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ABSTRACT  

This paper presents a model for the seismic analysis of buildings, taking two lumped masses at each level in a structure’s free nodes 

and comparing them to the traditional model which considers lumped masses per level, i.e., a mass for each floor of the entire build-

ing. This  is usually done in the seismic analysis of buildings; not all values are conservative in the latter, as can be seen in the table of 

results. Both models took shear deformations into account. Therefore, the usual practice of considering a lumped mass per each 

level would not be a recommended solution; using two lumped masses per level is thus proposed and is also more related to real 

conditions. 
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RESUMEN 

En este documento se presenta un modelo para análisis sísmico de edificios en el cual se toman dos masas concentradas por cada 

nivel aplicadas en los nodos libres de la estructura y se compara con el modelo tradicional, que considera las masas concentradas 

por nivel, es decir, una masa por cada piso de todo el edificio, que es como normalmente se hace; en este último no todos los 

valores son conservadores, como se puede notar en la tabla de resultados del problema considerado. Ambos modelos toman en 

cuenta las deformaciones por cortante. Por lo tanto, la práctica usual de considerar las masas concentradas, una por cada nivel, 

no será una solución recomendable, y se propone el empleo de tomar dos masas concentradas por nivel, que se apega más a la 

realidad. 

Palabras clave: análisis modal, análisis espectral, valores y vectores característicos, factor de participación modal, aceleración 

espectral y vector de coordenadas normales máximas. 
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Introduction1 2 
Three types of methods can be used for the seismic analysis of 

building structures: simplified, static and dynamic methods. The 

simplified method is applicable to regular structures standing less 

than 13 m high and simultaneously fulfilling all requirements 

indicated by the building regulations. The static method is appli-

cable to buildings whose height is less than or equal to 30 m for 

regular structures and irregular structures standing less than 20 

m high; these limits increase to 40 m and 30 m, respectively, for 

structures sited on rocky terrain. The dynamic method consists 

of the same basic steps as that for the static method, with the 

reservation that applicable lateral forces in the floors’ centre are 

determined from a structure’s dynamic response. Modal spectral 

analysis and step-by-step analysis or calculating responses having 
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specific acceleration registries can be used for the dynamic 

method (Zárate, Ayala et al., 2003).  

This study was aimed at presenting a model which would take 

into account a building’s two masses per level applied to free 

nodes and considering three degrees of freedom at the joints, 

comparing it to the traditional model taking one mass per level 

and considering one degree of freedom per floor (horizontal 

displacement per level). Both models took shear deformation 

into account. 

Analytical development 

Equations of motion in a structural dynamic system 

Overall equations of motion in a structural dynamic system, 

(Przemieniecki, 1985) without including border conditions, can 

be written in matrix form as follows: 
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where:    is a vector of n x 1  generalised absolute displace-
ments (unknown) corresponding to  non-restricted degrees of 

freedom “n”,    is a vector of m x 1 generalised absolute dis-

placements (null or known) corresponding to the degrees of 
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freedom in supports “m”,             are mass matrices, damping 

and stiffness are associated with degrees of freedom “n” and/or 

“m” respectively,    is a vector of n x 1 representing associate 

dynamics’ requirements regarding degrees of freedom “n”,     is 

a vector of m x 1 representing associate reactions (unknown) to 

the supports’ degrees of freedom "m". 

Considering linear systems involving orthogonality for stiffness 

( ), mass ( ) and damping ( ) matrices, it is convenient to diag-

onalise the system of equations of motion to transform it into a 

normal modal coordinate system. A system having free un-

damped vibration, which can exist in the absence of any excita-

tion of the supports, would give: 

     
       

    (1) 
 

where     is a mass matrix corresponding to non-restricted 

degrees of freedom “n”,      is a stiffness matrix corresponding 

to non-restricted degrees of freedom “n”,   
  is a vector of 

relative displacement and  ̈ 
  is a vector of relative acceleration. 

The solution of equation (1) is defined (by Aguilar Falconi, 1998; 

García Reyes, 1998) as: 

  
        

where   is natural vibration frequency,   is a modal vector 

associated with “ω”,   √   and t is time. 

The values of      and     are determined by resolving 

eigenproblems as: 

(         )     (2) 
 

The modal participation factor      (Clough, Penzien, 1975; 

Bazan, Meli, 1998) can be expressed as: 
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where   
  is the transposed vector of a modal vector corre-

sponding to the mode "n"       is a pseudostatic influence vec-

tor. 

