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Cinemática de un mecanismo actuador para una antena telescópica 
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ABSTRACT  

In this work the position, velocity and acceleration analyses of a four-degrees-of-freedom serial manipulator are approached mainly 

by means of the theory of screws. Closed-form solutions are easily obtained for the displacement analysis of the mechanism owing the 

decoupled action of the generalized coordinates, while the input-output equations of velocity and acceleration of the manipulator 

are systematically obtained by means of the theory of screws. A case study is included with the purpose to exemplify the application 

of the method. 
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RESUMEN 

En este trabajo los análisis de posición, velocidad y aceleración de un manipulador serial de cuatro grados de libertad  se abordan 

principalmente por medio de la teoría de tornillos. El análisis de posición es resuelto en forma cerrada debido a la acción desaco-

plada de las coordenadas generalizadas mientras que las ecuaciones entrada salida de velocidad y aceleración del manipulador 

son obtenidas sistemáticamente por medio de la teoría de tornillos. Con el propósito de ejemplificar el método se proporciona un 

caso de estudio. 
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Introduction1 23 

Screw theory is a trusted and confident mathematical resource to 

address the spatial kinematics of rigid body. In 1830 Chasles intro-

duced the concept of twist motion of a rigid body which was 

deeply developed by Poinsot while the notion of screw coordi-

nates was introduced by Plücker. Formally, the mathematical 

framework was developed by Ball (1900) with the purpose to ap-

proach the kinematics and statics of rigid body. Two decades later 

von Mises (1924a, 1924b) published his Motor Calculus where the 

general equations of motion of rigid body are established based on 

the so-called motor product. Applications of screw theory con-

cerned mainly with the so-called first-order analysis of rigid body 

have been widely reported in the literature ranging from projec-

tive geometry, screw systems, statics, synthesis, theory of exten-

sion and so far. However, the acceleration analysis using exclu-

sively screw theory was unlooked for many years due, perhaps, to 

the difficulty to express in screw form the accelerator introduced 

by Brand (1947) and applied by Sugimoto (1989, 1990) in the kin-

ematics of robot manipulators. Thus it is not surprising that for a 

long time some kinematicians have assumed that screw theory 

cannot be employed to handle the higher-order kinematics of 

mechanisms. In fact, by the time it was believed that screw theory 
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will be confined to the first-order analysis of rigid body. It was 

almost two decades ago when Rico and Duffy (1996) published a 

remarkable contribution entitled “An application of screw algebra 

to the acceleration analysis of serial chains” that screw theory was 

recognized as a viable option to approach the higher-order kine-

matic analyses of open and closed chains. However, even though 

the rigorous mathematical procedures employed in such contri-

bution, the material exposed was bitterly disappointed by some 

kinematicians who claim that screw theory would not be extended 

to the acceleration analysis. 

In this work as a little proof of the potential of screw theory in 

the analysis of open chains, the infinitesimal kinematics of a four-

degrees-of-freedom serial manipulator is investigated by resorting 

to screw theory. For the sake of completeness, the displacement 

analysis of the robot is also included. Numerical examples are in-

cluded in order to show the application of the method.    

Preliminary Screw Theory 

As a consideration for readers unfamiliar with the theory of 

screws, this section is devoted to review some elementary con-

cepts of it. In Plücker coordinates a screw, notated as $, is a six-
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dimensional vector given by $ = (𝑠, 𝑠𝑂), where 𝑠 is named the pri-

mal of the screw, 𝑃($) = 𝑠, and denotes the direction of the line. 

Usually the primal part is a unit vector of course along the instan-

taneous screw axis (ISA). While 𝑠𝑂 is named the dual part of the 

screw, 𝐷($) = 𝑠𝑂, and involves the moment produced by vector 

𝑠 around the reference pole 𝑂. The vector 𝑠𝑂 is calculated as fol-

lows 

𝑠𝑂 = ℎ𝑠 + 𝑠 × 𝑟 (1) 

Therein 𝒉 is the pitch of the screw while 𝒓 is a vector directed 

from an arbitrary point of the ISA to the reference pole 𝑶. Con-
veniently, the reference pole is chosen as the origin of the refer-

ence frame in order to simplify the Plücker coordinates. In a rev-

olute joint the pitch 𝒉 vanishes yielding $ = (𝒔, 𝒔 × 𝒓), while in a 

prismatic joint the pitch goes to infinity yielding $ = (𝟎, 𝒔). Fur-
thermore, any lower kinematic pair may be modeled combining 

revolute and/or prismatic joints, e.g. a spherical joint may be mod-

eled as three concurrent revolute joints while a cylindrical joint is 

modeled as the combination of one prismatic joint with one rev-

olute joint. 

