
INGENIERÍA E INVESTIGACIÓN VOL. 33 No. 3, DECEMBER - 2013 (66-71)

 66

OOAspectZ and aspect-oriented UML class diagrams

for Aspect-oriented software modelling (AOSM)

OOAspectZ y diagramas de clase orientados a los aspectos para la

Modelación Orientada a Aspectos (MSOA)

C. Vidal Silva1, R. Saens2, C. Del Río3 and R. Villarroel4

ABSTRACT aspect-oriented

Regarding modularised software development, Aspect-oriented programming (AOP) identifies and represents individually crosscutting

concerns during the software development cycle’s programming stage. This article proposes and applies OOAspectZ to formal As-

pect-oriented requirement specifications for prior stages of the software development cycle. It particularly concerns requirement

specification and the structural design of data and behaviour, along with describing and applying Aspect-oriented UML class dia-

grams to designing classes, aspects and associations among classes and aspects during Aspect-oriented software development

(AOSD).

OOAspectZ is a language integrating both Object-Z and AspectZ formal languages whereas Aspect-oriented UML class diagrams

represent AOP code, object class and crosscutting concern class structure by means of stereotypes. This article shows and applies the

main OOAspectZ and AO UML class diagram characteristics to Aspect-oriented software modelling (AOSM) using a classic example

of AOP. Ideas for future work concerning an actual AOP version are also indicated.

Keywords: Aspects, OOAspectZ, UML class diagram, crosscutting concern.

RESUMEN

En la búsqueda de desarrollo del software modularizado, la Programación Orientada a Aspectos (POA) identifica y

representa de manera separada funcionalidades cruzadas en la etapa de programación del ciclo de desarrollo del

software. Para las etapas previas del ciclo de desarrollo del software, particularmente, en la especificación de reque-

rimientos y el diseño estructural de los datos y comportamientos, este trabajo propone y aplica OOAspectZ para la

especificación formal de requerimientos orientados a aspectos, además, describe y aplica diagramas de clases UML

orientados en el diseño y la asociación entre clases y aspectos, para el proceso de Desarrollo del Software Orientado

a Aspectos (DSOA), respectivamente.

Particularmente, OOAspectZ es un lenguaje que integra los lenguajes formales Object-Z y AspectZ, mientras que, los

diagramas de clases UML orientados a aspectos representan la estructura del código de POA, clases de objetos y

clases de funcionalidades cruzadas con el uso de estereotipos. Este artículo muestra y aplica las principales caracte-

rísticas de los lenguajes OOAspectZ y diagramas de clase UML orientados a aspectos, para la modelación del software

orientado a aspectos (MSOA) que se aplican a un ejemplo clásico de POA, además, se entregan ideas de trabajo

futuro respecto a una actual versión de POA.

Palabras clave: aspectos, OOAspectZ, diagramas de clase UML, e incumbencias cruzadas.

Received: February 26th 2013

Accepted: October 2th 2013

Introduction1 234

According to Kiczales et al., (1997) “in system implementation, an

aspect is a property that cannot be clearly encapsulated in a gen-

eral procedure.” Also, aspects cannot be modularised by means of

1 Cristian Vidal Silva. PhD Computer Science student, Michigan State University, USA.

Affiliation: Professor of Business Informatics Administration at the University of Talca,

Chile. E-mail: cvidal@utalca.cl
2 Rodrigo Saens. PhD in Economics from the University of Connecticut, USA. Affilia-

tion: Professor of Business Administration at the University of Talca, Chile. E-mail:

rsaens@utalca.cl
3 Carolina Del Río. MSc in Organizational and Behavioral Development from Diego

Portales University, Chile. Affiliation: Professor of Business Administration at the Uni-

versity of Talca, Chile. E-mail: cdelrio@utalca.cl

traditional procedural or object-orientated (OO) methods

(Kiczales, & Mezini, 2005). Aspects thus interleave a system’s en-

capsulated methods, producing cross-cutting concerns. To solve

these issues, AOP allows modularising aspects to enable modular

reasoning in cross-cutting concerns. Typical examples of cross-

4 Rodolfo Villarroel. PhD in Computer Science from the Universidad de Castilla-La

Mancha at Ciudad Real, Spain. MSc in Computer Science from the Universidad Téc-

nica Federico Santa María, Chile. Affiliation: Professor at the Escuela de Ingeniería

Informática from the Pontificia Universidad Católica de Valparaíso, Chile.