The normal maximum coordinates of the system for each mode 

 (  )     are: 

(  )    
     

ω 
  (4) 

 

where     is spectral acceleration corresponding to mode "n". 

The vectors corresponding to maximum relative displacement 

vector components for each mode       
       can be defined 

as: 

    
          (  )    (5) 

 

The maximum value of the vector of relative displacements in 

structural system     
        is: 
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(6) 

The value of the equivalent mechanical elements acting in free 

nodes     (McCormac, 2007) is: 

        
      (7) 

 

The mechanical element components acting on members     
(Tena Colunga, 2007) are: 

         (8) 
 

where    and     are each bar’s stiffness and displacement. 

Application  

An example of the dynamic seismic design method is presented, 

using two different models, considering shear deformation for an 

office building built with a steel frame structure. The analysis is 

only developed transversally. Figure 1 shows the office building’s 

floor-plan and elevation and Figure 2 shows the horizontal re-

sponse spectrum, representing soil movement where the building 

is supported. Table l shows the steel profile properties. 

 

Poisson ratio = 0.32 

Figure 1. Floor-plan and elevation regarding an office building construct-
ed with steel frame structure. 
 

 

Figure 2. The horizontal response spectrum 

 
Table 1. Steel frame properties  
 

Frames 
Total area 

(cm2) 

Shear area 

(cm2) 

Moment of inertia 

(cm4) 

W10X60 114.19 27.42 14,318 

W10X45 85.16 22.83 10,364 

W10X21 40.00 15.35 4,454 

W24X94 178.71 80.83 111,966 

W24X61 116.13 64.06 64,100 
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The load to be considered in the analysis by level was: 

Weight of level 1 = 6,867 N/m2 

Weight of level 2 = 5,886 N/m2 

Weight of level 3 = 4,905 N/m2 

Weight of level 4 = 2,943 N/m2 

Elasticity modulus = 20,019,600 N/cm2 

Model 1 

The beams and columns were considered for analysis in this 

model, taking into account two lumped masses per level applied 

in free nodes and considering three degrees of freedom at each 

joint (horizontal displacement, vertical displacement and rota-

tion). The building was only analysed in a transversal direction. 

Figure 3 gives the mathematical model. 

 
Figure 3. Two lumped masses per building level  

 

Model 2 

This model considered that the beams were rigid compared to 

the columns and, therefore, the beams did not influence dynamic 

analysis of the building. It also considered one degree of freedom 

per level, i.e. horizontal displacement (Luévanos Rojas, 2010). 

The mathematical model is presented in Figure 4.  

The mass and stiffness matrices for each member were evaluated 

(Appendix; Luévanos Rojas et al., 2010) followed by the change 

of local system to overall system. The mass and stiffness matrices 

in each member’s general system were then coupled and the 
system’s general matrix obtained. This general matrix was organ-

ised to separate the degrees of freedom in the structure (M11 

and K11) and degrees of freedom in the supports (M22 and 

K22). A similar transformation was applied by exchanging row 

and column matrices (permutation matrix).  

Ignoring the effect of damping in free vibration, as in equation (1), 

  
  being a vector (24x1 for model 1 and 4x1 for model 2) of 

relative displacements corresponding to the building’s structural 

system degrees of freedom, then the eigenvalues and eigenvec-

tors were obtained by solving the determinant resulting from 

equation (2). 

 
Figure 4. A lumped mass per building level 

 

MATLAB software was used for solving the determinant and the 

roots of the polynomials. Table 2 shows the first four modes of 

the sixteen for model 1 (M1) and the four modes for model 2 

(M2) are presented in. 

Table 3 shows the spectral accelerations of the first four modes 

of M1 and the four modes of M2. 

Equation (3) gave modal participation factor    . The maximum 

normal coordinates of the system for each mode  (  )     
were located by using equation (4). The first four values for the 

M1 and the four values for M2 are shown in Table 4. The maxi-

mum relative displacement vector components for each mode 

     
       were given by equation (5) and the maximum value 

of the structural system relative displacements’ vector for build-

ing     
       was obtained by equation (6). These values are 

shown for both models in Table 5. 

