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Stability of slender columns on an elastic foundation with 

generalised end conditions 
 

Estabilidad de columnas esbeltas sobre fundación elástica con  

condiciones de apoyo generalizadas 
 

J. D. Aristizabal-Ochoa1  

 

ABSTRACT  

Slender columns’ lateral stability under compressive axial loads is presented, with uninhibited, partially inhibited and totally inhibited 

end side-sway, including the effects of semi-rigid connections and a uniformly distributed lateral elastic foundation (Winkler's type) 

throughout its entire span. The proposed classification of prismatic columns on an elastic foundation and the corresponding stability 

equations are general and relatively simple to apply, yielding exact results when compared to other analytical methods. The buckling 

load was obtained by making the determinant of a 4 x 4 matrix equal to zero for columns having side-sway uninhibited or partially 

inhibited at both ends, and of a 3 x 3 matrix for columns having side-sway inhibited at one or both ends. The effect of semi-rigid 

connections on the buckling load of five classical column cases is fully discussed and the results compared to those arising from other 

analytical methods. 
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RESUMEN 

Se presenta de una manera clásica la estabilidad lateral de columnas esbeltas bajo cargas axiales de compresión; con derivas en 

los extremos desinhibidas, inhibidas parcialmente y totalmente inhibidas, incluyendo los efectos de las conexiones semirrígidas y una 

fundación elástica lateral y uniformemente distribuida (tipo Winkler) a lo largo de toda su luz. La clasificación propuesta en las colum-

nas prismáticas, sobre fundación elástica y las ecuaciones correspondientes de estabilidad son generales y relativamente simples de 

aplicar; obteniéndose resultados exactos cuando se comparan con otros métodos analíticos. La carga de pandeo se obtiene 

igualando a cero el valor del determinante de una matriz de 4 x 4, para columnas con deriva lateral desinhibida o parcialmente 

inhibida en ambos extremos, y de una matriz de 3 x 3 para columnas con deriva lateral inhibida en uno o ambos extremos, respec-

tivamente. Los efectos de las conexiones semirrígidas sobre la carga de pandeo, de cinco casos de columna clásicos, son discutidos 

y los resultados son comparados con los de otros métodos analíticos. 
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Received: May 19th 2013 

Accepted: October 15th 2013 

 

Introduction1  

The stability and second-order static analysis of columns laterally 

supported on an elastic foundation in generalised end conditions 

are of importance whit structural engineering. As noted by Het-

enyi (1967), there are many applications for such analysis, such as 

the construction of pile foundations, railroad tracks, bridges, thin 

revolution shells (pressure vessels, boilers and containers) and 

large-span cylindrical shells and domes. For instance, a symmetri-

cally loaded longitudinal element of a cylindrical tube regarding its 

axis can be treated as a beam on an elastic foundation. Thus, the 

proposed approach can be used for studying a wide range of prob-

lems related to elastic stability and second-order static analysis, 

being of particular importance in structural and geotechnical engi-

neering, specifically in soil-structure interaction problems dealing 
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with piles, drilled shafts, caissons and/or piers subjected to a com-

binations of axial, moment and lateral loads. 

Hetenyi (1967) outlined the classical procedure for resolving the 

elastic stability of prismatic columns having hinged and clamped 

connections on an elastic foundation presenting the “exact” solu-

tion for particular cases, such as columns having free-free, hinged-

hinged and clamped-clamped end conditions. Timoshenko and 

Gere (1961) used a similar approach to resolving other cases of 

interest, such as a column under a uniformly-distributed axial load 

on an elastic foundation. West and Mafi (1984) determined the 

eigen-values for columns on elastic supports using an initial-value 

numerical method. Razaqpur (1986) presented the stiffness and 

equivalent joint load matrices for a column finite element resting 

on a Winkler-type elastic foundation using “exact” shape func-
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tions. Cheng and Pantelides (1988) derived the differential equa-

tions, stiffness coefficients and fixed-end forces of a column on an 

elastic foundation, including bending and shear deformation. Ang 

and Wang (1990), as well as Wang, Xiang and Kitipornchai (1991) 

used finite elements for studying the buckling of columns on an 

elastic foundation. More recent papers on the stability of beam-

columns resting on an elastic foundation, including two and three 

parameter foundation models, are available in the technical litera-

ture, such as those by Struthers and Jayaraman (2010), Morfidis 

(2007, 2010), Avramidis and Morfidis (2006) and Onu (2006). 