E-mail: rodolfo.villarroel@ucv.cl

How to cite: Vidal, C., Saens, R., Del Río, C., Villaroel, R., OOAspectZ y diagramas

de clase orientados a los aspectos para la Modelación Orientada a Aspectos

(MSOA)., Ingeniería e Investigación, Vol. 33, No. 3, December 2013, pp. 66 – 71.

VIDAL, SAENS, DEL RÍO AND VILLARROEL

 INGENIERÍA E INVESTIGACIÓN VOL. 33 No. 3, DECEMBER - 2013 (66-71) 67

cutting in a software system would be logging and security issues.

Aspects know which encapsulated elements should be advised,

since (in classical AOP) each aspect explicitly declares which rou-

tines and classes must be advised and in which conditions, i.e. as-

pects know when and where they have to advise a system’s en-

capsulated elements by means of a pointcut (PC) rule definition. A

PC is a predicate defining join points (JP) between a system’s ele-

ments and aspects (Kiczales, & Mezini, 2005). For a given JP, as-

pects can use three kinds of advice: before, after and around. As-

pect behaviour (advice) is added to or replaces encapsulated be-

haviour (Kiczale et al., 1997; Kiczales, & Mezini, 2005). Regarding

software applications, aspects can change their base code behav-

iour.

Even though AOP enables modularising elements which could not

be modularised previously by other software development meth-

odology, as indicated by Bodden et al., (2013) a few issues concern

modularising software using classic AOP and join point interfaces

(JPI) has been proposed (Bodden et al., 2013) for solving such is-

sues.

This article looks at using classic Aspect-oriented (AO) principles

in previous phases of software development. Its main goals were

to propose a formal specification language, OOAspectZ, and

model a classic AOP system by using OOAspectZ to describe the

pros and cons of this formal language proposal. It adapts a previous

proposal for AO UML class diagrams, attempting a clearer defini-

tion of PC units.

interface Shape {

 public moveBy(int dx, int dy);
 }

class Point implements Shape {

 int x, y; //intentionally package public

 public int getX() { return x; }

 public int getY() { return y; }

 public void setX(int x) { this.x = x; }

 public void setY(int y) { this.y = y; }

 public void moveBy(int dx, int dy) {
 x += dx;
 y += dy; }

 }
}

class Line implements Shape {

 private Point p1, p2;

 public Point getP1() { return p1; }

 public Point getP2() { return p2; }

 public void moveBy(int dx, int dy) {
 p1.x += dx; p1.y += dy;

 p2.x += dx; p2.y += dy; }
}

aspect UpdateSignaling {

 pointcut change(): execution(void Point.setX(int))
 || execution(void Point.setY(int))

 || execution(void Shape+.moveBy(int, int));

 after() returning: change() {
 Display.update();

 }
}

Figure 1. Painting system AspectJ source code

Figure 2. Painting system AO UML class diagram and AspectJ source code

Aspect-oriented modelling

Several articles have dealt with UML extensions to support AO

modelling (AOM). For example, Bustos, & Eterovic (2007) and Liu,

& Chuang-Wen (2008) have applied UML class diagrams to AO

modelling and Wimmer et al., (2011) have surveyed UML and

AOM. Using an updated version of the modelling form presented

by Liu, & Chuang-Wen (2008), Figure 1 shows a painting system

AspectJ source code (Kiczales & Mezini, 2005), a classic example

of AOP, whereas Figure 2 shows a painting system AO UML class

diagram.

The AOM form presented by Liu and Chuang-Wen (2008) allows

modelling the main AOP elements, such as advised classes by as-

pects, and aspects. However, elements for defining PC units are

not considered by such AOM form. Figure 2 shows that aspects

should consist of PC units and there are directed associations ste-

reotyped by <<Weave>> from classes to PC units, even though a

PC defines a criterion for advising its referenced instances of clas-

ses, i.e., association between classes and PC units should be op-

posed. However, using weaving, means that association direction

would be correct since final waived classes incorporate code of

aspects.

Figure 2 gives an extended version of Liu and Chuang-Wen

(2008)’s proposal for modelling the AOP code in Figure 1. The

original proposal’s ideas are preserved and this extended version

only defines PC using ideas concerning AspectJ such as a method’s

execution and call. These extensions look for a detailed PC defi-

nition to enable a high degree of transparency between the code’s

structural elements and the structural model of the code, i.e., easy

 OOASPECTZ AND ASPECT-ORIENTED UML CLASS DIAGRAMS FOR ASPECT-ORIENTATED SOFTWARE…

 INGENIERÍA E INVESTIGACIÓN VOL. 33 No. 3, DECEMBER - 2013 (66-71) 68

translation of structural models to the main elements of AOP pro-

gramme code (aspects and classes) and vice-versa, as shown in

Figures 1 and 2.

