
INGENIERÍA E INVESTIGACIÓN VOL. 33 No. 2, AUGUST - 2013 (70 - 75)

 70

Towards a framework for deriving platform-independent

model-driven software product lines

Hacia un marco de trabajo para derivar líneas de producto de software

dirigidas por modelos independientes de la plataforma

A. Paz1 and H. Arboleda2

ABSTRACT

M odel-driven software product lines (MD-SPLs) are created from domain models w hich are transformed, merged and composed

w ith reusable core assets, until software products are produced. Model transformation chains (MTCs) must be specified to generate

such M D-SPLs. This paper presents a framew ork for creating platform-independent M D-SPLs; such framew ork includes a domain

specific language (DSL) for platform-independent MTC specification and facilities platform-specific MTC generation of several of the

most used model transformation frameworks. The DSL also allows product line architects to compose generation taking the need for

model transformation strategy and technology interoperability into account and specifying several types of variability involved in

such generation.

Keywords: model-driven software product line, platform independent model transformation chain, domain specific language,

interoperability.

RESUMEN

Las líneas de producto de software dirigidas por modelos (MD-SPLs) son creadas a partir de modelos de dominio que se transfo r-

man, combinan y componen con artefactos reutilizables hasta que finalmente se generan productos de softw are. Con el fin de

generar dichas M D-SPLs, es necesario especificar cadenas de transformación de modelos (MTCs). En este artículo presentamos un

marco de trabajo para la creación de MD-SPLs independientes de plataforma. El marco de trabajo incluye un lenguaje de dominio

particular (DSL) para la especificación de MTCs independientes de plataforma y facilidades para la generación de MTCs en plat a-

formas específicas a fin de llegar a varios de los frameworks de transformación de modelos más utilizados (en la práctica). El DSL,

además, permite que los arquitectos de líneas de producto: 1) compongan un proceso de generación teniendo en cuenta la

necesidad de interoperabilidad de estrategias y tecnologías de transformación de modelos, y 2) especifiquen varios tipos de v aria-

bilidad en dicho proceso de generación.

Palabras clave: líneas de producto de software dirigidas por modelos, cadenas de transformación de modelos, lenguaje de

dominio específico, interoperabilidad.

Received: October 25th 2012

Accepted: July 11th 2013

Introduction1 2

Product line engineering has attracted attention recently in what

are known as software product lines (SPLs) (Linden, Schmid, &

Rommes, 2007). An SPL focuses on creating a software system

family through a semi-automatic process that builds individual

products from reusable software artefacts, shared by all prod-

ucts, and specific software artefacts only for the product being

constructed in accordance with a client’s wishes. SPL scope (i.e.

the range of products a particular SPL may address) is deter-

1 Andrés Paz. Ingeniero de Sistemas, Universidad ICESI, Colombia. Affiliation:
Universidad ICESI, Colombia. E-mail: afpaz@icesi.edu.co
2 Hugo Arboleda. Ingeniero de Sistemas y Computación, Universidad del Valle,
Colombia, Magíster en Sistemas y Computación, Universidad de los Andes, Colom-

bia. Doctor en Ingeniería, Universidad de los Andes, Colombia. PhD Informatics,
École des Mines de Nantes, France. Affiliation: Universidad ICESI, Colombia.
E-mail: hfarboleda@icesi.edu.co

How to cite: Paz, A., Arboleda, H., Towards a framework for deriving platform-
independent model-driven software product lines., Ingeniería e Investigación. Vol.
33, No. 2. August 2013, pp. 70 – 75.

mined by variation amongst the individual systems which can be

derived. One way of capturing such variation is by using a varia-

bility model (Pohl, Bckle, & van der Linden, 2005) (e.g. feature

models). Variability models describe what can vary (variation

points) in final systems, the options available (variants) for satisfy-
ing each variation point and the relationships between them.