Aristizabal-Ochoa (1994, 1996 and 1997) has presented the effects 

of semi-rigid connections on the stability and second-order analy-

sis of columns and framed structures. Areiza-Hurtado et al., (2005) 

evaluated second-order stiffness matrix and loading vector with 
generalised end conditions regarding a Timoshenko column on a 

Winkler foundation. More recently, Arboleda-Monsalve et al., 

(2008) and Zapata-Medina et al., (2010) have studied shear effects 

on elastic stability and the dynamics of beams-columns on an elas-

tic foundation. However, a complete set of stability equations for 

columns laterally supported on a continuous elastic foundation 

having generalised end conditions subjected to axial end loads are 

not available in the technical literature. 

This publication’s main objective was thus to present complete 

classification and corresponding stability equations for prismatic 

columns subjected to end axial loads, including the effects of semi-

rigid bending connections, bracing stiffness at both ends and a uni-

formly distributed elastic support (Winkler type). The buckling 

load was obtained by making the determinant of a 44 matrix 

equal to zero for columns having side-sway uninhibited or partially 

inhibited at both ends, and of a 33 matrix for columns having 

side-sway inhibited at one or both ends. The present paper is re-

stricted to an elastic static analysis of a single slender column, with 

three different lateral bracing types, leading to manageable analyt-

ical solutions. The effects of shear deformation on the member’s 

buckling capacity are neglected. The importance of shear effects 

on the static and dynamic response of short columns or columns 

with low shear stiffness [Areiza-Hurtado et al (2005), Arboleda-

Monsalve et al., (2008), and Zapata-Medina et al. (2010)].  

Structural model 

Assumptions 

A prismatic element is considered that connects points A and B 

(Fig. 1). AB consists of a column A'B' and lumped flexural connect-

ors AA' and BB' at the top and bottom ends, respectively. It is 

assumed that: 

1) A'B' is made from a homogeneous linear elastic material hav-

ing a modulus of elasticity E and continuously supported along 

its span by a uniformly distributed elastic foundation (Winkler 

type) of magnitude ks; 

2) The centroid axis of the column is initially a straight line in 

which the elastic centroid coincided with the shear centre of 

the cross section. Initial geometrical imperfections in the col-

umn were not considered; 

3) The column is subject to end compressive axial load P applied 

along its centroid axis and also subjected to overturning mo-

ments and shear forces Ma, Va and Mb, Vb at ends A’ and B’, 

respectively; 

4) End lateral sway is partially inhibited by springs Sa and Sb lo-

cated at A’ and B’, respectively; 

5) End rotations are partially inhibited by flexural springs a and 

b located at A’ and B’, respectively; and 

6) The second-order analysis in the next section is intended to 

be in the small deflection range (commonly referred to as a 

"linearised" approach). It should be pointed out that results 

are valid as long as the lateral deflection of the column re-

mained small. 

 

Figure 1.  Model of a beam-column resting on an elastic foundation ks 
with side-sway partially inhibited by end bracing stiffness Sa and Sb and 

rotationally restrained by end flexural springs a and b 

Flexural connectors AA' and BB' had stiffness a and b (with units 

in force-distance/radian), respectively. The ratios Raa/(EI/L) and 

Rbb/(EI/L) were denoted as the stiffness indices of the flexural 

connections, where I = column moment of inertia about the prin-

cipal axis in question and L = column span. The stiffness indices 

varied from zero (i.e. Ra = Rb = 0) for hinged connections to infinity 

(i.e., Ra = Rb = ) for rigid connections or clamped ends. 

The main difference between the classical solution presented in 

this paper and that available in the pertinent technical literature 

(Timoshenko and Gere, 1961; Hetenyi, 1967; Scott, 1981) is that 

the solution for the model shown in Fig. 1 included the effects of 

semi-rigid connections and could be used for both stability and 

second-order analysis of columns on an elastic foundation sub-

jected to any end load combination. 

For convenience, the following two parameters were introduced: 

a= 1/(1+3/Ra); and b= 1/(1+3/Rb) (1a-b) 

where a and b were called fixity factors. For perfectly hinged 

connections, both fixity factor  and stiffness index R were zero; 
but, for perfectly rigid connections, fixity factor was 1 and the stiff-

ness index was infinity. Since fixity factor in the elastic range can 

only vary from  to +1 (while stiffness index R may vary form  

to +), it was more convenient to use it in the analysis of struc-

tures having semi-rigid connections, as suggested by Monforton 
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(1963). Factor 3 in equations (1a-b) came from the slope-deflec-

tion analysis of a beam having semi-rigid connections at both ends. 

