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Biaxial bending of slender HSC columns and tubes filled 

with concrete under short- and long-term loads: I) Theory 
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bos llenos de concreto bajo cargas a corto y largo plazo: I) Teoría 
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ABSTRACT  

An analytical method that calculates both the short- and long-term response of slender columns made of high-strength concrete 

(HSC) and tubes filled with concrete with generalized end conditions and subjected to transverse loads along the span and axial load 

at the ends (causing a single or double curvature under uniaxial or biaxial bending) is presented. The proposed method, which is an 

extension of a method previously developed by the authors, is capable of predicting not only the complete load-rotation and load-

deflection curves (both the ascending and descending parts) but also the maximum load capacity. The columns that can be ana-

lyzed include solid and hollow (rectangular, circular, oval, C-, T-, L-, or any arbitrary shape) cross sections and columns made of circular 

and rectangular steel tubes filled with HSC. The fiber method is used to calculate the moment-curvature diagrams at different levels 

of the applied axial load (i.e., the M-P- curves), and the Gauss method of integration (for the sum of the contributions of the fibers 

parallel to the neutral axis) is used to calculate the lateral rotations and deflections along the column span. Long-term effects, such as 

creep and shrinkage of the concrete, are also included. However, the effects of the shear deformations and torsion along the member 

are not included. The validity of the proposed method is presented in a companion paper and compared against the experimental 

results for over seventy column specimens reported in the technical literature by different researchers. 
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RESUMEN 

Se presenta de una manera clásica la estabilidad lateral  de  columnas esbeltas bajo cargas axiales de compresión con derivas en 

los extremos desinhibidas, inhibidas  parcialmente y totalmente inhibidas incluyendo los efectos de las conexiones semirrígidas y una 

fundación elástica lateral uniformemente distribuida (tipo Winkler) a lo largo de toda su luz. La clasificación propuesta de columnas 

prismáticas sobre fundación elástica y las ecuaciones correspondientes de estabilidad son generales y relativamente simples de 

aplicar, obteniéndose resultados exactos cuando se compara con otros métodos analíticos. La carga de pandeo se obtiene ha-

ciendo igual a cero el valor del determinante de una matriz de 4  4 para columnas con deriva lateral desinhibida o parcialmente 

inhibida en ambos extremos, y de una matriz de 3  3 para las columnas con deriva lateral inhibida en uno o ambos extremos, res-

pectivamente. Los efectos de las conexiones semirrígidas sobre la carga de pandeo de cinco casos de columna clásicos son discu-

tidos y los resultados son comparados con los de otros métodos analíticos. 

Palabras clave: Arriostramiento, pandeo, columnas, fundación elástica, pilas, conexiones semirrígidas, estabilidad. 
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Introduction12 

The analysis, design, and behavior of concrete columns are of vital 

importance in structural engineering. Columns and beam-columns 

made of high-strength concrete (HSC) and reinforcements have 

received considerable attention from structural researchers and 

the construction industry, particularly during the last two decades. 

This trend has been the result of the availability of stronger mate-

rials (concrete and reinforcements) as well as the continuous need 

for slender and lighter structures in the construction industry. Sev-
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eral experimental and analytical studies on the load-deflection be-

havior, load capacity and failure modes of columns made of HSC 

under particular sets of loads and boundary conditions are availa-

ble in the technical literature, as shown in the next section. 

Important experimental and analytical studies on the load-deflec-

tion behavior, load capacity, and failure mode of solid columns 

made of HSC and columns made of circular and rectangular tubes 

filled with concrete are available in the technical literature as 

shown below. 
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Solid Columns-. Billinger and Symons (1995) studied the effects 

of concrete strength, axial-load eccentricity, and member slender-

ness on the behavior of rectangular columns made of HSC. Hsu et 

al (1995) and Sarker et al (2001) studied experimentally the biaxial 

bending behavior of HSC columns. Lloyd and Rangan (1996) per-

formed tests on columns subjected to a single curvature and stud-

ied the effects of concrete strength and axial load eccentricity. 

Claeson and Gylltoft (1998) studied both experimentally and ana-

lytically the effects of concrete strength, member slenderness, and 

amount of transverse reinforcement on the behavior of square 

columns. Later, Claeson and Gylltoft (2000) performed experi-

ments on columns made of normal and HSC under sustained axial 

load. Lee and Son (2000) studied the effects of concrete and lon-

gitudinal steel strengths, axial load eccentricity, and member slen-

derness on the behavior of rectangular columns subjected to 

bending causing single curvature. Mendis (2000) presented a the-

oretical model to predict the behavior of slender columns. Sarker 

and Rangan (2003) performed tests on R/C columns subjected to 

eccentric axial load causing double curvature. 