Several approaches have been proposed for creating model-

driven engineering (MDE) based SPLs. MDE claims to improve

software development by using models as first-class artefacts

during development (Awais Rashid, Jean-Claude Royer, 2011;

Stahl & Czarnecki, 2006). Model-driven SPL (MD-SPL) approach-

es (e.g. Arboleda, Casallas, & Royer, 2009; Rashid, Royer &

Rummler, 2011; Santos, Koskimies & Lopes, 2006; Voelter &

Groher, 2007; Wagelaar, 2005)) are intended to create SPLs

departing from domain models which are transformed, merged

and composed with reusable core assets, thereby producing
software products (Arboleda & Royer, 2012).

PAZ AND ARBOLEDA

 INGENIERÍA E INVESTIGACIÓN VOL. 33 No. 2, AUGUST - 2013 (70-75) 71

Model transformation requires several stages during MD-SPL

construction; each stage involved processing domain models to

include more implementation details. A model transformation

chain (MTC) (Yie, Casallas, Deridder & Wagelaar, 2012) is a

sequence of transformation steps using one of these stages to

convert a higher-level model rooted closer to the problem do-

main into a lower-level model rooted closer to the solution

domain (e.g. Java, C#). Transformation steps must be adapted

throughout each transformation stage to adapt variants chosen

by product designers for their particular products; this requires

pre-defining how transformation steps must be adapted accord-
ing to variation points and SPL variants.

There is a significant gap between variability at a conceptual level

(variation points and variants) and variability at implementation

level (concrete software assets, such as model transformation

rules). MTCs must thus be specified for gathering links between

variants and transformation steps, including the usual sequence of

transformation steps involved in producing SPLs and the variabil-

ity involved in derivation. MTCs are currently specified in several

ways, usually being embedded in model transformation rules,

coupling commonalities and transformation step variability or

using domain specific (modelling) languages (DSL). The former

option is bad practice because of the drawbacks in maintainability

and reuse of a product line’s core assets whilst DSLs for MTC

specification separate the concerns of capturing the transfor-

mation logic and capturing their scheduling along with the varia-
tion points involved in a particular product line.

This paper presents a framework for creating platform-

independent MD-SPLs (platform-independent refers to inde-

pendence from model transformation platforms and tools). The

framework includes a DSL for platform-independent MTC speci-

fication and facilitates producing and handling platform-specific

MTCs. Previous work by Arboleda, Casallas & Royer (2009)

presented tool support for an MD-SPL approach. The MTC

language at that time lacked constructs for specifying several

types of variability involved in derivation and did not take the

need for integrating several model transformation technologies
into account. This work presents a solution to such drawbacks.

Illustrative example and DSL key concepts

Illustrative example

An MD-SPL of standalone software products for managing data

collections was created to illustrate the problem and give an

overview of the aforementioned approach. A detailed description

of this MD-SPL can be found in Arboleda, Romero, Casallas &

Royer (2009) and on our research group’s web site3. An example

of a product line member would be an application for managing a

music store and information regarding songs, such as their titles,

artists’ names and genre. Another product may manage students

from a school and their personal information: name, address, e-

mail, etc. These products are usually structured in a kernel com-

ponent at architecture level (implementing functional require-

ments for adding elements to the collection and sorting them

using various sorting algorithms) and/or a graphical user interface

(GUI) component (presenting the information to end-users and
interacting with them and the kernel component).

Figure 1 shows an overview of configuring and deriving a collec-

tion manager system. A domain meta-model was created which

included domain concepts for representing data collection struc-

3http://www.icesi.edu.co/i2t/driso/mdsplframework

ture. A product designer created a domain model conforming to
such meta-model at the start of the derivation process.

Figure 1. Derivation.

The domain model was automatically transformed at runtime

during product derivation into architecture models capturing

concepts from the solution space. The architecture models were

composed of a kernel model including an aggregation structure

to represent the entity being managed and its related attributes,

and the concepts for expressing the ability to sort the entities

using different algorithms and a GUI model representing GUI

elements such as panels, lists, labels and images. These architec-

ture models were then transformed to produce product line
members’ source files.