Painting system key objects are instances of shape, point and line,

and display. This scenario concerns an abstract shape class, and

concrete point and line classes, shape subclasses. There is a single

display class and, for simplicity, just a single system-wide display

operation: Display.update(), performed by aspect UpdateSignaling.

Figure 2 shows a class having the <<Pointcut>> stereotype to

identify PC elements of classes identified by the <<aspect>> ste-

reotype. These classes are named <<Pointcut>> and <<aspect>>

classes. Therefore, given a set of classes attended by aspects,

<<Pointcut>> classes relate advised classes to <<aspect>> clas-

ses. Thus, there can be more than one <<Pointcut>> and <<as-

pect>> classes for a model, even though a <<Pointcut>> class al-

lows defining different pointcut elements for the same <<aspect>>

class.

A behavioural view of the system highlights an important consid-

eration; <<Pointcut>> and <<aspect>> classes represent global

instances which are active when join points occur.

Khatchadourian and Soundarajan (2007) have argued that there

are similarities between classic AOP and concurrent / distributive

programming.

AO formal modelling

Regarding AO formal modelling, a few applications of formal meth-

ods would include Alloy (Mostefaoui & Vachon, 2007) and As-

pectZ (Yu, Liu, Yang & He, 2005) (Vidal, Saens, Del Río & Villar-

roel, 2013) and an extension of the formal language Z (Wood-

cock, & Davies, 1996) for OOSD ideas.

Since AOSD tries to reduce cross-cutting concerns in object-ori-

entated software development (OOSD) and Object-Z (Duke, &

Rose, 2000) (Smith, 1999), there should be integration between

Object-Z and AspectZ. This article thus proposes OOAspectZ

which integrates Object-Z and AspectZ. Figure 3 presents the

main elements of OOAspectZ while Figures 4, 5, 6, 7, 8 and 9

present associated OOAspectZ diagrams for the painting system.

Figure 3. OOAspectZ aspect-schema

A traditional class diagram is used as in UML class diagrams, for

representing an interface in Object-Z. Thus, classes implementing

an interface define public attributes and rules for interface meth-

ods. Figure 4 gives an OOAspectZ model of the interface shape

for a painting system, while Figures 5 and 6 show point and line

painting system classes involving the shape properties interface.

Figure 4. Painting system interface shape schema

Figure 5. Painting system object-Z class point schema

Figure 6. Painting system object-Z class line schema

Figure 5 gives an Object-Z diagram for the point class implement-
ing properties, i.e., methods and attributes, from the shape class.

The first element in class is the state, defining class attributes x

and y. Invariant rules can be defined in such schema for instances

of class. This figure gives schema for modelled class operation or

methods. As shown, method moveBy updates attributes x and y

for that object for a point class.

VIDAL, SAENS, DEL RÍO AND VILLARROEL

 INGENIERÍA E INVESTIGACIÓN VOL. 33 No. 3, DECEMBER - 2013 (66-71) 69

Figure 6 shows an Object-Z schema for line class inheriting prop-

erties from shape class. Line consists of two point class objects

(p1 and p2) and a method obtains p1 and p2 line values This Figure

gives a complete definition of moveBy inherited from the shape

class which is different from the point class moveBy method.

moveBy updates values for fields x and y of p1 and p2 concerning

input values. Considering that Object-Z allows substituting predi-

cate and schema elements, Figure 7 shows the schema for moveBy

using substitutions.

Figure 7. Painting system Object-Z MoveBy method for line class with sub-
stitutions

Figure 8 shows the OOAspectZ aspect-schema for UpdatingSig-
naling. Clearly, this shows the elements present in the AspectJ

source code in Figure 1. A direct translation from OOAspectZ

specification to AspectJ code is thereby completely supported by

this example. Such compatibility between domain and application

models is a fundamental principle for model-driven engineering

(MDE), a particular software development methodology (Mellor

& Balcer, 2002).

Figure 8. Painting system OOAspecZ aspect-schema update signal

The implicit announcement and invocation of aspects are basic el-

ements of classic AOSD. A formal representation of AOSD ele-

ments is not a direct task for current modelling languages. AO

solutions are abstractions of OO solutions in which a ‘weaver’

controls transforming AO code into the associated OO code. For

a formal representation of AO models, a potential solution would

be to apply the AO ‘weaver’ in previous phases of the software

lifecycle to obtain OO models which are formally representable

by first-order logic predicates.

