------

 ccs.K1 = 0

 ccs.K2 = 0

ccs.Rinitial= 0.2

ccs.Rfinal= 1e-04

ccs.Rmethod= straight

ccs.BFGS= FALSE

------------ Second carrier wave parameters -----------

 scw.M1 = 10

 scw.M2 = 100

scw.Rinitial= 0.2

scw.Rfinal= 0.001

scw.Rmethod= straight

scw.BFGS= TRUE

Optimal value for objective function: 1.008543e-08

Optimal values for variables

x[1] : +9.999000e-01

x[2] : +9.999495e-01

Conclusions

This paper has discussed R-chaosoptimiser, an R language pack-
age for nonlinear optimisation based on gradient techniques and
chaos optimisation algorithms. Our implementation was based
on three building blocks which could be executed alone or com-
bined: the first carrier wave algorithm, the chaos-based cyclical
coordinate search method and the second wave carrier algo-
rithm. Chaos algorithms are used for defining solution space
sampling mechanism and allow an algorithm to avoid using local
optimal points. Gradient-based techniques were used to refine
the current solution. A user would specify the BFGS algorithm for
refining the current best solution inside the previous building
blocks. Using the BFGS algorithm is not mandatory, so that our
implementation was able to optimise problems involving discon-
tinuities in the objective function.

Bibliography

Bersini, H., Varela, F.J.,Hints for adaptive problem solving
gleaned from immune networks.,Lecture Notes in Computer
Science, Vol. 496, 1991, pp. 343-354.

Caponetto, R., Fortuna, L.,Fazzino, S.,Xibilia, M. G., Chaotic
sequences to improve the performance of evolutionary algo-
rithms., IEEE Transactions on Evolutionary Computation, Vol.
7, No. 3, 2003, pp. 289-304.

Choi, C., Lee, J.J.,Chaotic local search algorithm., Artificial Life
and Robotics, Vol. 2, No. 1, 1998, pp. 41-47.

Farmer, J.D., Packard, N.,Perelson, A., The immune system,
adaptation and machine learning.,Physica D, Vol. 2,
1986,pp. 187-204.

Lee, K.S.,Geem, Z.W., A new meta-heuristic algorithm for con-
tinuous engineering optimization: harmony search theory and
practice., Computer Methods in Applied Mechanics and
Engineering, Vol. 194, No. 36-38, 2005,pp. 3902-3933.

Li, B., Jiang, W.-S., Chaos optimization method and its applica-
tion., Control Theory and Application, Vol. 14, No. 4, 1997,
pp. 613-615.

Goldberg, D. E., Genetic Algorithms in Search, Optimization and
Machine Learning., Boston, MA, Kluwer Academic Publishers,
1989.

Khilwani, N.,Prakash, A., Shankar, R.,Tiwari, M.K., Fast clonal
algorithm., Engineering Applications of Artificial Intelligence,
Vol. 21, No. 1, 2008, pp. 106-128.

Kirkpatrick, S.,Gelatt, C. D.,Vecchi, M. P., Optimization by simu-
lated annealing., Science, Vol. 220, No. 4598, 1983, pp.
671-680.

Matyas, J., Random optimization., Automation and Remote Con-

VELÁSQUEZ H.

 INGENIERÍA E INVESTIGACIÓN VOL. 31 No. 3, DECEMBER 2011 (50-55) 55

trol, Vol. 26, 1965, pp. 246-253.

Pardalos, P. M.,Resende, M. G. C.,(ed.),Handbook of Applied
Optimization., New York, Oxford University Press, 2002.

Solis, F.J., Wets, J.B., Minimization by random search tech-
niques., Mathematics of Operations Research, Vol. 6, No. 1,
1981, pp. 19-30.

Strogatz, S. H., Nonlinear dynamics and chaos., Massachussetts,
Perseus Publishing, 2000.

Tavazoei, M. S.,Haeri, M., An optimization algorithm based on
chaotic behavior and fractal nature., Journal of Computa-
tional and Applied Mathematics, Vol. 206, No. 2, 2007, pp.

1070-1081.

Velásquez, J. D., An Enhanced Hybrid Chaotic Algorithmusing
Cyclic Coordinate Search and Gradient Techniques., Revista
de Ingeniería, Vol. 32, 2010, pp. 45-53.

Velásquez, J. D., Una introducción a los algoritmos basados en
caos para optimización numérica., Revista Avances en Siste-
mas e Informática, Vol. 8, No. 1, 2011, pp. 51-60.

Yang, D., Li, G., Cheng, G., On the efficiency of chaos optimiza-
tion algorithms for global optimization., Chaos, Solitons and
Fractals, Vol. 34, 2007, pp. 1366-1375.