The Lie algebra 𝒔𝒆(𝟑) of the Euclidean group 𝑺𝑬(𝟑) is the set of 

elements of the form $ = (𝒔, 𝒔𝑶). Let $𝟏 = (𝒔𝟏, 𝒔𝑶𝟏), $𝟐 =
(𝒔𝟐, 𝒔𝑶𝟐) and $𝟑 = (𝒔𝟑, 𝒔𝑶𝟑) be three elements of the Lie algebra 

𝒔𝒆(𝟑). Furthermore, consider that 𝝁𝟏, 𝝁𝟐, 𝝁𝟑 𝝐 𝑹. Concerned 

with the contribution, the Lie algebra supports the following op-

erations 

Addition, $𝟏 + $𝟐 = (𝒔𝟏 + 𝒔𝟐, 𝒔𝑶𝟏 + 𝒔𝑶𝟐) 

Multiplication by a scalar, 𝝁$ = (𝝁𝒔, 𝝁𝒔𝑶)  

Lie product, [$𝟏 $𝟐] = (𝒔𝟏 × 𝒔𝟐, 𝒔𝟏 × 𝒔𝑶𝟐 − 𝒔𝟐 × 𝒔𝑶𝟏)   

Furthermore, the Lie products has the following properties 

Nilpotent, [$𝟏   $𝟏] = 𝟎 

Distributive, [$𝟏     𝝁𝟐$𝟐 + 𝝁𝟑$𝟑] = 𝝁𝟐[$𝟏   $𝟐] + 𝝁𝟑[$𝟏   $𝟑] 

 [𝝁𝟏$𝟏 + 𝝁𝟐$𝟐     $𝟑] = 𝝁𝟏[$𝟏   $𝟑] + 𝝁𝟐[$𝟐   $𝟑] 

Jacobi identity, [$𝟏[$𝟐  $𝟑]] + [$𝟑[$𝟏   $𝟐]] + [$𝟐[$𝟑   $𝟏]] = 𝟎 

The representation of the kinematic states of a rigid body, as ob-

served from another body or reference frame, has been a topic 

that has attracted the attention of kinematicians since many years 

ago. In fact, it dates back to the pioneering contribution of Ball 

(1900). The velocity state, or twist about a screw, of rigid body 

was defined by Ball (1900) as a six-dimensional vector given by 

𝑉𝑂 = [
𝜔
𝑣𝑂

] (2) 

where 𝜔 is the angular velocity vector of the body while 𝑣𝑂 is the 

linear velocity vector of a point 𝑂 embedded to it. Almost four 
decades after the contribution of Ball, a representation of the ac-

celeration state of rigid body was proposed by Brand (1947) as 

follows 

𝐴𝑂 = [
𝛼

𝑎𝑂 − 𝜔 × 𝑣𝑂
]     (3) 

where 𝜶 denotes the angular acceleration of the vector while 𝒂𝑶 

denotes the linear acceleration vector of point 𝑶.  

It is interesting to note that the primal part of the acceleration 

state is obtained directly as the time derivative of the primal part 

of the velocity state, i.e. 

𝑃(𝐴𝑂) =
𝑑(𝑃(𝑉𝑂))

𝑑𝑡
=

𝑑(𝜔)

𝑑𝑡
= 𝛼  (4) 

Thus, at this moment a natural question arises, why don’t occur 

the same for the dual part of the acceleration state? The answer 

to this query can be found in the heart of the theory of helicoidal 

vector fields, for details the reader is referred to Gallardo-Al-

varado et al (2008). 

 
Figure 1. Open serial kinematic chain. 