Circular Tubular Columns filled with Concrete-. The behavior 

of columns made of circular tubes filled with concrete has been 

investigated extensively in the last 16 years. Rangan and Joyce 

(1992) studied the behavior of slender columns made of circular 

tubes filled with concrete subjected to an eccentric axial load. 

Prion and Boehme (1994) performed experiments on tubular col-

umns under different levels of axial load. Kilpatrick and Rangan 

(1999) studied experimentally the effects of concrete and steel 

strengths, slenderness, and axial load eccentricities at both ends 

on the behavior of tubular columns subjected to bending causing 

single and double curvature. Ghasemian and Schmidt (1999) stud-

ied experimentally the effects of initial imperfections and slender-

ness on the behavior of columns made of circular tubes filled with 

HSC. O’Shea and Bridge (2000) studied the effectiveness of the 

current models in predicting the behavior of tubular columns, in-

cluding the effects of tube wall thickness, the strength of concrete 

and steel, and the level of applied axial load. Johansson and Gylltoft 

(2001) studied experimentally the effects of load application on 

the behavior of circular tubes and developed a finite element 

model to predict their behavior. Bruneau and Marson (2004) in-

vestigated the effectiveness of the CNA/CSA-S16.1-M94 Code, 

AISC LRFD (1994) specifications, and Eurocode (1994) to predict 

the ultimate moment capacity under different axial load levels. 

Rectangular Tubular Columns filled with Concrete-. The be-

havior of columns made of rectangular tubes filled with concrete 

has been investigated by a few researchers, such as Cederwall et 

al (1990), who performed experiments on slender columns. Varma 

et al (2002) studied the effects of steel strength and axial load lev-

els on the behavior of beam-columns made of high-strength steel 

square tubes filled with HSC and subjected to a combined bending 

and axial load. They also investigated the effectiveness of the main 

construction codes to predict their capacity and behavior. Uy 

(2013) studied the behavior of columns made of high-strength 

steel tubes filled with concrete of normal strength. 

In this paper, an analytical method for the calculation of the short- 

and long-term behavior of columns made of HSC with generalized 

support conditions at both ends and subjected to transverse loads 

along the span and axial load at the ends (causing single or double 

curvature under uniaxial or biaxial bending) is presented. The va-

lidity of the proposed method is demonstrated in a companion 

paper. 

 

Proposed Structural Model 

The structural model of the beam-column is depicted in Fig. 1 with 

generalized end conditions subject to transverse loads (distributed 

or concentrated) and to axial load P with eccentricities ea and eb 

at ends a and b, respectively. Fig. 2 shows the cross section of the 

prismatic beam-column with an irregular shape with its perimeter 

and reinforcements. The global XYZ-system of axes is located at 

end a, and the Z-axis is along the beam span. The X- and Y-axes 

shown in Fig. 2 are used to define the geometry of the beam’s 

cross-section (i.e., internal and external boundaries and locations 

of the different reinforcements) and the static equilibrium equa-

tions. The XY-system is fixed, and its origin O is located conven-

iently either at the centroid of the gross section or at the plastic 

center of the beam’s cross-section. The ends a and b of the beam-
column are restrained against rotation and transverse deflection 

as shown in Fig. 1 by two pairs of elastic springs a, a and b, b, 

respectively. The units of  and  are forcedistance/radian and 

force/distance, respectively. The beam is subjected to transverse 

loads (distributed qi or concentrated Pi) on the YZ-plane (Fig. 1). 
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Figure 1. Beam-Column Model with Generalized Boundary Condi-
tions subjected to a Bending and Eccentric Axial Load 

 

(a) Gauss' Integration 

y = a  x + b



0

s i

0x

b

Y

ri

y

miny dx
dy



0
0'

X

x

(b) Integration by fibers

is

0'
X

Y

y

maxy
x

i i

b

y = a  x + b

x0

ir

miny
dy

ymax
iy

i i

x

y

 
Figure 2. Arbitrary Cross Section of the Prismatic Beam-Column 
Model subjected to Axial Load and Bending about the Global X- 
and Y-axes 

