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Estimation of voltage sags patterns with k-meagerghm and clustering of
fault zones in high and medium voltage grids

Estimacion de patrones de hundimientos en tensigrecalgoritmo k-means y agrupacion
de zonas de falla en redes de alta y media tension

Miguel Romerd, Luis Gallegé and Andrés Pavas

Abstract--This paper proposes k-means clustering algorithnio
identify voltage sags patterns and group fault zorgewith similar
impact in high and medium voltage electric. The prposed
methodology comprises three stages. First, networknodeling
and faults simulation were performed in order to géinformation
about voltage sags caused by faults in the transmsisn system.
Voltage sags patterns were identified at the seconsdtage by
means of a k-means clustering algorithm, allowing he
determination of fault zones. Using the power qualy
measurements data base of the major electricity dify of Bogota,
voltage sags were classified according to the prewsly
determined voltage sags patterns. At the third stag of the
methodology a comparison between simulated and maasd
sags is performed, allowing the identification of &gs caused by
faults.

Keywords. Sags classification, patterns voltage sags, K-mea
algorithm.

Resumen-- En este articulo se propone el uso del algoritmi§-means
para identificar patrones de hundimientos en tensid y agrupar zonas de
falla con impacto similar en redes de alta y meditgension. La metodologia
propuesta comprende tres etapas. Primero, se readizin modelo de la red
de transmisién y distribucion y se simula un barrie de todo tipo de
fallas, obteniendo informacién sobre los hundimiemts en tensién. En
segundo lugar, se identifican patrones de hundimi¢os en tensién usando
el algoritmo k-means y se determinan diferentes zonas de falla para cad
uno de los patrones. Finalmente, se usan los patmes encontrados para
clasificar informacion real de hundimientos en ten®n registrados en
Bogotéa y se establecen las zonas de falla para gospde hundimientos en
tension.

Palabras Clave:Clasificacion de hundimientos en tension, patrones
de hundimientos en tensién, algoritmd-means.

1. INTRODUCTION
Power quality (PQ) assessment is really important foitiesil

and users for identifying some critical areas in their systems
and apply corrective actions to improve the PQ conditions
(Bollen,2003). The identification of transitory disturbances
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such as voltage sags and swells requires continuous
measurement of PQ and techniques for analysis of large
amount of information. According to above, some
methodologies for detection and classification of disturbances
are proposed on (Biswal et al, 2009; Mokhlis et al, 2009;
Romero et al, 2010).

On the other hand, power quality measurement and
assessment has taken relevance since the publication of the
CREG Resolution 024 in 2005 in Colomb&REG 024 2005).

The resolution demands the realization of power quality
measurements on bus bars with voltage levels greater than
1kV have to be performed. In Bogota city 290 power quality
measuring devices were installed on the above mentioned bus
bars of the distribution system, which record disturbarikes |
voltage sags, swells, unbalance and flicker, among others
according to standard IEC 61000-4-30 (IEC 61000-4-30,
2009). That information is sent to a control center, processed
and subsequently reported to the regulatory body CREG
(PAAS-UN, 2009). This institution will establish thelts for
voltage sags from these reports in the near future. The
network operators are interested on assessing voltage sags to
determine their cause, with the aim of exploring suitable
solutions and establish responsibilities between customers and
network operators (Cajamarca et al, 2006).

According to above, this paper proposes a methodology that
consists of four stages:
1. Network modeling. Network distribution system in
115kV and 220kV of the all Colombian system is
modeled using symmetrical components. This model is
made in order to simulate all possible faults. On this
model, any possible localization of faults is simulated as
well.

2. Fault simulation. Different types of faults on several
locations are performed. Information of voltage sags in
the whole electric system of Bogota is obtained for every
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Fig. 1. Disturbing and interest zone in the Colcanbilistribution system.