Consider an open kinematic chain as shown in Fig. 1, where adja-
cent bodies are connected by means of infinitesimal screws also 

known as helical pairs. The velocity state of the end-effector 𝑚 as 

measured from the base link 𝑗 may be expressed in screw form, 
see for instance Sugimoto and Duffy (1982), as a linear combina-

tion of the involved screws as follows 

 𝑗𝑉𝑚 = ∑   𝜔𝑖
 

𝑖+1 
𝑖$𝑖+1𝑚−1

𝑖=𝑗   (5) 

where  𝑖𝜔𝑖+1 denotes the ith joint-rate velocity between adjacent 

bodies i and i+1. By the time, the usefulness of Eq. (5) in robot 
kinematics was immediately recognized by engineers and scien-

tists; however its extension to the acceleration analysis remained 

as an open problem for more than one decade. Certainly, the dif-

ficulty to express in screw form the acceleration state of kinematic 

chains was considered as one of the main drawbacks of the theory 

of screws. It was in 1996 when Rico and Duffy (1996) introduced 

the following equation 

 𝑗𝐴𝑚 = ∑   �̇�𝑖
 

𝑖+1 
𝑖$𝑖+1 + 𝐿𝑚−1

𝑖=𝑗   (6) 

where    𝑖�̇�𝑖+1
  denotes the ith joint-rate acceleration between ad-

jacent bodies, i.e.    𝑖�̇�𝑖+1
 = 𝑑(

 𝑖𝜔𝑖+1
 

𝑑𝑡
), while 𝐿 was named the Lie 

screw of acceleration and it is calculated according to the joint-

rate velocities of the serial chain as follows 

𝐿 = [ 𝑗𝜔𝑗+1 
𝑗$𝑗+1    𝑗+1𝜔𝑗+2 

𝑗+1$𝑗+2 +

⋯+ 𝑚−1𝜔𝑚 𝑚−1$𝑚] +

 [ 𝑗+1𝜔𝑗+2 
𝑗+1$𝑗+2     𝑗+2𝜔𝑗+3 

𝑗+2$𝑗+3 +

⋯+ 𝑚−1𝜔𝑚 𝑚−1$𝑚] + ⋯+

  [ 𝑚−2𝜔𝑚−1 
𝑚−2$𝑚−1           𝑚−1𝜔𝑚 𝑚−1$𝑚]     

(7) 

For clarity, unlike the equation of velocity state in screw-form, in 

the contribution the six-dimensional vector 𝐿 is written explicitly. 

Equation (6) was named by Rico and Duffy (1996) as the reduced 
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acceleration state. After the publication of that theoretical paper, 

screw theory was recognized, unfortunately only by a reduced 

number of kinematicians, as a viable option to approach not only 

the acceleration analysis but also the jerk analysis (Rico et al, 1999) 

and the hyper-jerk analysis of robot manipulators (Gallardo-Al-

varado, 2014).  Equation (7) has been proved successfully in a wide 

variety of parallel manipulators. The relevant results of such anal-

yses were reported in several indexed journals by the author of 

this contribution, see for instance Gallardo-Alvarado et al (2011), 

Gallardo-Alvarado (2012), Gallardo-Alvarado and García-Murillo 

(2013). In this occasion in order to show the viability of the theory 

of screws in the kinematic analysis of robot manipulators, a four-

degrees-of-freedom open kinematic chain is chosen as the robot 

under study. 

Description of the Mechanism 

The topology of the robot manipulator under study, and its geo-

metric scheme, is outlined in Fig. 2. 

 
Figure 2. Telescoping antenna and its geometric scheme. 

The spatial mechanism is composed of an extendible limb 𝑙 formed 

with two bodies labeled 𝑘 and 𝑚 connected by means of a cylin-

drical joint where the translation of body 𝑚 with respect to body 

𝑘  is represented by means of the screw  𝑘$𝑚̅̅ ̅̅ ̅̅  while the rotation 

between the same bodies is represented by means of the screw 

 𝑘$𝑚. Furthermore, the orientation of the limb is controlled 

through the angles ∅ and 𝜃. On the other hand, in order to im-

prove the performance of the original telescoping antenna, an ad-

ditional freedom was added to the mechanism through the rota-

tional angle 𝛽 between bodies 𝑚 and 𝑘. In other words the pris-

matic joint of the original mechanism was replaced with a cylindri-

cal joint. The generalized coordinate 𝛽 is added to the manipulator 
with the purpose to increase the mobility of a possibly body at-

tached to body 𝑚, e.g. a gripper. 