Fig. 2 shows the cross section of irregular shape of the beam-col-

umn subject to axial load and bending about the global X- and Y-

axes. The boundaries of the cross section are approximated by 

straight lines. The neutral axis at a given section divides the section 

into the compression and tension zones (Fig. 2). The contributions 

of both zones to the static equilibrium are calculated using a model 

with the following characteristics: 1) both types of perimeters (ex-

terior and interior ones) of the cross section are approximated by 

straight line segments; 2) the local xy-system of axes for the nor-

mal cross section is defined such that the neutral axis becomes the 

x-axis, and the y-axis is a line that passes through the farthest ver-
tex of the exterior perimeter under compression and is perpen-

dicular to the neutral axis; and 3) the contributions of the cross 

section are simply the sums of each trapezoid contribution under 

tension and compression as shown in Fig. 2. Each trapezoid is de-

fined by two straight lines drawn from two consecutive vertexes 
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[with coordinates (ri, 0) and (si, 0)] that are perpendicular to the 

neutral axis; the neutral axes and the straight line joining the two 

consecutive vertexes i and i+1 of the perimeter defined by the 

straight line aix + bi.  Note that the neutral axis makes an angle  

with the global X-axis and intercepts the Y-axis at a point with 

coordinates (0, b) and (xo, 0) with respect to the global XY-system 

and local xy-system, respectively. The proposed model is an ex-

tension of a method presented previously by Rodriguez-Gutierrez 

and Aristizabal-Ochoa (2001) for the analysis, design, and behavior 

of normal concrete columns subjected to biaxial bending and axial 

load. 

The moment-axial load-curvature (M-P-) curves along the mem-

ber are calculated using the method presented by Rodriguez-

Gutierrez and Aristizabal-Ochoa (2001) but with the stress-strain 

curve of the concrete defined by Eq. (1a) instead of the parabola 

of Hognestad (for the ascending part) and the straight line (for the 

descending part) [i.e., Eqs. (3a) and (3b) listed previously and used 

by the authors (2001)]. A major advantage of formula (1a) is that 

it includes the simultaneous long-term effects of the shrinkage 

strain sh(t) and creep strain o(t) on the concrete stress-strain 

relationship (i.e., fc-c curve), which must be determined before-

hand (either experimentally or theoretically) by the user. Further 

details on Eq. (1) are given by Popovics (1970, 1973): 
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o(t) = o(0)[1+(t, ti)] (1c) 
 

Ec(t) = Ec(0)/[1+(t, ti)] (1d) 

(t)
''

cf
 Maximum stress in the concrete for a given time instant t; 

fc = Stress in the concrete, including long-term effects (shrinkage, 

creep, age and the initial time when the load was first applied); 

c = Strain in the concrete corresponding to the stress fc; 
Ec(t) = Elastic modulus of concrete for a given time instant t;; 

sh(t) = Shrinkage strain in the concrete for a given time instant t; 

o(t) = Strain in the concrete corresponding to the maximum 

stress in the concrete at time t; 

(t, ti) = Creep coefficient of the concrete; 
ti = Time in days when the load was applied; and 

 = Relaxation coefficient by Trost (Popovics 1973) that accounts 

for the reduction in creep that occurs because all of the stress is 

not applied at the initial time ti ( ≤ 1.0). 

Stress-Strain Relationships for the Reinforcements-. Two 

types of reinforcements are considered: 1) conventional reinforce-

ment bars; and 2) structural steel tubes. The strain-stress relation-

ships are assumed to be elastic-perfectly plastic and are approxi-

mated for straight-line segments (i.e., the elastic region and the 

plastic plateau). In the analysis of columns made of circular or rec-

tangular steel tubes filled with concrete, the following additional 

assumptions are made: 1) the thickness of the steel tube is rela-

tively small compared with its radius; 2) the confinement provided  

by the steel tube to the concrete core is neglected; and 3) the 

steel tube is considered as regular reinforcement bars uniformly 

distributed around the column’s exterior perimeter. 

Calculation of Rotations and Deflections 
along the member (Uniaxial Bending) 

The bending moment at a distance Z from end a (Fig. 1) is as follows: 
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(2a) 

where: Mq(Z), Mp(Z) = bending moment along the beam column 

caused by the distributed and concentrated loads, respectively and 

v(Z) = transverse deflection at Z. 