Deriving lateral equilibrium equations 

The second-order governing of a differential equation for a pris-

matic column laterally supported on an elastic foundation ks sub-

jected to compressive axial loads P at both ends as well as to over-

turning moments and shears Ma, Va and Mb, Vb at A’ and B’, respec-

tively, is as follows: 

0ysk
2

dx

y
2

d
P

4
dx

y
4

d
EI   (2) 

Eq. (2) is the equation governing a column laterally supported on 

an elastic foundation subject to compressive axial loads P at both 

ends in deformed conditions. Its solution is known as second-order 

analysis (see Chen and Lui, 1987, p. 2). 

For a column having side-sway partially inhibited at both ends 

(Fig. 2a), the solution to Eq. (2) has to be subject to the following 

four boundary conditions: 

1) At x= L 
bM

dx

dy

b
dx

yd
EI  

2

2

 (3a) 

2) At x= 0 
aM

dx

dy

a
dx

yd
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2

2

 (3b) 

3) At x= L 
bVybS

dx

dy
P

dx

yd
EI 

3

3

 (3c) 

4) At x= 0 
aVyaS

dx

dy
P

dx

yd
EI 

3

3

 (3d) 

The solution to Eq. (2) depends on the relative value of compres-

sive P regarding EIs4k  , as explained by Hetenyi (1967). There 

were two types of solution in the compressive range (i.e., for P  

0), as follows: 

for 0  P  EIsk4  

y = (C1ex C2e-x) cosx + (C3ex  C4e-x) sinx (4) 

where: ;
4EI

P

4EI

k s
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4EI

P

4EI

k s   

for P  EIsk4  

y= C1 cosx + C2 cosx + C3 sinx + C4 sinx (5) 

where: 
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The four constants C1, C2, C3 and C4 in Eqs. (4) and (5) is deter-

mined from the four natural boundary conditions given by Eqs. 

(3a)-(3d). These is reduced to Eqs. (6a)-(6d) after some algebraic 

manipulation: 

A11 C1 + A12 C2 + A13 C3 + A14 C4 = (1b)Mb/(EI/L) (6a) 

A21 C1 + A22 C2 + A23 C3 + A24 C4 = (1a)Ma/(EI/L) (6b) 

A31 C1 + A32 C2 + A33 C3 + A34 C4 = Vb/EI (6c) 

A41 C1 + A42 C2 + A43 C3 + A44 C4 = Va/EI (6d) 

where Aij coefficients were as follows: 

I) for 0 P  EIsk4  

A11= eL3b + 2L(1b) sinL + 3b + 

L(1b)(22)cosL 
(7a) 

A12= eL3b2L(1b) sinL + 

3bL(1b)(22) cosL 
(7b) 

A13= eL3b + L(1b)(22) sinL + 3b + 

2L(1b) cosL 

(7c) 

A14= eL3b L(1b)(22) sinL  

3b2L(1b) cosL 

(7d) 

A21= 3aL(1a)(22) (7e) 

A22= 3aL(1a)(22) (7f) 

A23= 3a2L(1a) (7g) 

A24= 3a+2L(1a) (7h) 

A31= eLPEI(232) sinL + 

(SbP)EI(232) cosL 

(7i) 

A32= eLPEI(232) sinL + (Sb + 

P)EI+(232) cosL 

(7j) 

A33= eL(SbP)EI(232) sinL  

PEI(232) cosL 

(7k) 

A34= eL(Sb+P)EI + 

(232)sinLPEI(232) cosL 

(7l) 

A41= (Sa+P)EI + (232) (7m) 

A42= (As-P)EI  (232) (7n) 

A43= A44= PEI(232) (7o) 

where: ;
4EI

P

4EI

k s
 and 

4EI

P

4EI

ks   

II) for P  EIsk4  

A11= 3b sinL + L(1b)2 cosL (8a) 

A12= 3b sinL + L(1b)2 cosL (8b) 

A13= 3b cosL   L(1b)2 sinL (8c) 

A14= 3b cosL   L(1b)2 sinL  (8d) 