Displacement Analysis 

Let 𝑋𝑌𝑍 be a reference frame with associated unit vectors 𝑖�̂�̂�̂�. 

Furthermore, let 𝑃 = (𝑃𝑥, 𝑃𝑦, 𝑃𝑧) be the control point of the ma-

nipulator.  

The inverse displacement analysis is formulated as follows. Given 

the coordinates of point 𝑃 it is required to determine the orien-

tating angles 𝜃 and ∅, and the length 𝑙 of the antenna. The length 

𝑙 is directly computed as 

𝑙 = √𝑃𝑥2 + 𝑃𝑦2 + 𝑃𝑧2 (8) 

After, the angle ∅ is obtained in the range (0, 𝜋) as 

∅ = 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑃𝑦/𝑙) (9) 

In order to find the angle 𝜃 consider that the revolute joint con-

necting bodies 𝑗 and 𝑘 constraints the position of point 𝑃 in such 

a way that 

�̂� ∙ �̂� 𝑃/𝑂 = 0 (10) 

Where �̂� = sin(𝜃) 𝑖̂ + cos (𝜃)�̂� and �̂�  𝑃/𝑂
  is a unit vector pointed 

from 𝑂 to 𝑃 while the dot (∙) denotes the dot product of usual 

three-dimensional vectorial algebra. Thus it follows that the angle 

𝜃 must satisfy the relationship tan (−𝜃) = 𝑃𝑧/𝑃𝑥  . Hence in 

terms of the standard arctan function, whose range is (−
𝜋

2
,
𝜋

2
), the 

angle 𝜃 is obtained as 

𝜃 = 

    − arctan (
𝑃𝑧

𝑃𝑥
)  𝑃𝑥 > 0;             

−arctan (
𝑃𝑧

𝑃𝑥
) − 𝜋  𝑃𝑧 ≥ 0, 𝑃𝑥 < 0;  

−arctan (
𝑃𝑧

𝑃𝑥
) + 𝜋  𝑃𝑧 < 0, 𝑃𝑥 < 0;  

−
𝜋

2
  𝑃𝑧 > 0, 𝑃𝑥 = 0;    

 
𝜋

2
  𝑃𝑧 < 0, 𝑃𝑥 = 0; 

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑃𝑥 = 𝑃𝑧 = 0   

(11) 

On the other hand, the forward displacement analysis consists of 

finding the coordinates of point 𝑃 given the generalized coordi-

nates ∅, 𝜃 and 𝑙. This analysis is straightforward. Indeed 

𝑃𝑥 = 𝑙𝑠𝑖𝑛(∅) cos(𝜃) ,      𝑃𝑦 = 𝑙𝑐𝑜𝑠(∅),      
𝑃𝑧 = −𝑙𝑠𝑖𝑛(∅) sin(𝜃) 

(12) 

According to Eq. (12) it is possible to conclude that there are cou-

pled motions of the generalized coordinates 𝑙, ∅ and 𝜃 in order to 

obtain a specific position for point 𝑃. 
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Velocity Analysis of the Serial Manipulator 

Let  0𝜔𝑚 be the angular velocity vector of the end-effector 𝑚 as 

measured from the base link 0 and let 𝑣𝑂 be the velocity of a point 

of the body 𝑚 which is instantaneously coincident with the origin 

of the reference frame 𝑋𝑌𝑍. According to Eq. (5) the velocity state 

of body 𝑚 as measured from body 0, the vector  0𝑉𝑂
𝑚, is given in 

screw form as follows 

�̇�  0$𝑗 + ∅̇  𝑗$𝑘 + �̇�  𝑘$𝑚 + 𝑙 ̇ 𝑘$̅𝑚 =  0𝑉𝑂
𝑚 (13) 

Where, taking into account that point 𝑂 is chosen as the reference 

pole, in Plücker coordinates the infinitesimal screws of the robot 

are computed as 

 0$𝑗 =

[
 
 
 
 
 
0
1
0
0
0
0]
 
 
 
 
 

,  𝑗$𝑘 =

[
 
 
 
 
 
sin (𝜃)

0
cos (𝜃)

0
0
0 ]

 
 
 
 
 

,  𝑘$𝑚 =

[
 
 
 
 
 

sin(∅) cos (𝜃)

cos (∅)

− sin(∅) sin (𝜃)
0
0
0 ]