Since elements of a Z specification are translatable into first-order

logic predicates (Zave & Jackson, 1993) and taking into account

previous use of AOSD for weaving, woven OOAspectZ / Object-

Z schemas are thus representable by means of first-order predi-

cate logic. Figure 9 shows the woven schema setX. for the point

class.

Figure 9. Painting system woven OOAspectZ/Object-Z SetX schema

According to Zave & Jackson (1993), Z operation schemas are
representable as event types in a state-transition model. Primed

and unprimed elements for an operation schema represent the

object state before and after a current event occurrs. The follow-

ing predicates would be established by the method schema setX:

 Since a Z schema is translated into an individual type predicate,
a predicate setX(e) represents the occurrence of event e as

an instance of operation setX;

 Because each argument in an operation schema is represented

by a predicate, there is predicate x?(num, e) for setX which

means that num is the integer argument of event e for affected

attribute x;

 Regarding the non-temporal properties of Z language, there

are unary predicates for each basic type (Zave & Jackson,

1993), Z in this case for integer numbers. Due to such predi-

cate, there is the following uniqueness restriction:

(() ! (?(,) ())e setX e num x num e Z num ;
 Since setX schema contains notation (x), indicating that op-

eration setX changes the value of attribute x of the current

instance, a setX operation would have predicate x(x, e)

meaning that x is the object point coordinate applied to the

event; and

 According to the point class state schema, x is an attribute of

this class. Therefore, because operation setX represents event

e, when such event occurs there would be a new state of the

current point class instance. As previously shown, there are

predicates x(x, e) and x?(num, e). Thus, to know the effects

of the setX method on the current point class object, the re-

lationship between the values for attribute x of two consecu-
tive states must be shown. According to Zave & Jackson

(1993), a predicate x(y, v) represents value y for x in state v

which must be equal to the set value, num in this case:

((,) ()

(,) ?(,) (,))

e v x num y begin e v setX e

x e x num e x y v num y

Since Zave & Jackson (1993) have indicated rules for representing

Z schemas as first-order logic predicates, this article tried to adjust

such rules to OOAspectZ. These new rules should lead to defining

operations and methods affecting class object attributes. Since for-

mal modelling involves reasoning about software requirements

more profoundly than modelling software requirements infor-

mally, a complete review and adaption of Zave & Jackson rules for

OOAspectZ, along with their application for a complete OOAs-

pectZ model, form part of the authors’ future research.

Classic AOSD distinguishes between primary (base) and cross-

cutting concerns. In an AOSD scenario, instead of generating a

woven OO solution and defining rules for woven elements,

adapted Zave & Jackson rules can be defined for each base module

and aspects of a system, such as adapted Object-Z specification

rules. The authors will formalise integrating base modules and as-

pects in OOAspectZ specifications without weaving by means of

first-order logic predicates in their future work. Preconditions

should be defined for the associated first-order logic predicates

for each OOAspectZ specification schema and aspect-schema, be-

cause Zave, & Jackson have stated that as schemas are types, pred-

icates for schemas are able to include references to previous and

after schema. Therefore, for each schema advised by an aspect-

schema, guards for correct interaction order must be included.

For example, if an operation schema has previous aspect-schema

 OOASPECTZ AND ASPECT-ORIENTED UML CLASS DIAGRAMS FOR ASPECT-ORIENTATED SOFTWARE…

 INGENIERÍA E INVESTIGACIÓN VOL. 33 No. 3, DECEMBER - 2013 (66-71) 70

A, the operation schema must indicate A as part of its precondi-

tions; aspect-schema A is seen as a previous event. Regarding a

formal definition of aspect-schemas, each presents the pointcut as

its precondition. These ideas can be extended to after aspect-

schema. Around aspect-schemas behave like before aspect-sche-

mas whose next state is the attended schemas for an action to

proceed, or the following schema for the attended one, when

there is no action to proceed.

Regarding a complete aspect-schema definition, considering as-

pect-schemas for setting and obtaining the value of attributes of a

class instance, integrating aspect-schemas with traditional Object-

Z schemas and defining associated first-order logic predicates for

this kind of aspect-schema constitute future research work into

OOAspectZ.