3. simulated fault. identified like the zone where the occurring faults can cause
4. Ildentification of voltage sags patterns. Voltage sags voltage sags on the bus bars of a specific zone. In order to
information is analyzed by means of principaidentify the disturbing zone, a new matkirltage sags matrix
components analysis, afterwards patterns of voltage sagsalculated from the symmetrical components matrices. This
are identified using the k-means algorithm. The resulteatrix has information about voltage of all bus bars when
are clusters of voltage sags with a respective occurrerfeglt occurs on every bus, as described in (Goswami et al,
zone. 2008).
5. Classification of real voltage sags. Real voltage sags
recorded in Bogota from 2008 to 2010 are classified To calculate the matrix of sags caused by three-phase faults,
resorting to the previously determined clusters. Finallfhe equation for theoretical faults in (Anderson, 1973séexu
zones where real faults occur and cause voltage sags in
Bogota are determined. _
vV, =1-=% (1)
2.NETWORK MODELING
In order to simulate faults on the distribution system and "Vhere: _
find the relationship between voltage sags and faults, a = Vi' Voltage on bus bar i when fault occurs on bus bar
symmetrical components model is developed. Network
distribution system in 115kV and 220kV of the entire
Colombian system (756 bus bars) is modeled in symmetrical ~
components in order to get all possible localization of fanlts . )
the Bogota's electric network (Romero, 2010). This model Fom (1), the matrix of sags is calculated as follow:
consists of positive, negative and zero sequence matrix.

Zy: Mutual impedance between i and k bus bars.
Zy: Self impedance in k bus bar.

Vsags =[1] - Z[DiagZ] ! (2)
The interested zone is defined like the zone in the
Colombian distribution system where voltage sags occurred
by faults are evaluated. In this case, interested zone consist on
the bus bars of the distribution system on Bogota citgecio
on gray contour in Fig. 1.

Where:

Vsags Matrix of voltage sags on all buses when faults
occur on every bus bar.

Z: Positive sequence impedance matrix.

The term [DiagZ] of the equation is a matrix calculated

Not all faults in the Colombian distribution system causg,m e diagonal of the positive sequence impedance matrix
voltage sags in Bogota, therefore disturbing zone is
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Z. For unsymmetrical faults (single, dual-phase and dual-In the next section, simulated voltage sags are grouped

phase to ground) a similar procedure is performed, ascording to the pattern identification. Because of the causal

explained in detail in (Romero et al, 2010). relationship between simulated faults and voltage sags,
different obtained clusters are an indirect classification of

The sags matrix is modified by removing the bus bars faults. That is, faults that occur in different parts inghistem

which faults occur but do not cause voltage sags, especiallyaad generate similar profiles of voltage sags are grouped in

the set of bus bars of interest. The result of this proeeduhe same cluster.

determines which bus bars of the Colombian system are in the

disturbing zone. In the case of this paper, the zone of interesd. DETECTION OF VOLTAGE SAGS PATTERNS BY

is Bogota (gray zone), the disturbing zone are all bus bars i MEANS OF K-MEANS ALGORITHM

Fig. 1, including the bus bars in the gray zone. That show ith the voltage sags information caused by faults, patterns

that many voltage sags observed in the Bogota's system nagyvoltage sags are identified and grouped. Then, the

be caused by faults inside the city or by faults located in thglationship between the location of faults and the occurrence

nearby parts of Colombian system. of such patterns is determined.
K-means algorithm is a tool to put observations into
3. FAULT SIMULATION different clusters according to the level of similarity (Qoeip

To determine the voltage sags profile in every bus insid®01; Ramos, 2009). Some advantages of k-means algorithm
the zone of interest, simulations of faults in all bus lsaxd for clustering data were identified in previous works (Meta
sections lines of the disturbing zone are performed. Farithis al, 2009); (Camargo et al, 2009). An example of that
every 10% of line different types of faults (single, dual andlgorithm is shown in Fig. 2, where observations on two
three phase fault) are simulated in the disturbing zone. THinensions (X,Y) are grouped on three different clusters.
simulation procedure is described in the following:

3r
1. A vector with information regarding faults occurring
on lines is generated (L), containing percentage of line 55"
(%T), type of fault (Tf) and impedance of line (2).
2. Symmetrical components matrices are modified by 2
removing the failed line between nodes A and B.

3. Impedance (Z) of faulted line is split into two,§Zand 15
Z,) according to (%T). = Maximize o
Minimize
inter-data
distances

; . : inter-clust
4. 7, is added to node A of matrices sequence generating disances

a fictitious node C.