 
 
 
 
 

, 

 𝑘$̅𝑚 =

[
 
 
 
 
 

0
0
0

sin(∅) cos (𝜃)

cos (∅)

− sin(∅) sin (𝜃)]
 
 
 
 
  
  
  
 

 

On the other hand, in order to satisfy the rank of the Jacobian 

matrix spanned by the infinitesimal screws two virtual, or imagi-

nary, prismatic joints, along the 𝑋 and 𝑍 axes passing through 

point 𝑂, are added to the serial manipulator. Hence Eq. (13) be-

comes into 

�̇�  0$𝑗 + ∅̇  𝑗$𝑘 + �̇�  𝑘$𝑚 + 𝑙 ̇ 𝑘$̅𝑚 + 𝑣1  $1 +
𝑣2  $2 =  0𝑉𝑂

𝑚  
(14) 

Where 𝑣1 = 𝑣2 = 0 provided that these joint-rates are associ-

ated to virtual prismatic pairs. The screws $1and $2 are given in 

Plücker coordinates as follows 

$1 =

[
 
 
 
 
 
0
0
0
1
0
0]
 
 
 
 
 

, $2 =

[
 
 
 
 
 
0
0
0
0
0
1]
 
 
 
 
 

 

After, Eq. (14) may be rewritten in a compact form as follows 

𝐽𝑞�̇� = 𝐽𝑥 
0𝑉𝑂

𝑚 (15) 

Where 𝐽𝑞 = [ 0$𝑗  𝑗$𝑘  𝑘$𝑚  𝑘$̅𝑚 $1 $2] is called the 

screw-coordinate Jacobian matrix of the manipulator while 𝐽𝑥 is 

the identity matrix of order 6. Furthermore vector �̇� =

[�̇� ∅̇ �̇� 𝑙 ̇ 𝑣1 𝑣2]   
𝑇  is named the first-order driver of the 

robot.  Equation (15) is called the input-output equation of velocity 

of the manipulator. 

The forward velocity analysis consists of finding the velocity state 

 0𝑉𝑂
𝑚 given a set of generalized speeds {�̇� ∅̇ �̇� 𝑙}̇. It is evident 

that this analysis is free of singularities since det(𝐽𝑥) = 1 for any 

posture of the mechanism. On the other hand, the inverse velocity 

analysis of the manipulator consists of finding the generalized 

speeds given the six-dimensional vector  0𝑉𝑂
𝑚. Unlike, the forward 

velocity analysis, the inverse velocity analysis is not free of singular 

configurations. In fact, taking into account that det(𝐽𝑞) =
− sin(∅) cos (∅), the manipulator falls into a singulari ty when 

sin(∅) cos(∅) = 0, e.g. when ∅ = 0 or ∅ = 𝜋/2. It is worth to 

note that the generalized coordinate 𝜃 is not responsible to fall-
escape the manipulator from singular postures, if the manipulator 

confirms, as concluded by Waldron et al (1985), that in a serial 

manipulator the kinematic pair connecting the open chain to the 

base link is not responsible of the feasible singularities of the serial 

manipulator. On the other hand, it is evident that the manipulator 

at hand cannot perform arbitrary velocity states owing the loss 

freedoms of it, consider for instance that the coordinates 𝑃𝑥 and 

𝑃𝑧 are related through Eq. (10). Finally, according to Eq. (13) the 

angular velocity  0𝜔𝑚 results in 

 0𝜔𝑚 = [∅̇ sin(𝜃) + �̇� sin(∅) cos(𝜃)]𝑖̂ + [�̇� +

�̇� cos(∅)]𝑗̂ + [∅̇ cos(𝜃) − �̇� sin(∅) sin(𝜃)]�̂�    
(16) 

While the velocity vector  0𝑣𝑂
𝑚 is obtained as 

 0𝑣𝑂
𝑚 = 𝑙̇ sin(∅) cos(𝜃) 𝑖̂ + 𝑙̇ cos(∅) 𝑗̂ −

𝑙̇ sin(∅) sin (𝜃)�̂�  
(16) 