Table 2. Eigenvalues 

Mode 

Circular frequency 

(Rad / sec) 

Period 

(Sec) 

M1 M2 M1 M2 

1 5.8479 6.5879 1.0744 0.9537 

2 14.8181 15.9421 0.4240 0.3941 

3 25.7784 27.3889 0.2437 0.2294 

4 32.4698 33.4725 0.1935 0.1877 

 

Table 3. Spectral acceleration 

Mode 

Frequency 

ωn ( Hz ) 
Acceleration 

san (cm/sec2) 

M1 M2 M1 M2 

1 0.9307 1.0485 0.1772g = 173.7738 0.1920g = 188.2877 

2 2.3584 2.5373 0.2928g = 287.1387 0.3000g = 294.1995 

3 4.1028 4.3591 0.3000g = 294.1995 0.3000g = 294.1995 

4 5.1677 5.3273 0.3000g = 294.1995 0.3000g = 294.1995 

 
Table 4. Participation factors      and maximum normal coordinates of 
the system for each mode  (  )     
 

Mode 

Participation factors  

Ln  

Maximum normal coordi-

nates for the system for each 

mode  (Yn)máx  

M1 M2 M1/M2 M1 M2 M1/M2 

1 +1.3390 +1.3316 1.0056 +6.8038 +5.7770 1.1777 

2 –0.4325 –0.4028 1.0737 –0.5656 –0.4663 1.2130 

3 +0.1277 +0.0952 1.3414 +0.0566 +0.0373 1.5174 

4 –0.0972 –0.0799 1.2165 –0.0271 –0.0210 1.2905 
 

 



A COMPARATIVE STUDY OF TWO MODELS FOR THE SEISMIC ANALYSIS OF BUILDINGS 

             INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 3, DECEMBER 2012 (37-41) 40    

Once the deformations were obtained, equation (7) was used to 

find the values of the forces in “X”, the forces in “Y” and mo-

ments; these were applied at the free joints. Such effects were 

equivalent to what would have occurred due to a movement in 

the soil where the building was located. The mechanical elements 

at the joints on the members of the whole building were deter-

mined by equation (8) and then obtained for each of the build-

ing’s rigid frames. The axial forces, the shear forces and the 

moments for a central frame are presented in Tables 6, 7 and 8, 

respectively. 

Table 5. Deformation vector 

   
      Node Concept Unit 

Amount 

M1 M2 M1/M2 

  
 1 

1 

Displacement  “X” cm 2.8763 2.6577 1.0823 

  
 2 Displacement “Y” cm 0.0504 −  −  

  
 3 Rotation rad 0.0018 −  −  

  
 4 

2 

Displacement  “X” cm 4.3305 3.6668 1.1810 

  
 5 Displacement “Y” cm 0.0848 −  −  

  
 6 Rotation rad 0.0012 −  −  

  
 7 

3 

Displacement  “X” cm 6.0494 5.1725 1.1695 

  
 8 Displacement  “Y” cm 0.1337 −  −  

  
 9 Rotation rad 0.0007 −  −  

  
 10 

4 

Displacement  “X” cm 6.8275 5.7959 1.1780 

  
 11 Displacement “Y” cm 0.1555 −  −  

  
 12 Rotation rad 0.0004 −  −  

  
 13 

5 

Displacement  “X” cm 6.8275 5.7959 1.1780 

  
 14 Displacement  “Y” cm 0.1555 −  −  

  
 15 Rotation rad 0.0004 −  −  

  
 16 

6 

Displacement  “X” cm 6.0494 5.1725 1.1695 

  
 17 Displacement  “Y” cm 0.1337 −  −  

  
 18 Rotation rad 0.0007 −  −  

  
 19 

7 

Displacement  “X” cm 4.3305 3.6668 1.1810 

  
 20 Displacement “Y” cm 0.0848 −  −  

  
 21 Rotation rad 0.0012 −  −  

  
 22 

8 

Displacement  “X” cm 2.8763 2.6577 1.0823 

  
 23 Displacement  “Y” cm 0.0504 −  −  

  
 24 Rotation rad 0.0018 −  −  

 

Results  
The values for the building’s vibration mode frequencies for both 

models are shown in Table 2. It was observed that values for M1 

were lower regarding M2 in terms of frequency and logically the 

periods were inverse. The first four modes of M1 are presented 

in this Table, even though the work involved sixteen modes 

resulting from the dynamic analysis. 