To obtain M(Z) along the member ab, the end-rotations and the 

lateral deflections at a and b (i.e., a, b, a, b, respectively) must 

be determined first. This can be achieved using the classic conju-

gate-beam method. To this end, the following four non-linear 

equations must be solved: 
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(2e) 

where: 

M()a and M()b= Moments (using the classic conjugate-beam 

method) of the curvature diagrams  with respect to ends a and 

b, respectively; 

pi and qi = Applied concentrated and distributed loads on the col-

umn, respectively; 

ipZ
and iqZ

= Distances from end b to the concentrated load pi 
and the resultant distributed load qi, respectively;  

iqL
= Length of the applied distributed load qi applied along the 

column span; 

a and b = Stiffness of the transverse springs located at ends a 

and b, respectively;  

a and b = Lateral deflections of beam ends a and b, respectively; 

a and b= Stiffnesses of the rotational springs located at ends a 

and b, respectively; 

a and b = Rotations at ends a and b, respectively; 

a and b = Rotations at ends a and b, respectively; 

ea and eb = Eccentricities of the applied axial load P at ends a and 

b, respectively. 

Note that 1) Eqs. (2b) and (2c) represent the moment equilibrium 

of the conjugate-beam with respect to ends a and b, respectively; 

and 2) Eqs. (2d) and (2e) are the moment equilibrium about b and 

the vertical equilibrium of the real column, respectively. 

An iterative process is proposed to solve Eqs. (2a-e) for a, b, a 

and b as follows: 

1) Select a set of trial (initial) values for the unknowns a, b, a 

and b; 
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2) Divide the column into Ne segments and calculate the moments 

at each of the Ne+1 sections; 

3) Determine the curvatures at the Ne+1 sections using the cor-

responding M-P- curves; 

4) Calculate M()a and M()b; 

5) The four non-linear Eqs. (2b-e) are solved for a, b, a and b; 
if the calculated values do not coincide with the trial values se-

lected in step 1, then the values of a, b, a and b are corrected 

using a numerical method (like Newton-Rhapson or Runge-Kutta); 

6) Return to step 2 and repeat the process until Eqs. (2b-e) are 

fulfilled; 

7) Once Eqs. (2b-e) are fulfilled to a desired level of accuracy, the 

rotations and lateral deflections at each node are calculated for 

integration as follows: 
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Le = Length of column segment; 

i and θi = Curvature and rotation of cross section i of the column, 

respectively. 

8) Calculate the second-order moments along the member (i.e., 

the P- effects) and return to Step 3. The iterative process is 
halted when the change in the maximum lateral displacement along 

the column between two consecutive iterations is less than a spec-

ified value (such as less than L/10000). When this occurs, the col-

umn is stable under the applied loads. Otherwise, the column be-

comes unstable under the applied loads when the maximum lateral 

displacement along the column continues to increase between two 

consecutive iterations. 

For the case of a simply supported column, only Eqs. (2a) and (2b) 

need to be solved, making a = b = 0, with Eq. (2a) being reduced 

to: 
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(4a) 

For the case of a fully braced column (i.e., with no lateral sway 

between its ends), only Eqs. (2a) and (2b) need to be solved, mak-

ing a = b = 0, with Eq. (2a) being reduced to: 
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(4b) 

In the case of columns subjected to biaxial bending, it is assumed 

that the deflected shape of the member can be decomposed into 

two plane-curves along the longitudinal Z-axis caused by bending 
along the global X- and Y-axes, respectively. The formulation pro-

posed above can then be applied to each of these two bending 

components (see Figs. 1 and 2). Notice that coupling between the 

two bending components exists and can be described using the 

angle of inclination for the neutral axis (when the biaxial M-P- 

curves are calculated) and the ratio ey/ex= tan. The procedure 

for the calculation of the biaxial M-P- curves and the ratio ey/ex 
is fully described by Rodríguez-Gutierrez and Aristizabal-Ochoa 

(2001). 

For prismatic beam-columns loaded along an axis of symmetry 

with ey = ex (i.e., tan = 1), it is sufficient to calculate a pair of M-

P- curves for all cross sections along the member. This is because 

the angle of inclination for the neutral axis does not vary along the 

member’s span. However, if tan  1, then the M-P- curves must 

be calculated for all cross sections along the member with tan=

(Z)M

(Z)M

Y

X  [where MX(Z) and MY(Z) are the moments along the 

global X- and Y-axes, respectively]. In the case of columns sub-

jected to double curvature (i.e., when the sign of tan changes), 

complete M-P- diagrams, including the curves for both positive 

and negative curvatures and moments, must be calculated. 