Furthermore, using elementary kinematics the velocity of point 𝑃 

is computed as 

 0𝑣𝑃
𝑚 =  0𝑣𝑂

𝑚 +0 𝜔𝑚 × 𝑟𝑃/𝑂  (17) 

where 𝑟𝑃/𝑂 is a vector pointed from point 𝑂 to point 𝑃. Hence 

one obtains 

 0𝑣𝑃
𝑚 = [−𝑙�̇� sin(∅) sin(𝜃) − 𝑙∅̇ cos(𝜃) cos(∅) +

𝑙̇ sin(∅) cos(𝜃)]𝑖̂ + [𝑙∅̇ sin(∅) + 𝑙̇ cos(∅)]𝑗̂ +

[−𝑙�̇� sin(∅) cos(𝜃) + 𝑙∅̇ sin(𝜃) cos(∅) −

𝑙̇ sin(∅) sin(𝜃)]�̂�  

(18) 

Equations (17) and (18) indicate that given the velocity state of the 

end-effector, taking point 𝑃 as the reference pole, there are six 

equations available to compute the four generalized speeds of the 

robot. The limitations of mobility of the manipulator are evident 

owing the dependency between such equations. In fact the end-

effector of the robot cannot undergo arbitrary velocity states. For 

example, concerned with the velocity of point 𝑃 the architecture 

of the manipulator is such, see Eq. (10), that �̂� ∙ 𝑟𝑃/𝑂 = 0. Hence 

upon the time derivative of such constraint it follows that Eq. (18) 

is restricted to satisfy the expression 𝑣𝑥 cos 𝜃 = 𝑣𝑧 sin 𝜃. The 

available motions of the antenna may be easily explained if one 

consider that the orientation of the antenna is controlled by means 

of the three independent angles 𝜃, ∅ and 𝛽 and therefore the knob 
can adopt arbitrary orientations as observed from the base link 

while, according to the limitations of the manipulator, only one 

translation of point 𝑃 can be selected freely.  

Acceleration Analysis of the Serial  
Manipulator 

Let  0𝛼𝑚 be the angular acceleration vector of the end-effector 𝑚 

as measured from the base link 0 and let  0𝑎𝑂
𝑚 be the acceleration 

of a point of the body 𝑚 which is instantaneously coincident with 

the origin of the reference frame 𝑋𝑌𝑍. According to Eq. (6), the 

reduced acceleration state of body 𝑚 as measured from body 0, 

the vector  0𝐴𝑂
𝑚, is given in screw form as follows 

�̈�  0$𝑗 + ∅̈  𝑗$𝑘 + �̈�  𝑘$𝑚 + 𝑙 ̈ 𝑘$̅𝑚 + �̇�1 $1 +
�̇�2 $2 + 𝐿 =  0𝐴𝑂

𝑚  
(19) 
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Where the Lie screw of acceleration, see Eq. (7), is given by 

𝐿 = [�̇�  0$𝑗     ∅̇  𝑗$𝑘 + �̇�  𝑘$𝑚 + 𝑙 ̇ 𝑘$̅𝑚 + 𝑣1 $1 +

𝑣2 $2] + [ ∅̇  𝑗$𝑘     �̇�  𝑘$𝑚 + 𝑙 ̇ 𝑘$̅𝑚 + 𝑣1 $1 +

𝑣2 $2 ] + [�̇�  𝑘$𝑚   𝑙 ̇ 𝑘$̅𝑚 + 𝑣1 $1 + 𝑣2 $2] +

[𝑙 ̇ 𝑘$̅𝑚   𝑣1 $1 + 𝑣2 $2] + [𝑣1 $1   𝑣2 $2]  

(20) 

Furthermore, due to the fact that the joint-rate velocities 𝑣1 and 

𝑣2 vanish, then the Lie screw of acceleration is reduced to 

𝐿 = [�̇�  0$𝑗     ∅̇  𝑗$𝑘 + �̇�  𝑘$𝑚 + 𝑙 ̇ 𝑘$̅𝑚] +

[ ∅̇  𝑗$𝑘     �̇�  𝑘$𝑚 + 𝑙 ̇ 𝑘$̅𝑚] + [�̇�  𝑘$𝑚   𝑙 ̇ 𝑘$̅𝑚]  
(21) 

After, the input-output equation of acceleration of the manipula-

tor may be re-written, see Eq. (19), as follows 

𝐽𝑞 �̈� + 𝐿 =  0𝐴𝑂
𝑚  (22) 

where �̈� = [�̈� ∅̈ �̈� �̈� 𝒗�̇� 𝒗�̇�]   
𝑻  is called the second-order 

driver matrix of the manipulator. Evidently it follows that 𝒗�̇� =

𝒗�̇� = 𝟎 owing that these joint-rate accelerations are associated to 
fictitious kinematic pairs. 