Similarly to many other MD-SPL approaches (Santos et al., 2006;

Tessier, Gérard, Terrier & Geib 2005; Voelter & Groher 2007) ,

feature models were used as core assets for modelling variability

during each derivation stage. The example consisted of a feature

model built using concepts introduced by Czarnecki, Helsen &

Eisenecker (2004). A product designer creates a domain model

and a configuration model based on such feature model having a

selection of the features to be included in the desired product.

This configuration model represents input to the two model

transformation stages, one transforming the domain model into

the architecture models and the other transforming the latter
models into source files.

Figure 2 shows a domain model for a music store system (bot-

tom left) conforming to the domain meta-model for a collection

manager system (top left). This paper uses a class diagram-like

representation to facilitate intuitive understanding of conformity

between models and meta-models. The Figure shows the domain

model defining a musicStore conforming to the Domainmetacon-

cept. The musicStore has an entity, song, which has three char-

acteristics, name, artist and genre. The feature model (right)

represents variants for data sorting using bubble, insertion or
selection algorithms.

Figure 2. Collection manager example.

DSL Key concepts

Several DSL requirements were identified for specifying an MTC

from practice and related work. Such DSL had to define deriva-

tion transformation stages, schedule such transformation stages

(i.e. the order in which transformation rules process model

elements to accomplish desired derivation), capture variation

points and variants, represent how variation points can modify

 TOWARDS A FRAMEWORK FOR DERIVING PLATFORM-INDEPENDENT MODEL-DRIVEN SOFTWARE PRODUCT LINES

 INGENIERÍA E INVESTIGACIÓN VOL. 33 No. 2, AUGUST - 2013 (70-75) 72

scheduling and enable support for various transformation plat-
forms, techniques or languages.

Transformation stages and scheduling

A meta-model was used for constructing a grammar system

specifying our DSL’s syntax and semantics. The concepts in this

meta-model inherited some names from previous work by Arbo-

leda, Casallas & Royer (2009). The left-hand side of Figure 3

presents a fragment of the meta-model showing the concepts

Workflow, TransformationProgram and TransformationRule

which target to satisfy the DSL transformation requirement. The

second requirement, a sequence of model transformation stages,

was named Workflow. The TransformationProgram concept

was used for transforming models, using either the specialised

Model2Model or Model2Text concept. The sequence of model

transformation programmes incrementally added design deci-

sions until products were obtained according to end-user choice.

A TransformationProgram consisted of a set of Transfor-
mationRules, being sets of transformation instructions.

Figure 3. DSL meta-model fragment of the model transformation concepts
(left) and fragment of the DSL model for the collection manager showing
transformation stages, their transformation rules and sequence (right) .

A graphical, tree-like, representation of the models forming our

DSL meta-model was used in this paper to facilitate understand-

ing. As an illustrative example, the MD-SPL model for the collec-

tion manager at the right-hand side of Figure 3 defines two trans-

formation stages: domain2architeture in line 2 is a model-to-

model transformation stage departing from the collection man-

ager domain model to create two architecture models specified

for derivation (Kernel and GUI). The transformation rules in this

stage were domain2kernel in line 3 and domain2gui in line 4.

The second transformation stage, architecture2text in line 5,

was a model-to-text transformation stage. The architecture

models in the previous stage were taken as input and trans-

formed into source code. The transformation rules in this stage

were kernel2text in line 6 and gui2text in line 7. The example

was summarised to simplify all the transformation rules required
in both stages.

Variation points, variants and scheduling modification

A sequence of variation points was also needed to satisfy variant

and scheduling modification since transformation stages may

include variants conditioning transformation rule execution.