Table 3 shows spectral acceleration. These values were obtained 

from the frequency of each of the structure’s vibration modes 

and these results were found by means of the horizontal re-

sponse spectrum of the soil where the building was constructed; 

this spectrum is presented in Figure 2. 

The participation factors and maximum normal coordinates of 

the system for each mode are given in Table 4, all values in M1 

being higher than in M2. The participation factors increased by 

34.14% in M1 and maximum normal coordinates increased by 

51.74% (both percentages are presented in the third mode). 

 

Table 6. Axial forces in the bars for a central frame (N) 

Bar Node Concept Model 1 Model 2 M1/M2 

1 
0 Force “Y” − 199339 − 137801 1.4466 

1 Force “Y” +199339 +137801 1.4466 

2 
1 Force “Y” − 113011 − 71701 1.5761 

2 Force “Y” +113011 +71701 1.5761 

3 
2 Force “Y” − 64059 − 30166 2.1236 

3 Force “Y” +64059 +30166 2.1236 

4 
3 Force “Y” − 35385 − 6975 5.0731 

4 Force “Y” +35385 +6975 5.0731 

5 
5 Force “Y” +35385 − 6975 5.0731 

6 Force “Y” − 35385 +6975 5.0731 

6 
6 Force “Y” +64059 − 30166 2.1236 

7 Force “Y” − 64059 +30166 2.1236 

7 
7 Force “Y” +113011 − 71701 1.5761 

8 Force “Y” − 113011 +71701 1.5761 

8 
8 Force “Y” +199339 − 137801 1.4466 

9 Force “Y” − 199339 +137801 1.4466 

9 
4 Force “X” 0 +18806 −  

5 Force “X” 0 − 18806 −  

10 
3 Force “X” 0 +27301 −  

6 Force “X” 0 − 27301 −  

11 
2 Force “X” 0 +23338 −  

7 Force “X” 0 − 23338 −  

12 
1 Force “X” 0 +21464 −  

8 Force “X” 0 − 21464 −  

 
Table 7. Shear forces in the bars for a central frame (N) 

Bar Node Concept Model 1 Model 2  M1/M2 

1 
0 Force “X” − 114463 − 91527 1.2506 

1 Force “X” +114463 +91527 1.2506 

2 
1 Force “X” − 137144 − 69916 1.9616 

2 Force “X” +137144 +69916 1.9616 

3 
2 Force “X” − 63500 − 46617 1.3622 

3 Force “X” +63500 +46617 1.3622 

4 
3 Force “X” − 30038 − 19296 1.5567 

4 Force “X” +30038 +19296 1.5567 

5 
5 Force “X” +30038 − 19296 1.5567 

6 Force “X” − 30038 +19296 1.5567 

6 
6 Force “X” +63500 − 46598 1.3627 

7 Force “X” − 63500 +46598 1.3627 

7 
7 Force “X” +137144 − 69935 1.9610 

8 Force “X” − 137144 +69935 1.9610 

8 
8 Force “X” +114463 − 91400 1.2523 

9 Force “X” − 114463 +91400 1.2523 

9 
4 Force “Y” +7956 − 6975 1.1406 

5 Force “Y” − 7956 +6975 1.1406 

10 
3 Force “Y” +24054 − 23201 1.0368 

6 Force “Y” − 24054 +23201 1.0368 

11 
2 Force “Y” +41222 − 41536 0.9924 

7 Force “Y” − 41222 +41536 0.9924 

12 
1 Force “Y” +61842 − 66100 0.9356 

8 Force “Y” − 61842 − 66100 0.9356 
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Table 8. Moments in the bars for a central frame (N-m) 

Bar Node Model 1  Model 2 M1/M2 

1 
0 +272414 +243877 1.1170 

1 +299931 +213750 1.4032 

2 
1 +244750 +116857 2.0944 

2 +235263 +127844 1.8402 

3 
2 +112815 +79834 1.4172 

3 +109421 +83326 1.3132 

4 
3 +53592 +32687 1.6396 

4 +51552 +34865 1.4786 

5 
5 +51552 +34845 1.4794 

6 +53592 +32677 1.6400 

6 
6 +109421 +83297 1.3136 

7 +112815 +79804 1.4136 

7 
7 +235263 +127854 1.8401 

8 +244750 +116925 2.0932 

8 
8 +299931 +213466 1.4051 

9 +272414 +243543 1.1185 

9 
4 +39799 +34865 1.1415 

5 +39799 +34845 1.1422 

10 
3 +120251 +116013 1.0365 

6 +120251 +115964 1.0370 

11 
2 +206138 +207678 0.9926 

7 +206138 +207648 0.9927 

12 
1 +309211 +330607 0.9353 

8 +309211 +330391 0.9359 

 

Table 5 gives the structural system’s relative deformations; all 

values were greater in M1 (18.10% increase). Only horizontal 

displacements were compared as M2 did not consider the other 

two deformations which would be present in any given structure. 