A21= L(1a) 2  (8e) 

A22= L(1a) 2  (8f) 

A23= 3a (8g) 

A24= 3a (8h) 

A31= (SbEI)cosL   (2PEI) sinL  (8i) 

A32= (SbEI)cosL   (2PEI) sinL (8j) 

A33= (SbEI)sinL + (2PEI) cosL (8k) 

A34= (SbEI)sinL + (2PEI)  cosL (8l) 
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A41= A42 = SaEI (8m) 

A43= (2PEI) (8n) 

A44= (2PEI) (8o) 

where:
;
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


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


 

For columns having side-sway totally inhibited at A’ and par-

tially inhibited at B’ (Fig. 2b), the fourth natural boundary con-

dition given by Eq. (3d) or (6d) has to be substituted by  forced 

boundary condition y= 0 at A or simple C1= C2, which, when in-

troduced into the other three natural boundary conditions given 

by Eqs. (6a)-(6c), became: 

(A11 A12)C1 + A13 C3 + A14 C4 = (1b)Mb/(EI/L) (9a) 

(A21 A22)C1 + A23 C3 + A24 C4 = (1a)Ma/(EI/L) (9b) 

(A31 A32)C1 + A33 C3 + A34 C4 = Vb/EI (9c) 

For columns having lateral side-sway totally inhibited at both 
ends A’ and B’ (Fig. 2c), the third natural boundary condition 

given by Eqs. (3c) or (9c) has to be substituted by forced boundary 

conditions y = 0 at B. This condition became: 

for 0  P EIsk4  

(e2L 1) cosL C1 + e2L sinL C3+ sinL C4= 0 (10) 

for P  EIsk4  

(cosL cosL) C1 + sinL C3+ sinL C4 = 0 (11) 

 

 
Figure 2. Beam-column classification according to the side-sway allowed 
at each end: a) side-sway uninhibited or partially inhibited at both ends; 
b) side-sway inhibited at A and partially inhibited at B; and c) lateral side-
sway inhibited at both ends 

 

Proposed stability equations 

According to the type of end side-sway just described, three major 

buckling modes is distinguished in columns having semi-rigid con-

nections and being laterally supported on a continuous Winkler´s 

foundation. They were columns having lateral sway which was un-

inhibited or partially inhibited at both ends (Fig. 2a), totally inhib-

ited at one end and partially inhibited at the other end (Fig. 2b) 

and/or totally inhibited at both ends (Fig. 2c). The corresponding 

stability equations are listed and explained below for easy refer-

ence: 

Type 1: Columns with side-sway uninhibited or partially inhibited at 

both ends 

For columns in which side-sway at A’ and B’ is partially inhibited 

by springs Sa and Sb (Fig. 2a), respectively, the stability equation 

consisted of the eigen-value solution to the 44 determinant given 

by Eq. (12): 

0

44434241

34333231

24232221
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(12) 

Type 2: Columns having side-sway inhibited at one end and partially 

inhibited at the other end 

For columns in which lateral sway at A’ is totally inhibited and 

partially inhibited at B’ by lateral spring Sb (Fig. 2b), the stability 

equation consists of the eigen-value solution to the 33 determi-

nant given by Eq. (13): 
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Type 3: Columns with lateral side-sway inhibited at both ends  

For columns having lateral sway totally inhibited at both ends (Fig. 

2c), the stability equation consists of the eigen-value solution to 

the 33 determinant given by Eqs. (14) or (15): 

for 0 P EIks4 :  
0

sinsin
2

cos)1
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(
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(14) 

for P  EIks4 :  
0

sinsincoscos
24232221

14131211









LLLL

AAAA

AAAA



 (15) 

The Aij coefficients in Eqs. (12), (13), (14) and (15) is given by ex-
pression (7) or (8), depending on the magnitude of compressive 

load P when compared to EIks4  (the value of elastic buckling 

load of an infinitely long column, as explained by Hetenyi (1967), 

p. 136). 