Figure 4 shows that a TransformationProgram also contained a

sequence of VariationPoints involved in generation. Concern-

ing the ability to represent the way variation points can modify

scheduling, variation point applicability was determined by a

Configuration, which was as a set of Variants. Each Variant

represented a feature-state pair. The FeatureModel concept

covered collecting available features to be taken into account in a

configuration. Our DSL did not consider modelling these fea-

tures and their mutual relationships and constraints; however,

this is planned for future work. pure::variants4 were used instead,
one of the many variability management tools available.

Figure 4.DSL meta-model fragment of variability modelling concepts.

Concepts were also included to represent how scheduling model

transformations could be modified. According to different con-

figurations, a model transformation may require elements being

added to source models, removing elements from them, or

transforming such elements into other elements. Groher &

Voelter (2007) distinguished what they called positive and nega-

tive variability for describing such types of model operation; the
present document has been based on such work.

Positive variability. Positive variability builds products from a

minimal set of common elements. Additional elements were

added to this set according to each particular product ’s configu-

ration. Two strategies were distinguished for positive variability:
model-oriented and programme-oriented.

Model-oriented positive variability. Model-oriented positive

variability merges, or weaves, two separate models into a single

model. One of these models holds the information regarding

elements to be added and where such elements should be added.

The other model acts as target. Figure 5 (bottom right) shows

how model-oriented variability was captured in our DSL. A base

model was taken as target and an aspect model contained the

elements to be added and where they had to be placed. Both
models were woven into a result model.

Figure 5.DSL meta-model fragment of the variation point concepts.

A source of variation in the collection manager concerned data-

sorting being provided by a bubble, an insertion and/or a selec-

tion algorithm. Figure 6 (left-hand side) presents a model-

oriented positive variability scenario. The sortAlgorithm config-

uration (line 9) with the bubble feature selected (lines 10-11)

determined the use of the bubble sort algorithm in the collection

manager. The kernel model was refined according to such con-

figuration with a model-oriented positive variation point, cre-

ateBubble (line 4) weaving the base model named kernel (line

5) with an aspect model named bubble (line 6). Such weaving

was performed after the domain2kernel transformation rule

(line 3) had been executed and, thus, the kernel model (line 5)
had already been created.

Programme-oriented positive variability. Programme-oriented

positive variability relied on the interception of a transformation

rule, given a particular configuration, and the execution of an

alternative transformation rule, i.e. specific transformation rules

4 http://www.pure-systems.com/pure_variants.49.0.html. Last visit October 2012.

PAZ AND ARBOLEDA

 INGENIERÍA E INVESTIGACIÓN VOL. 33 No. 2, AUGUST - 2013 (70-75) 73

introducing variability. Figure 5 (bottom left) presents the con-

cepts for representing this type of variability. Base transfor-

mation rules are those created for deriving product commonali-

ties. Transformation rules introducing variability were presented

as Specific transformation rules; base rules which had to be

intercepted by the joinpoint relationship were mapped as were

specific rules to be executed instead with the advice relation-
ship.

Figure 6. Fragment of the DSL model for the collection manager with
model-oriented positive variability (left), Fragment of the DSL model for
the music store with programme-oriented positive variability (right).

Figure 6 (right) shows a programme-oriented positive variability

scenario. The sortAlgorithm configuration in (line 8) with the

insertion feature selected (lines 9-10) determined the use of

the insertion sort algorithm. The variation point createInser-

tion (line 4) intercepted (joinpoint) the base rule createOr-

dering (line 5) and executed (advice) the specific rule create-
Insertion (line 6) instead.

Negative variability. Negative variability is the opposite of

positive variability; instead of elements being added they were

eliminated from a target model by the absence of related fea-

tures from the configuration for a particular product. Due to
space limitation, an example of this case has been omitted.

Inter-operability

Regarding inter-operability, product line architect needed facili-

ties for indicating which technology would be used in each prod-

uct derivation transformation step. An attribute was thus added

to the TransformationProgram concept holding information

about the particular technology being used. A platform-

independent MTC specified by using our DSL was thus trans-

formed into platform-specific MTCs scheduled by a common
mediator.