Even though AOSD allows separating concerns, there are situa-

tions in which applying the obliviousness principle generates com-

plex situations thereby restricting complete modularisation. Even

though Sullivan et al., (2005) defined obliviousness for designing

base elements without worrying about aspect functionality, base

elements avoid cross-cutting concerns; Sullivan, Griswold, Song &

Cai (2005) have mentioned a few common complex situations for

AO programmers:

 ‘Private join points’ for a tight link between base and aspects

code (in such situation, changes in base code can imply no

more join points for the aspect’s action);

 ‘State-point separation’ for aspects in a defined module react-
ing for the initialisation of defined variables when those varia-

bles are initialised in different modules;

 ‘Inaccessible join points’ for switching and nested conditional

statements which do not allow a join point to be accessible;

and

 ‘Quantification failure’ for a non-updated pointcut, although

there are changes in the base code.

As Sullivan, Griswold, Song & Cai (2005) indicated, since oblivious-

ness is an AOP principle, there are situations in which more at-

tention should be paid to the specific abstract state and behaviour

of the application and not just on concrete event execution. Thus,

more attention should be paid to software lifecycle design phases.

The authors of this article faced an additional AOSD issue regard-

ing aspect definitions for instances of aggregated classes, instances

of classes in an aggregation or composition association. Aspects

advise aggregated instances having access to their attributes in

such situations and attributes of the class to which instances are

the whole. For example, if class A consists of sets of class B and C

objects, one set for each class, and aspects advise instances of B,

thus aspects can also update a set of elements in C. The authors

called such situation ‘total access for aggregated instances’.

Another AOP issue concerns aspect composition, or aspects ad-

vising other aspects. Defining this association among aspects is nei-

ther simple nor direct in classic AOP. JPI has been used for resolv-

ing aspect composition (Bodden et al., 2013).

Since aggregation is an essential OOSD element, above all in OOP,

the previously mentioned situations represent an overall AOSD

composition issue. One solution to the 1st composition issue is to

define aspects for the composed class instead of for the classes

forming part of the whole class. A formal review of the ‘total ac-

cess for aggregated instances’ problem along with an analysis of

solutions for that problem form part of the authors’ future re-

search.

Undoubtedly, a formal AO method, such as OOAspectZ, allows

better modularisation since base class schema are defined by com-

plete separation of concerns. Even though OOAspectZ specifica-

tion class schemas include only their base concerns, OOAspectZ

specification aspect-schemas can include complex issues such as

the ‘total access for aggregated instances’.

Conclusions

AOM allows complete isolation of software system cross-cutting

functionalities into separate and independent entities called as-

pects;

AOM for requirements and design allows more complete AOSD

since OOAspectZ enables defining AO formal requirement spec-

ifications and UML class diagrams facilitate AO design;

Given the simplicity of Z languages, such as Z and Object-Z, the

proposed OOAspectZ formal language allows capturing the es-

sence of those languages along with modularisation benefits re-

garding classic AOP to identify and isolate (i.e., modularise) soft-

ware cross-cutting concerns; and

Using UML class diagrams and OOAspectZ, this paper has pre-

sented the main AOM idea as well as illustrating the advantages of

these languages for modularising cross-cutting concerns. Regard-

ing UML class diagrams, this article gives a new version of Liu, &

Chuang-Wen (2008) using AspecJ notation to facilitate a design for

coding translation.

Related and future work

Future work will present first-order rules for representing OOAs-

pectZ schemas and applying such rules to model a complete case

study as well as reviewing the integration of traditional Object-Z

and OOAspectZ schemas for defining woven schemas.

The authors wish to tackle the ‘total access for aggregated in-

stances’ issue in detail as well as ways of resolving it.

The authors will continue working towards a full definition of

OOAspectZ for applying this Aspect-oriented formal language to

specify a case study such as those analysed by Steimann et al.,

(2010).

Even though classic AOP allows modularising cross-cutting con-

cerns which have not been able to become modularised by other

software development methodology, such as object-orientated

and structure programming, Bodden et al., (2013) have indicated

that classic AOP introduces implicit dependency between aspects

and advised routines. This would mean that if an advised routine

should change its signature, regardless of the magnitude of signa-

ture change, aspects advising that routine could not advise more

without changing their PC. A routine is usually advised without

expecting change in its behaviour. Aspects can access, including

private elements of an advised routine associated class. Bodden et

al., (2013) proposed JPI for establishing an interface among aspects

and advised classes’ routines. Extending our current proposal re-

garding OOAspectZ formal specification language to support JPI

modularisation ideas, JPI-AspectZ, forms part of our future work.