It may be noticed that the buckling modal shapes for any of the 

three types of buckling could be determined directly using either 

Eq. (4) or Eq. (5) once the value of the buckling load had been 

determined from the corresponding characteristic equations listed 

above (i.e. Eqs. (12)-(15)] and corresponding Aij coefficients given 

by either Eqs. (7) or (8) calculated). This solution was identical to 

that for any standard eigen-value problem. 
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Classical column cases 

Variations in the critical load of a column supported by a uniformly 

distributed elastic foundation of stiffness ks under different bound-

ary conditions (five cases shown in Fig. 3a-e), including the effects 

of semi-rigid connections, were studied. The critical loads for dif-

ferent values of /(EI)Lk
4

s
, as suggested by Hetenyi (1967), and 

for five different fixity factors ranging from hinged to clamped con-

ditions, are listed in Tables 1-5 for each case shown in Fig. 3a-e, 

respectively. The values listed in these tables were calculated to 

five significant figures (for comparison with those obtained by 

Hetenty's formulae) using the proposed model and Eqs. (12)-(15). 

 
Figure 3. Five classical beam-column cases: a) side-sway uninhibited at 
both ends, hinged at A and restrained against rotation at B; b) side-sway 
uninhibited and equally restrained against rotation at both ends; c) side-
sway inhibited and rota-tionally restrained at A and hinged at B; d) side-
sway inhibited at both ends, rotationally restrained at A and hinged at B; 
and e) side-sway inhibited and equally restrained against rotation at both 
ends 

The values listed in Tables 1 and 2 for = 0 (i.e. hinged) were 
verified with those by Hetenyi (1967) [Eq. 125 and Fig. 117, p. 

143], yielding identical results, whereas those in Table 3 compared 

very well to the simplified formula Pcr= EIks
 for infinitely long 

columns and any value of rotational restraint at B reported by 

Hetenyi (1967). Similarly, values listed in Tables 4 and 5 for = 0 

(i.e. hinged) and = 1 (i.e. perfectly clamped) were verified with 

those by Hetenyi (1967) [Eqs. 127 and 128, and Figs. 118 and 119, 

respectively, pages 145-147], identical results being yielded too. 

The values in Table 4 also compared very well to the simplified 

formula Pcr= EIks4  for infinitely long columns and any value of 

end rotational restraint reported by Hetenyi (1967). 

Table 1 indicates that for columns having side-sway uninhibited at 

both ends and rotational restraint at one end, it was only effective 

in columns on elastic foundations having ks  25EI/L4. For larger 
values of ks, increased buckling load regarding rotational restraint 

was rather small (less than 20% for values of ks 900EI/L4 and 

reaching increases lower than 3% for ks 2500EI/L4). Table 2 indi-

cates that critical load increased over 500% for ks 25EI/L4 by per-

fectly clamping both ends as compared to perfectly hinged ends. 

For larger values of ks, the buckling load increased by just over 

100%. 

Table 1. Buckling load/(2EI/L2)Column with side-sway uninhibited at both 

ends, hinged at A and restrained against rotation at B 

 a= 0 and 0 b  1 

/(EI)Lk 4

s
 0 0.20 0.50 0.80 1.00 

0 0 0.06028 0.14407 0.21318 0.25000 

5 0.20891 0.27179 0.35189 0.41080 0.43978 

10 0.80557 0.86948 0.91621 0.93663 0.94443 

15 1.43173 1.51215 1.54143 1.54992 1.55277 

20 1.75911 1.88170 2.00042 2.05988 2.08293 

25 2.16856 2.30282 2.44727 2.52784 2.56055 

30 2.65042 2.79168 2.93408 3.00846 3.03785 

40 3.77770 3.91537 3.99683 4.02601 4.03630 

50 5.00904 5.05753 5.06157 5.06260 5.06294 

60 5.96797 6.06041 6.07769 6.08230 6.08385 

70 6.90228 7.03763 7.07976 7.09193 7.09606 

80 7.90451 8.04711 8.08985 8.10207 8.10622 

90 8.95261 9.07986 9.10775 9.11531 9.11785 

100 10.02396 10.11580 10.12715 10.13008 10.13106 

200 20.25175 20.26407 20.26418 20.26421 20.26422 

500 104.82612 104.84274 104.89287 105.09434 105.85696 

1,000 206.39871 206.40872 206.43888 206.56051 206.90558 

2,500 510.52741 510.52744 510.52752 510.52775 510.52848 

 