The MD-SPL framework

A framework for creating MD- SPLs was used as an eclipse rich

client platform (RCP)5 application. Eclipse RCP allowed creating a

feature-rich, stand-alone application built upon a plug-in architec-
ture which could be easily extended with additional components.

Architecture from a static viewpoint

Figure 1 presents our framework’s high-level components from a

static viewpoint. Eclipse modelling framework (EMF) was chosen

as the modelling framework, meaning that all our meta-models

were based on the Ecore meta-meta-model. Pure::variants were

5 http://www.eclipse.org/home/categories/rcp.php. Last visit October 2012.

used as our feature modelling framework because this provided a

complete variability management solution which has been suc-

cessfully used in SPL engineering practice. Such framework sup-

ported integrating four of the most common model transfor-

mation engines: Xtend, Xpand (oAW), ATL and Acceleo. Ant

files were used as intermediary between our platform-

independent MTC specifications and the platform-specific MTC
specifications running on the model transformation engines.

Figure 1. High-level MD-SPL framework architecture.

DSL and generating platform-specific MTCs

Our DSL for specifying platform-independent MTCs was at the

core of our framework. Our DSL was defined from the meta-

model presented in section 2.2. Product line architects can cre-

ate MTC specification scripts using our DSL. A text editor was

thus provided having syntax colouring, code completion, valida-

tion, quick fixes and several other features. List 1 presents a

fragment of the MTC specification script built for the collection

manager example, capturing the domain2architecture model-

to-model transformation stage (line 1). This script was analogous

to the model fragments shown in Section 2.2. Here, a source

model, domainModel, was transformed into a kernel model by

using transformation rule domain2kernel (line 2) and a GUI

model by using transformation rule domain2gui (line 4). The

model-oriented variation point, createBubble (line 3), was a
condition for executing these transformation rules.

List 1.MTC specification fragment for the collection manager example

1. Model2Modeldomain2architecture {

2. firstRule := domain2kernel (domainModel) ;
3. firstVariationPoint := createBubble ;
4. nextRule := domain2gui (domainModel) ;
5. }
6. ModelOrientedcreateBubble{...}

Figure 8. MTC execution flow.

Another feature was also included in our framework: facilities for

generating platform-specific MTCs. Our platform-independent

MTC specifications were translated into an executable general

purpose language (GPL) code to create platform-specific MTCs

able to run on particular model engines, ultimately carrying out

model transformations. DSL and GPL use was combined for

reducing GPL implementation complexity by providing an ap-

proach only requiring domain knowledge. MTC specification

programmes were thus transformed into executable Ant build

files using a model-to-text transformation. The Ant build file

contained the required model transformation workflows to

derive the configured products (Figure 8). This Ant build file,

(named MTC mediator in the Figure) can call a sequence of

model transformations through either an oAW workflow, in turn

 TOWARDS A FRAMEWORK FOR DERIVING PLATFORM-INDEPENDENT MODEL-DRIVEN SOFTWARE PRODUCT LINES

 INGENIERÍA E INVESTIGACIÓN VOL. 33 No. 2, AUGUST - 2013 (70-75) 74

executing Xtend and/or Xpand model transformation, or anoth-

er Ant build file, in turn executing ATL and/or Acceleo model

transformation. The Ant build file on the Ant engine could thus

be executed and products derived through an MTC consisting of
assets corresponding to different technologies.

Discussion

A meta-model defining efficient expression of the domain con-

cepts and their mutual relationships had to be carefully prepared

to build a DSL. A review of the mapping between the modelled

abstract entities and DSL syntax and semantics was also neces-

sary. Téllez (2011) proposed using a set of DSL properties as an

evaluation mechanism for validating DSLs: representation, ab-

sorption, standardisation, abstraction, expressiveness, compres-

sion, productivity and quality. It was considered that this mecha-

nism was appropriate for evaluating our DSL; however, more

experimentation must be conducted for collecting enough data
for quantitative validation.