5. Z, is added between the fictitious node C and node B 05'
of the sequence matrices.

6. Depending on the type of fault (Tf) voltages of all ) —|_
nodes are calculated when fault occur in fictitious node ‘ ‘ ( ‘ ‘ ‘ ‘
C. 2 15 1 05 0 05 1 15 2

7. The angles of voltages in symmetrical components are X
modified due transformer connections. Fig. 2. Grouping of observations by k-means alganit

8. Values of voltage in symmetrical components are
transformed to values of voltage in phase components.

Fig. 2 shows the performance of k-means method, however
axes units have not a quantitative or physic meaning.

The location of faults and voltage values obtained in each ) _ _
bus in the area of interest can be organized in two arrays!<-means algorithm consists of the follows steps:

cause and effect, as shown in Table 1. o ) ]
1. Aninitial k value of clusters is defined,

Table 1.0rganized information for identifying vajeasags patterns. 2. k centroids (+) are located randomly on the sample
space,
Location and type of Voltage Sags magnitude (pu) 3. distances between observations and centroids are
f;”'ts calculated, o . .
Line of 1ypeof via Vv Vie V2a V2b  V2c 4. each observation is assigned to the nearest centroid,
e rault 5. the position of centroids is update to the average of
17 100 1 061 082 100 005 079 1,00 the observations assigned to each centroid,
28 30 2 083 100 100 082 100 1,00 6. Several iterations are performed from step 2 in order
138 90 3 078 007 000 078 000 000 to minimize the distance between observations and
centroids.
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In this case k-means algorithm is implemented to identify
voltage sags patterns in matrices of Table I. In voltage sags 13- *
matrix (144 x 6355) every row belong to an observatiahén 1
time of 144 voltage values (3 phases of 48 bus bars). For < »
applying k-means algorithm to voltage sags matrix some % ’ * *
limitations about the algorithm and high dimensionalitythaf Y o *
matrix are evaluated: ol ’\’”—:’:* )

The k-means algorithm has some important limitations: -l N * *

-1.5

- lterative algorithms of classification like k-means are |
. . -2 | 1 | | |
deficient for problems on a large scale. 2 3 I 03 03 1 Is 2

. . - <
) K-mgans algorithm needs a lot of time to optimize thﬁig. 3. Principal components analysis for 2 dimensiobservations.
clustering process.

- Because of high dimensionality of the matrix, the The sybspace with dimension smaller is represented by a
possible initial locations of centroids increas§ne which has the following condition:
exponentially, so likelihood to stop in a local maximum
increases correspondingly.

The sum of the distances between the original
observations and their projections onto the line should be

The utilization of the above mentioned algorithm has also as short as possible.

limitation regarding to the high dimensionality of thetagke

sags matrix: To explain the above, the projection of the observatipn X

) ) o on the direction gin Fig. 3 is the scalar:
- Matrix can have redundant information in the 144

variables. 5
- Matrix can have irrelevant information without projX = X @1 - Ziéi 3)
capacity of discrimination in clusters. |éi|

- Matrix can have segmented information, its means
useful information can be distributed on several

. The vector & represents the projection of #nto the line
variables. A Tep proj f

and r represents the distant betweenaKd the line. Then the

. . L . purpose is to minimize the square of the sum of the distances
According to these undesired characteristics, reducull)g P d

dimensionality of voltage sags matrix is necessary before n n

pattern; are identified. Fpr this purpose, principal compsnent Mini mlzez riz — Z|X1 -z @1| 4)

analysis is implemented in the next section. - =

A. Principal Components Analysis In Fig. 3 the projection of each observation onto line forms
i@ triangle. By the Pythagorean Theorem, next equations are

The utilization of principal components analysis (PCA
P P P y ( ) gduced:

proposed to reduce the dimensionality of the voltage sa%
matrix. In this analysis, the information nfobservations and ) ,
p dimensions are represented withp dimensions. The new X~ =zt (5)
.dl_n_1en5|ons are,llneal combinations (non correlated) of the X\ = Ziz _H,iz ©6)
initial ones (Meléndez et al, 2007).