Table 2. Buckling load/(2EI/L2) Column with side-sway uninhibited and re-
strained against rotation at both ends 

 a= b 

/(EI)Lk 4

s
 0 0.20 0.50 0.80 1.00 

0 0 0.13475 0.39581 0.73814 1.00000 

5 0.20891 0.35335 0.63180 0.99049 1.25665 

10 0.80557 0.98480 1.32721 1.74568 2.02659 

15 1.43173 1.73172 2.40731 2.99527 3.30985 

20 1.75911 2.07375 2.78342 3.97126 5.02660 

25 2.16856 2.50282 3.25907 4.51969 5.60406 

30 2.65042 3.00979 3.82701 5.18633 6.30985 

40 3.77770 4.20395 5.19333 6.85964 8.10639 

50 5.00904 5.51779 6.74164 8.93369 10.41624 

60 5.96797 6.51097 7.84518 10.51335 13.10639 

70 6.90228 7.48365 8.92394 11.84295 14.58926 

80 7.90451 8.52998 10.09601 13.34020 16.30025 

90 8.95261 9.62578 11.33206 14.98057 18.23938 

100 10.02396 10.74576 12.59879 16.72462 20.40665 

200 20.25175 21.29899 24.12361 31.59736 41.42557 

500 104.82612 104.85951 104.96207 105.40719 107.29154 

1,000 206.39871 206.41878 206.47986 206.73737 207.74052 

2,500 510.52741 510.52747 510.52766 510.52843 511.01519 

Table 3 indicates that for columns having side-sway inhibited at 
one end, rotational restraint at the same end was only effective in 

columns on an elastic foundation where ks  0. For 

25EI/L4ks400EI/L4 the increase in buckling load was less than 

12% and for values of ks 900EI/L4 the increase in buckling load 

was less than 1%. 

Tables 4 and 5 indicate similar trends to those observed in Tables 

1 and 2 for columns having side-sway inhibited at both ends. Ro-

tational restraints at one or both ends were only effective in col-

umns on an elastic foundation where ks 25EI/L4. For larger values 
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of ks, increased buckling load regarding rotational restraint was not 

significant. It was obvious that it was more effective to restrain 

both ends simultaneously against rotation than just one end. The 

values listed in Tables 1, 3 and 4 varied linearly with /(EI)Lk
4

s
 , 

having very small variations in Pcr with the degree of flexural re-

straint, making rotational conditions of secondary importance in 

long columns. 

Table 3. Buckling load/(2EI/L2) Column with side-sway inhibited and rota-
tionally restrained at A, and free and hinged at B 

 0 a  1 and b= 0 

/(EI)Lk 4

s
 0 0.20 0.50 0.80 1.00 

0 0 0.06029 0.14407 0.21318 0.25000 

5 0.63111 0.63295 0.63512 0.63681 0.63773 

10 1.08744 1.10806 1.14333 1.18449 1.21549 

15 1.49199 1.51474 1.55680 1.61175 1.65795 

20 1.97613 1.99163 2.02080 2.06007 2.09435 

25 2.50599 2.51318 2.52686 2.54571 2.56270 

30 3.04149 3.04334 3.04695 3.05208 3.05691 

40 4.06982 4.07007 4.07057 4.07135 4.07216 

50 5.06917 5.07050 5.07330 5.07794 5.08317 

60 6.07473 6.07595 6.07859 6.08315 6.08864 

70 7.08892 7.08951 7.09081 7.09316 7.09612 

80 8.10517 8.10532 8.10567 8.10630 8.10714 

90 9.11997 9.11997 9.11999 9.12002 9.12006 

100 10.13318 10.13319 10.13322 10.13328 10.13337 

200 20.26426 20.26426 20.26426 20.26427 20.26429 

500 102.42982 102.72692 103.39819 105.10425 105.99062 

1,000 203.68868 203.97683 204.62458 205.66899 206.20415 

2,500 507.57870 507.85635 508.47716 509.50189 510.30875 

Summary and conclusions 

An analytical method has been presented for evaluating the critical 

buckling axial load of columns having side-sway uninhibited, par-

tially inhibited and totally inhibited and laterally supported by a 

uniformly distributed elastic foundation (Winkler's model). The 

proposed column classification and corresponding stability equa-

tions were general and relatively simple to apply, yielding exact 

results when compared to other linear elastic analytical methods. 
The proposed formulae can also be applied to the stability of col-

umns having rigid, semi-rigid and simple connections, with or with-

out elastic supports. Semi-rigid connection effects were explicitly 

included. The end fixity factors were selected to consider the ef-

fects of semi-rigid connections in stability analysis, since they were 

practical and convenient. 