Representation and abstraction properties were concerned with

the DSL’s concrete and abstract syntaxes; they were also con-

cerned with its ability to enable users to write unambiguous

sentences depicting domain concepts and their relationships. Our

DSL was defined using a meta-model representing common

abstract concepts for an MTC domain, such as transformation

stage, transformation rule, variation point, variant and mutual

relationships. These concepts acted as reference for the con-

structs in our DSL’s syntax and semantics. Our DSL included

common best practices from MDE and SPL. The reference meta-

model restricted our DSL grammar to specific, standard and
widely-used MD-SPL constructs.

Our DSL has been used for about a year by our research group

members. Two application examples have been developed to

date: a collection manager presented in this paper and a smart

home. Both examples consist of a set of MD-SPL core assets and

an MTC specification built with our DSL. The expressiveness of

the language has been enough to specify the decisions involved in

them. The smart home example can also be found on the afore-
mentioned website.

The complexity of building an MTC specification was hidden by

our DSL. MTC specification programmes written with our DSL

were easy to edit and our framework provided facilities for

validation and code completion in them. The complexity of an

MTC built with our DSL depended on the number of decisions
involved and derivation complexity.

Using our framework was successful regarding model transfor-

mation technology interoperability and reusing product lines’

core assets. The cost of capturing decisions within platform-

independent MTCs and maintaining and extending them was

significantly reduced. Regarding productivity metrics, experi-

ments involving real industry projects are still lacking for quanti-
tatively validating the adoption of our approach and framework.

Related work

Voelter & Groher(2007) have proposed a similar MD-SPL ap-

proach using domain models and complementary feature models

to capture variability. Nonetheless, their mechanism for captur-

ing derivation decisions was based on specifying relationships

between model transformation rules and variants, which must be

manually written in text files and are not easy to manage, adapt

and reuse. This approach, unlike ours, was limited to oAWMTC
generation.

Similar work by Clafer regarding MD-SPLs has been presented by

Bak, Czarnecki & Wasowski (2010). Baket et al., have used fea-

ture modelling to capture SPL variability. The variability model

then related problem space models to solution space models

from another viewpoint. The approach has the advantage of

representing both meta-models and feature models using a

common construct infrastructure but lacking a product deriva-
tion strategy.

Loughran, Sanchez, Garcia & Fuentes (2008) and Sanchez,

Loughran, Fuentes & Garcia (2008) have presented VML* and

shown that VML* is flexible; however, this requires a develop-

ment phase prior to MTC specification, thereby limiting and

delaying the use of the approach. VML is a platform-specific

approach since derivation process consists of a suite of model

transformations implemented only in oAW. Our approach has

been based on VML’s core principles of assembling architectural

concerns; however, we propose platform-independent derivation

process which can consist of a suite of model transformations

implemented in various technology frameworks and which does

not require a previous development phase. Heidenreich et al.,

(2010) and Heidenreich, Kopcsek & Wende (2008) have pre-

sented a similar approach to VML* called FeatureMapper. Fea-

tureMapper is intended to map the relationships of an EMF-

based6 domain model with a feature model. FeatureMapper only

supports negative variability action during one-stage derivation

thereby limiting the scope of the products the SPLs can derive.

To our knowledge, FeatureMapper is also a platform-specific
approach.

Wagelaar (2005) captured SPL variation by creating variability

models such as feature models. This approach, unlike ours, only

facilitated variation binding prior to executing the model trans-

formation stages, i.e. at domain level. This was a limitation on

SPL scope as variations cannot be configured on following do-

mains. Wagelaar used Ant build files at the top level of his ap-

proach to create MTCs according to the products which had to

be derived. This makes the approach particularly difficult to use

and also makes MTC maintenance a complex task. We based our

framework’s mechanism for creating MTCs on Ant build files.

However, we added a level on top, which is our DSL, to hide the

complexity of adapting MTCs at a low level and to cope with the

maintenance and reuse issues involved in the model transfor-
mation rules.