An example of the principal components analysis (PCA) is Py the sum of all observations i=1 ... n
shown in Fig. 3. In that case, the aim is reduce the

. . . _ . n n n
dimensionality (p=2) of the observatiéns lei X :z Ziz +z riz %
In Fig. 3 the aim is to find a sub-space with dimension - = *
smaller than p, such that by projecting each observation, this
retains their structure with the least distortion as passibl The first term of Eq. (9) is constant, thus minim@ r?is

equivalent to maximiz{ Zi2 , which means maximizing the

sum of the square of the projections. At the same time, it is
equivalent to maximize theriance (Pefia, 2002).

4 An example of principal components analysis lgstrated in Fig 3,
however axes units have not a quantitative or ghysaning
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According to the above, the best line to represent the
observations in a single dimension is one in which maximize3. Index 3. Relationship inter-intra cluster distances.
the variances of the data. This criteria is extended-to (Optimal result k=60). This index estimates the proportion
dimensional space, whenep. between the average distance of the data to the respective
In order to find the main components of a voltage sags matrix centroids and the minimum distance between centroids.
from the covariance matrices, the Matlab funcpoimcomp is
used. The result of this function is a matrix with 144 The results of the proposed indicators obtain different k
uncorrelated variables organized in a way that the firsalue for an optimal clustering. This implies the observation
variables have the greatest variance. It means that ficftvoltage sags are not naturally grouped, it means there are
variables have the most information from the initial matrix. not clearly differentiated clusters.

Table 2. Variance percentage of principal compasent Given that the results of the indicators were inconclusive, it
is possible to group the observations in an appropriatéoaum

Number of Variance k of clusters defined by the goal of the grouping. Therefore
components percentage (%) the goal of grouping is defined as follow:

1 64,34

2 79,62

3 84,66 Clustering of voltage sags represents an indirect faults

4 87,13 classification (location and type) according to their

2 giv‘z‘g impact (sags profile).

. ags. Therefore, few number of clusters means few very big
components represent the 89.4% of the variance of the ) . o
- . . . Zones and is not possible to discriminate the place of
original data, it means nearly 90% of the total information, o :
o?currence of faults with different impact on bus bars. On the

Finally, these five components are selected, so the initir‘F)"ther hand, a lot number of clusters means very small zones

[gggg‘ éffffaxll.‘r‘]“)k_';er;g:‘;?dort.ms main componentis.\ the classification is inefficient. After trying various
X PPyINg gorithm. amounts of clusters, the size of the resulting zones was
evaluated for different number of clusters, finally 50 clusters

B. Clustering of voltage sags and fault zones for each cluster are selected. With this number of clusters size of zones is

The next step is to determine the optimal number of clusteg@nsidered appropriate. By applying k-means to the principal
for grouping the observations of voltage sags (Davies af@mponents obtained above, a vector C(6355 x 1) is obtained
Bouldin, 1979). For this purpose, some indexes are calcula@ed it indicates which of the 50 clusters are classified each
for each value k of clusters, then the best value of tiPservation of matrix voltage sags and matrix faults.
indicator shows the optimal number of clusters to groep th BY grouping the locations of faults by the vector C, zones

information. For this case three different indicators are uséyWwhich faults have similar impact are determined. In Fig. 4
and results are shown below. the location of faults that generate voltage sags with similar

impact classified in cluster 48 is identified (gray zone).

1. Index 1. Sguare of the sum of the distances between
observations and centroids. (Optimal result k=10). This  Similarly, by grouping the types of simulated faults bg t
index shows the variation of the sum of the distanc&@ctor C types of faults of each cluster are determined.
between the data from each of the clusters and their
centroids.

5. CLASSIFICATION OF REAL VOL'[AGE SAGS

2. Index 2. Slhouette index. (Optimal result k=20, 55 y OCCURRED ON BOGOTA.
85). In this index a value between -1 and 1 is assigned toClustering of simulated voltage sags is now used as a
each observation, which measures the similarity of the datkssifier for real voltage sags occurring in the 115kV bus bar
in the same cluster and compares it with the similarity @ff Bogota city. For this, the recorded information oftage
data from other clusters. The closer the index to 1, tiseags in each of the bus bars between January 2008 and
better the data are grouped together. December 2009 is processed in a centralized database.
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Fig. 4. Disturbing zone for voltage sags groupedisters 48.

observation of 144 dimensions are calculated,
For obtaining a matrix of N observations x 144 variables, 2. observations are assigned to the nearest centroid.
the voltage sags information is processed taking into account
the following assumptions: The final result of the classification is shown in Table lll,
which can be analyzed as follows:
- Voltage sags that occur within a time window of 1

minute are caused by the same eVeBeveral voltage - 360 events attributed to faults are classified into 12
sags in the same window in the same bus are caused by different clusters, cluster 4 is the one with more events
the same event. (225).