The buckling load is obtained by making the determinant of a 44 
matrix equal to zero for columns having side-sway uninhibited or 

partially inhibited at both ends, and of a 33 matrix for columns 

having end side-sway inhibited at one or both ends. The effects of 

lateral bracing one or both ends of the column have been pre-

sented. The buckling load of five classical cases was presented and 

compared to those by other analytical methods to demonstrate 

the use and relative simplicity of the proposed column classifica-

tion and corresponding stability equations. Tables 1-5 can be used 

directly in stability analysis of columns having semirigid connec-

tions on an elastic foundation. The proposed method and its equa-

tions can be programmed, facilitating calculations and efficient 

computer coding and avoiding cumbersome procedures. It should 

be emphasised that the proposed model is just an approximation 

of the real load transfer mechanism on piles, drilled shafts, caissons 

and piers. It neglects the soil-pile friction skin contribution to load 

capacity and is unable to calculate vertical settlement and stresses 

in foundation soils which are generally the controlling factors dur-

ing design. 

Table 4. Buckling load/(2EI/L2) Column with side-sway inhibited at both 
ends, rotationally restrained at A and hinged at B 

 0 a  1 and b= 0 

/(EI)Lk 4

s
 0 0.20 0.50 0.80 1.0 

0 1.00000 1.13608 1.40694 1.77129 2.04575 

5 1.25665 1.39216 1.65772 2.00342 2.25403 

10 2.02660 2.15990 2.40569 2.68845 2.86806 

15 3.30985 3.43578 3.62369 3.77387 3.84515 

20 5.02660 5.06093 5.06474 5.06572 5.06605 

25 5.60406 5.73286 5.94515 6.15132 6.26753 

30 6.30985 6.44373 6.69767 7.01894 7.25656 

40 8.10639 8.24068 8.49664 8.81665 9.04279 

50 10.41624 10.54413 10.74624 10.92273 11.01150 

60 13.10639 13.15798 13.16812 13.17082 13.17173 

70 14.58926 14.71960 14.94319 15.17431 15.31092 

80 16.30025 16.43473 16.69354 17.02918 17.28330 

90 18.23938 18.37385 18.63186 18.96087 19.20093 

100 20.40665 20.53839 20.77181 21.02286 21.17358 

200 41.42557 41.50133 41.53007 41.53868 41.54161 

500 101.37746 101.51125 101.76321 102.07252 102.28860 

1,000 202.65982 202.79426 203.05225 203.38296 203.62765 

2,500 510.16617 511.18858 511.81888 513.49927 515.62152 

 

Table 5. Buckling load/(2EI/L2) Column with side-sway inhibited and 
equally restrained against rotation at both ends 

 a= b 

/(EI)Lk 4

s
 0 0.20 0.50 0.80 1.00 

0 1.00000 1.28208 1.91659 2.99066 4.00000 

5 1.25665 1.53836 2.16884 3.22204 4.19205 

10 2.02660 2.30710 2.92422 3.91072 4.76276 

15 3.30985 3.58777 4.17716 5.03690 5.69423 

20 5.02660 5.31335 5.91043 6.95059 6.55234 

25 5.60406 5.89044 6.57283 7.90956 8.46691 

30 6.30985 6.59572 7.27227 8.57226 10.04787 

40 8.10639 8.39077 9.04988 10.24535 11.47225 

50 10.41624 10.69796 11.32695 12.35858 13.26391 

60 13.10639 13.39200 14.06788 14.85438 15.38058 

70 14.58926 14.87533 15.55595 16.90354 17.75189 

80 16.30025 16.43473 17.26383 20.16972 18.58612 

90 18.23938 18.52452 19.19332 20.45562 21.86351 

100 20.40665 20.69046 21.34371 22.51090 23.68742 

200 41.42557 41.71010 42.37368 43.40027 44.04601 

500 101.37746 101.66276 102.33422 103.62254 105.13392 

1,000 202.65982 202.94548 203.62132 204.94061 206.55531 

2,500 510.16617 511.39897 512.77221 516.39050 522.52653 

 

The analytical results indicated that the effects of a uniformly dis-

tributed lateral support of magnitude ks became more significant 

in columns having free ends than in columns having both ends re-

strained against rotation and side-sway. The buckling load of a col-

umn, laterally supported by a very soft elastic foundation, could be 

substantially increased by either restraining its ends against rota-

tion or by bracing both ends against side-sway. 
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