Table 1 presents a comparative summary of our approach’s

characteristics and those of the aforementioned approaches. The

requirements were presented in Section 3.2; the approach cited

as 1 was ours, 2 was by Voelter & Groher (2007), 3 Bak et al.,

(2010), 4 Sanchez et al., (2008), 5 by Heidenreich et al., (2008),
and 6 by Wagelaar (2005).

Table 1.Comparison with related approaches
Characteristic / approach 1 2 3 4 5 6

Provides a derivation mechanism x x x x x

Supports transformation stages during derivation x x

Schedules transformation rules x x x x x

Has a dedicated DSL for building MTCs x x x x

Manages variability x x x x x

Captures variation points x x x x x

Allows scheduling modification through actions or operations x x x x

Supports more than one variability strategy (e.g. positive, negative)
in MTC specifications

x x

Allows technology interoperability x

Is platform-independent x

6 http://www.eclipse.org/modeling/emf/. Last visit October 2012

PAZ AND ARBOLEDA

 INGENIERÍA E INVESTIGACIÓN VOL. 33 No. 2, AUGUST - 2013 (70-75) 75

Conclusions

We have presented a framework for creating platform-

independent MD-SPLs. We have introduced a DSL as part of our

framework, enabling product line architects to capture the scope

of product lines by adapting and composing model transfor-

mations with different implementation technologies according to

configurations. Product line architects can use our framework to

specify the variability involved in generation. Thus, transfor-

mation and composition logics were decoupled, facilitating the

traceability management of variants and their related transfor-

mation rules to improve SPL evolution and maintenance. Part of

our framework involved motivating the integration of model

transformation technologies for coping with their limitations. We

have also compared our work with related approaches, conclud-

ing that we have presented a relevant and needed innovation in

the field of MD-SPL engineering. We have developed tool sup-

port and application examples which are available on our website
for the MD-SPL community.

Future work will concentrate on integrating the use of legacy

generative development techniques into our framework, such as

templates, filtering and frame processing throughout the product

derivation process. Legacy generative development techniques

like these have been broadly adopted by companies which would

want to reuse their already existing artefacts developed with

them. This requires integration. Future work will focus on quan-

titative validation of our proposed approach based on the analy-

sis of data collected from further experiments involving real
industry projects.

References

Arboleda, H., Casallas, R., Royer, J.-C. Dealing w ith Fine-Grained

Configurat ions in Model-Driven SPLs. In Pr oceedings of t he 13t h

Int er nat ional Soft war e Pr oduct Line Confer ence (SPLC’09) , San

Francisco, CA, USA, Carnegie Mellon University , 2009, pp. 1–10.

Arboleda, H., Romero, A., Casallas, R., Royer, J.-C. Product Deri-

vat ion in a Model-Driven Softw are Product Line using Decision

Models. In Pr oceedings of t he 12t h IDEAS’09, Medellin, Colom-

bia, 2009.

Arboleda, H., Royer, J.-C., Model-Dr iven and Soft war e Pr oduct

Line Engineer ing., 1st ed., ISTE-W iley , 2012, pp. 288.

Aw ais Rashid, J. C., Royer, A. R., Aspect -Or ient ed, Model-Dr iven

Soft war e Pr oduct Lines. The AMPLE Way., Cambridge University

Press, 2011.

Bak, K., Czarnecki, K., W asow ski, A., Feature and meta-models in

Clafer: mix ed, specialized, and coupled. In Pr oceedings of t he

Thir d Int er nat ional Confer ence on Soft war e Language Engineer -

ing (SLE’10) , Eindhoven, The Netherlands, Springer-Verlag, 2010,

pp. 102–122.

Czarnecki, K., Helsen, S., Eisenecker, U . W . , Staged Configurat ion

Using Feature Models. In Pr oceedings of t he T hir d Soft war e

Pr oduct Line Confer ence, Vol. 3154, Springer LNCS, 2004, pp.

266–282.