Calculation of Post-peak Response 

The procedure just described can to predict the load-deflection 

response up to the peak load (i.e., the loading-deflection curve). 

Up to the peak load, the deformed shape of the member is not 

required; it is determined directly from the calculations. However, 

to determine the descending curve (i.e., the post-peak response), 

the deformed shape of the member must be assumed. In the 

method proposed herein, it is assumed that the deformed shape 

of the member after the peak load (i.e., when it is being unloaded) 
is identical to that of the loading curve. For example, for a simply 

supported column with zero moments at the ends, the deformed 

shape of the member is generally assumed to be v(Z)= 

MAXsin(Z/L) and with a curvature d2v(Z)/dZ2= (Z)= 2MAX 

sin(Z/L)/L2; therefore: v(Z)= L2(Z)/2= (Z) (z), where (Z) = 

v(Z)/(z)= L2/2. To illustrate how to determine the post-peak re-
sponse of a simply supported column subjected to an eccentric 

axial load P causing equal moments (Pe) at both ends, the following 

six steps are suggested: 
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Step 1: Calculate the ascending curve of the moment-curvature 

(M-) diagram for a given value of P and determine from it the 

value of the curvature (Z) for the given section at Z; 

Step 2: Calculate the lateral deflection v(Z) at the given point Z; 

Step 3: Calculate the deflection-curvature ratio [i.e.,  = v(Z)/ 

(Z)] at the given point Z; 

Step 4: Determine the total moment Mext = P[e + v(Z)] at the 

given section at Z; 

Step 5: Obtain the post-peak (descending) curve of the moment-

curvature (M-) diagram for a given value of P, multiplying the 

curvature of the M- diagram obtained in step 1 by  (obtained 

in step 3). 

Step 6: Determine v(Z) from the condition of flexural equilibrium 

at Z: MextMint= 0 [where: Mint= internal moment obtained from 

the post-peak curve of the moment-curvature (M-) diagram for 
a given value of P]. Fig. 3 shows how this step is performed for the 

particular case of P= 24.73 kips (110 kN). 
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Figure 3. Transverse Deflections (Unloading Path) 

For the analysis of columns subjected to a combined biaxial bend-

ing and axial load, a similar procedure based on the M-P- dia-

grams about each bending axis is suggested. 

Conclusions 

An analytical method for the calculation of the short- and long-

term behavior of slender columns with generalized support con-

ditions at both ends made of HSC and subjected to transverse 

loads along the span and axial load at the ends (causing single or 

double curvature under uniaxial or biaxial bending) is presented. 

The fiber method is used to calculate the moment-curvature dia-

grams at different levels of the applied axial load (i.e., the M-P- 
curves) and the Gauss method of integration (for the sum of the 

contributions of the fibers parallel to the neutral axis) to calculate 

the lateral rotations and deflections along the span of the beam-

column. This method was suitable in the analysis of beam-columns 

with an irregular cross section. 

 

In the analysis of composite columns made of circular or rectan-

gular steel tubes filled with concrete, the following additional as-

sumptions were made: 1) the thickness of the steel tube is rela-

tively small compared with its radius; 2) the confinement provided 

by the steel tube to the concrete core is not significant, and it can 

be neglected (particularly in slender columns and columns sub-

jected to large eccentricities). Therefore, the steel tube is consid-

ered as a regular reinforcement around the perimeter. For short 

tubular columns or/and columns under small eccentricities, the 

proposed model can predict part of the ascending load-deflection 

curve (i.e., loading curve) but with some discrepancies between 

the calculated descending load-deflection results and the experi-

mental values (i.e., unloading curve). 

The proposed model is relatively simpler to program and apply 
than models based on the finite element method, which are more 

elaborate and require a large number of elements (2-D or 3-D) to 

properly determine the actual load-deflection behavior (loading 

and unloading) of slender columns made of high-strength materials 

(concrete and steel) under any end conditions and subjected to 

uniaxial or biaxial bending. A general expression for the concrete 

strain-stress relationship including long-term effects (creep and 

shrinkage) is used. The proposed model is capable of predicting 

the complete load-rotation and load-deflection curves (ascending 

and descending parts). The proposed model is also capable of pre-

dicting the load-deflection behavior of columns subjected to sus-

tained loads. 
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