Following JPI ideas, the authors’ current work is aimed at model-

ling JPI programme structure and behaviour for transformation

transparency among models and code and high-level understand-

ing of the JPI code.

VIDAL, SAENS, DEL RÍO AND VILLARROEL

 INGENIERÍA E INVESTIGACIÓN VOL. 33 No. 3, DECEMBER - 2013 (66-71) 71

References

Bodden, E., Tanter, E., Inostroza, M., A Brief Tour of Join Point Inter-

faces., In: proceedings of the 12th Annual International Confer-

ence Companion on Aspect-Oriented Software Development,

AOSD’13 Companion, Fukuoka, Japan, 2013, pp. 19-22.

Bustos, A., Eterovic, Y., Modeling Aspects with UML's Class, Se-

quence and State Diagrams in an Industrial Setting., In: proceed-

ings of the 11th IASTED International Conference on Software En-

gineering and Applications, SEA '07, 2007, pp. 403-410.

Duke, R., Rose, D., Formal Object-Oriented Specification Using Ob-

ject-Z., 1st edition, London, MacMillan Press Limited, 2000.

Khatchadourian, R., Soundarajan, N., Rely-Guarantee Approach

to Reasoning about Aspect-Oriented Programs., In: proceedings

of the 5th Workshop on Software Engineering Properties of Lan-

guages and Aspect Technologies, SPLAT '07, ACM, New York, NY,

USA, 2007.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,

Loingtier, J. C., Irwin, J., Aspect-oriented programming., In: pro-

ceedings of European Conference of Object-Oriented Program-

ing, ECOOP97, Springer Verlag, 1997, pp. 220-242.

Kiczales, G., Mezini, M., Aspect-Oriented Programming and Modlar

Reasoning., In: proceedings of the 27th International Conference

on Software Engineering, ICSE '05, ACM, New York, NY, USA, 2005,

pp. 49-58.

Liu, C., Chuang-Wen, C., A State-Based Testing Approach for As-

pect-Oriented Programming., Journal of Information Science

and Engineering, Vol. 24, 2008, pp. 11-31.

Mellor, S. J., Balcer, M., Executable UML: A Foundation for Model-

Driven Architectures., Boston, MA, USA, Addison-Wesley Long-

man Publishing Co. Inc., 2002.

Mostefaoui, F., Vachon, J., Verification of Aspect-UML Models Us-

ing Alloy., In: proceedings of the 10th International Workshop on

Aspect-Oriented Modeling, AOM '07, ACM, New York, NY, USA,

2007, pp. 41-48.

Smith, G., The Object-Z Specification Language., Vol. 1 of Ad-

vances in Formal Methods., 5th Ed., Springer US, Software, 1999.

Steimann, F., Pawlitzki, T., Apel, S., Kästner, C., Types and Modularity

for Implicit Invocation with Implicit Announcement, ACM Trans-

action on Software Engineering an Methodology., TOSEM, Vol.

20, No. 1, July, 2010, pp. 1-43.

Sullivan, K., Griswold, W. G., Song, Y., Cai, Y., Information Hiding In-

terfaces for Aspect-Oriented Design., In: ESEC/FSE-13: Proceed-

ings of the 10th European software Engineering Conference, 13th

ACM SIGSOFT International Symposium on Foundations of Soft-

ware Engineering, 2005, pp. 166-175.

Vidal Silva, C., Saens, R., Del Río, C., Villarroel, R., Aspect-Oriented

Modeling: Applying Aspect-Oriented UML Use Cases and Extend-

ing AspectZ., Computing and Informatics Journal, Bratislava, Slo-

vak, 2013, pp. 573-593.

Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger, W.,

Schwinger, W., Kapsammer, E., A Survey on UML-Based Aspect-

Oriented Design Modeling., ACM Computing Survey, Vol. 43, No.

4, Oct., 2011, pp. 1-28.

Woodcock, J., Davies, J., Using Z: Specification, Refinement, and

Proof., Upper Saddle River, NJ, USA, Prentice-Hall, Inc., 1996.

Yu, H., Liu, D., Yang, L., He, X., Formal Aspect-Oriented Modeling

and Analysis by AspectZ: An Aspect-Oriented Modeling., 17th In-

ternational Conference on Software Engineering and

Knowledge Engineering (SEKE05), Taipei, Taiwan, 2005.

Zave, P., Jackson, M., Conjunction as Composition, ACM Transac-

tions on Software Engineering and Methodology., Vol. 2, 1993,

pp. 379-411.