Groher, I ., Voelter, M., Ex pressing Feature-Based Variability in

St ructural Models. In Wor kshop on Managing Var iabilit y for Soft -

war e Pr oduct Lines, 2007.

Heidenreich, F., Kopcsek, J., W ende, C., Feature Mapper: Map-

ping Features to Models. In Pr oceedings of t he 30t h Int er nat ion-

al Confer ence on Soft war e Engineer ing (ICSE’08) , Leipzig, Ger-

many , ACM, 2008, pp. 943–944.

Heidenreich, F., Sanchez, P., Santos, J., Zschaler, S., Alférez, M.,

Araújo, J., … Rashid, A. (2010). Relat ing feature models to other

models of a softw are product line: a comparat ive study of fea-

ture mapper and VML. In Katz, S., Mezini, M. (Eds.), T r ansact ions

on Aspect -or ient ed Soft war e Developm ent ., Vol. VI I , Berlin, Hei-

delberg, Springer-Verlag, pp. 69–114.

Linden, F. V. D., Schmid, K., Rommes, E. (2007). Soft war e Pr oduct

Lines in Act ions: The Best Indust r ial Pr act ices in Pr oduct Line En-

giner ing., Springer.

Loughran, N., Sanchez, P., Garcia, A., & Fuentes, L. (2008). Lan-

guage support for managing variability in architectural models.

In Pr oceedings of t he 7t h Int er nat ional Confer ence on Soft war e

Com posit ion (SC’08) , Budapest, Hungary , Springer-Verlag, pp.

36–51.

Pohl, K., Bckle, G., van der Linden, F., Soft war e Pr oduct Line Engi-

neer ing - Foundat ions, Pr inciples, and Techniques ., Heidelberg,

Springer, 2005.

Rashid, A., Royer, J.-C., Rummler, A., Aspect -Or ient ed, Model-

Dr iven Soft war e Pr oduct Lines. The AMPLE Way. Cambridge,

Cambridge University Press, 2011.

Sanchez, P., Loughran, N., Fuentes, L., Garcia, A., Engineering

languages for specify ing product -derivat ion processes in Soft-

w areProduct lines. In Pr oceedings of t he Fir st Int er nat ional Con-

fer ence in Soft war e Language Engineer ing (SLE’08) . Toulouse,

France, 2008.

Santos, A. L., Koskimies, K., Lopes, A., A Model-Driven Approach to

Variability Management in Product -Line Engineering. Nordic

Journal of Computing, Vol. 13 No. 3, 2006, pp. 196–213.

Stahl, T., Czarnecki, M. V. K., Model-Dr iven Soft war e Develop-

m ent : Technology, Engineer ing, Managem ent ., John W iley &

Sons, 2006.

Tessier, P., Gérard, S., Terrier, F., Geib, J. -M., Using variat ion propa-

gat ion for model-driven management of a sy stem family . In

Obbink, H., Pohl, K. (Eds.), Pr oceedings of t he 9t h Int er nat ional

Confer ence on Soft war e Pr oduct Lines (SPLC’05) , Vol. 3714,

Rennes, France, Springer-Verlag 2005, pp. 222–233.

 doi:10.1007/11554844

Téllez, L., A Dom ain-Specific Language t o Specify Behavior in a

Managem ent Gam e Sim ulat or ., Universidad de los Andes, 2011.

Voelter, M., Groher, I ., Product Line Implementat ion using Aspect -

Oriented and Model-Driven Softw are Development. In Pr oceed-

ings of t he 11t h SPLC, Ieee, 2007, pp. 233–242.

doi:10.1109/SPLINE.2007.23

W agelaar, D., Contex t -driven model refinement., MDAFA, 2005,

pp. 189–203.

Yie, A., Casallas, R., Deridder, D., W agelaar, D., Realizing Model

Transformation Chain Interoperability . , Soft war e & Syst em s

Modeling, Vol. 11, No. 1, 2012, pp. 55–75.