- If voltage sags are not recorded in a bus in a time - For clusters 4, 33, 35 and 48 do not have evidence of

window, then voltage sags does not occur for the same the type of fault occurs.
time window. Faults that produce more voltage sags are grouped into
clusters 48, 4 and 2 with 986, 848 and 727 voltage sags

On the other hand, according to the simulations, faults in  respectively.
the 115kV and 220kV transmission system not cause voltage- Faults in clusters 2, 7, 14 and 37 are not three-phase
sags only in one bus, or voltage sags in bus bars insulated faults.
from each other, so that information is excluded. Faults in clusters 29 and 47 are two-phase or two-phase

to ground.

As a result, from 7580 measured voltage sags in all 115kV-  Faults in Clusters 7 and 14 occur few times but their
bus bars of Bogota caused by 1955 events, 3509 voltage sags impact on the bus bars is the highest with 47 and 46 bus
are filtered and they are attributable to 360 faults in the bars affected by fault respectively.
transmission and distribution system. It means a real- Faults in cluster 4 occur frequently, buy they have the
information matrix with (360 x 144) dimensions. least impact with only 4 bus bars affected by fault.

The information of voltage sags attributable to faults & th Figs. 5 and 6 display disturbing zones for clusters 438nd
transmission and distribution system is classified with t where more number of faults occurred, and caused voltage
centroids of each cluster found in the previous section aags in the city of Bogota.
follows:

1. Distances between the 50 centroids and every real

® This is because the data records do not haveter besolution to provide
a smaller time window size.
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Fig. 5. Disturbing zone for voltage sags in cluster 4.
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Fig 6. Disturbing zone for voltage sags in cluster 33.
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Table 3. Clustering of voltage sags occurred ork¥1i5us bars of Bogota

Cluster Number of faults Percentage of faults Type of fault Total number of Bus bars

number sags affected/fault
2 21 5,83% 124 727 35
4 225 62,50% 1,234 848 4
7 1 0,28% 1,2,4 47 47
13 3 0,83% 3 108 36
14 1 0,28% 124 46 46
25 1 0,28% 1 37 37
29 1 0,28% 2,4 29 29
33 65 18,06% 1,234 543 8
35 4 1,11% 1,234 82 21
37 1 0,28% 12,4 27 27
47 1 0,28% 2,4 32 32
48 36 10,00% 1,234 983 27

CREG, Comision Reguladora de Energia y Gas. Resoll@REG 024
abril 26 de 2005. Modificacion de las normas dédeal de la potencia
eléctrica aplicables a los servicios de Distribnai@ Energia Eléctrica.

6. CONCLUSIONS 2005.

ThiS paper proposed a meth0d0|09y for eStimating _patterns Davies D and Bouldin D, A cluster separation measlEEE Transaction
of simulated voltage sags by means of k-means algorithm and on pattern analysis and machine intelligence vdlor9.

for determining the location of the faults that cause voltage
sags in distribution bus bars of the system. The Colambi
system was modeled and fault simulation was performed in all
sections of the system to generate voltage sags. Subsequently
simulated voltage sags were clustered using principal IEC, International Electrotechnical Commission, IEGIEC 61000-4-30
components analysis and k-means algorithm, allowing the Electromagnetic compatibility (EMC) - Part 4-30: sfiag and
identification of zones of faults occurrence for each cluster. easurement techniques, Power quality measurenehots. 2009.
Voltage sags clusters were used to classify real voltage sagsMeléndez, J. Berjaga, X. Herraiz, S. Sanchez, Str@aM. Classification
occurred in the system. The methodglogy was applied to the ?gsggta%elrsﬁaogr;;?:;di ‘X‘p"'z;\::'i\lor:g g‘;T‘_’,””J;fi’jém":’“c‘f:" Gsi'?g‘ﬁz
115kV and 220kV system of Bogota and real areas where (spain) 2007.

faults occur and caused voltage sags in Bogota were

identified.
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