Table 6 shows the axial forces in the structure. There was a 

5.0731 times greater increase in M1 than M2; this only occured 

in the columns and axial load was not presented in beams for 

M1. 

Table 7 gives the shear forces; there were differences of up to 

96.10% in all top columns in M1 compared to M2 and a 14.06% 

increase in the upper members of the beams in M1. Such differ-

ence decreased when dealing with each lower floor and became 

greater in M2 when arriving at level 1. 

The moments acting on the bars of the structure are shown in 

Table 8. M1 was greater for all columns by up to 2.0944 times 

than M2, while shear forces behaved similarly in beams, having 

14.22% increase in M1 in the top bar whilst the bottom bar in 

M2 was greater. 

 

 

 

 

 

 

 

Conclusions  
Horizontal displacement, vertical displacement and rotation at 

each joint was not restricted given the results obtained in M2 

taking into account four degrees of freedom, one for each floor 

(i.e. horizontal displacement at each level) and M1 considered 

twenty-four degrees of freedom. According to the above, it was 

noted that several degrees of freedom were ignored in M2, being 

so reflected in the system’s response. 

Frequency analysis revealed that M2 involved neglecting certain 

modal shapes (symmetric modes and/or anti-symmetrical) system 

which, in the case of soil excitation, are present and should be 

considered, since they often reflect relatively low frequencies.  

General practice considering a lumped mass for each level is thus 

not recommendable, whereas the model proposed in this paper 

seems to be the most appropriate one for seismic analysis of 

buildings’ structural systems. 

 

References  
Aguilar Falconi, R., Acciones para el diseño sísmico de estructu-

ras, Limusa-Wiley, 1998, pp. 119-135. 

Appendix. Formulario de Teoría de Estructuras. Matrices de Rigi-

dez Elementales, de Masa Congruentes, y de Rigidez Geomé-

trica. Disponible en: 

http://www.esiold.us.es/php/infgen/aulav/teorestructurasind/M

atrices_de_rigidez_elementales.pdf 

Bazan, E., Meli, R., Diseño sísmico de edificios, Limusa-Wiley, 1998, 

pp. 225-239. 

García Reyes, L. E., Dinámica estructural aplicada a diseño sísmi-

co, Universidad de los Andes, Facultad de Ingeniería, Departa-

mento de Ingeniería Civil, Bogotá, Colombia, 1998, pp. 321-548. 

Clough, R. W., Penzien, J., Dynamics of Structures, McGraw-Hill, 

1975, pp. 145-284. 

Luévanos Rojas, A., Seismic analysis of a building of four levels; 

making a comparison, despising and considering the defor-

mations by Sharp, International Review of Civil Engineering 

(I.RE.C.E.), Vol. 1, No. 4, Sep., 2010, pp. 275-279. 

Luévanos Rojas, A., Betancourt Silva, F., Martinez Garcia, I., 

Luévanos Rojas R. and Luévanos Soto, I., Vibrations in systems of 

pipes with different excitation in its ends, International Journal of 

Innovative Computing, Information and Control, Vol. 6, No. 12, 

Dec., 2010, pp. 5333-5350. 

Mc Cormac, J. C., Structural analysis: using classical and matrix 

methods, John Wiley & Sons, 2007, pp. 550-580. 

Przemieniecki, J. S., Theory of Matrix Structural Analysis, McGraw-

Hill, 1985, pp 150-163 y 278-287.  

Tena Colunga, A., Análisis de estructuras con métodos matricia-

les, Limusa-Wiley, 2007, pp. 93-98. 

Zárate, G., Ayala, A. G., García, O., Método sísmico estático para 

edificios asimétricos: revisión de enfoques. Revista de Ingeniería 

Sísmica No. 69, 2003, pp. 25-44. 