Once the velocity analysis of the manipulator was solved, the for-
ward acceleration analysis of the kinematic chain consists of finding 

the reduced acceleration state  0𝐴𝑂
𝑚 given a set of generalized ac-

celerations {�̈� ∅̈ �̈� 𝑙}̈. On the other hand, the inverse accel-
eration analysis consists of finding the generalized accelerations 

given the six-dimensional vector  0𝐴𝑂
𝑚. Both    analyses may be 

solved by means of Eq. (22). Furthermore, after a few computa-

tions, the primal part of the reduced acceleration state  0𝐴𝑂
𝑚 is 

obtained as 

 0𝛼𝑚 = 𝑃( 𝑗𝐴𝑂
𝑚) = [∅̈ sin(𝜃) + �̈� sin(∅) cos(𝜃) +

�̇�∅̇ cos(𝜃) − �̇��̇� sin(∅) sin(𝜃) −

∅̇�̇� cos(∅) cos(𝜃)]𝑖̂ + [�̈� + �̈� cos(∅) +

∅̇�̇� sin(∅)]𝑗̂ + [∅̈ cos(𝜃) − �̈� sin(∅) sin(𝜃) −

�̇�∅̇ sin(𝜃) − �̇��̇� sin(∅) cos(𝜃) +

∅̇�̇� cos(∅) sin(𝜃)]�̂�  

(23) 

while the corresponding dual part of the six-dimensional vector 

 0𝐴𝑂
𝑚 is obtained as 

𝐷( 0𝐴𝑂
𝑚) = [𝑙̈ sin(∅) cos(𝜃) − 𝑙�̇̇� sin(∅) sin(𝜃) −

𝑙∅̇̇ cos(∅) cos(𝜃)]𝑖̂ + [𝑙̈ cos(∅) + ∅̇𝑙̇ sin(∅)]𝑗̂ +

[−𝑙̈ sin(∅) sin(𝜃) − 𝑙�̇̇� sin(∅) cos(𝜃) +

𝑙∅̇̇ cos(∅) sin(𝜃)]�̂�  

(24) 

Thus according to Eq. (3), the acceleration of point 𝑂 fixed in body 

𝑚 as observed from the base link 0 is given by 

 0𝑎𝑂
𝑚 = 𝐷( 0𝐴𝑂

𝑚) +  0𝜔𝑚 ×  0𝑣𝑂
𝑚 (25) 

Finally, using elementary kinematics the acceleration of point 𝑃, 

fixed in body 𝑚 as observed from body 0, is calculated as 

 0𝑎𝑃
𝑚 =  0𝑎𝑂

𝑚 +  0𝛼𝑚 × 𝑟𝑃/𝑂 +  0𝜔𝑚 × ( 0𝜔𝑚 × 𝑟𝑃/𝑂)  (26) 

Numerical Example 

In order to show the application of the method, in this section a 

case study is reported. 

The first part of the example is devoted to the forward kinematics 

of the mechanism. To this end, using thorough the numerical ex-

ample SI units, consider that in the reference configuration the 

generalized coordinates of the manipulator are given by 𝜽 = 𝝅/𝟗, 

∅ = 𝝅/𝟏𝟎, 𝒍 = 𝟎. 𝟕𝟓𝒎. Furthermore, consider that upon the 

home position of the manipulator we have a constant angular ve-

locity �̇� = 𝟑 while the generalized coordinates of the manipulator 

are commanded to follow periodical functions given by 

𝜃(𝑡) = sin(𝑡) cos(𝑡) , ∅(𝑡) = sin(𝑡) , 𝑙(𝑡) = sin(𝑡) /5  (27) 

where the time 𝑡 is confined to the interval 0 < 𝑡 < 2𝜋. Thus in 

the home position of the robot when 𝑡 = 0, the coordinates of 

point 𝑃 are obtained as 𝑃 = (0.217,0.713,−0.079). With these 

data it is required to determine the temporal behavior of point 𝑃. 
The involved equations in the solution of the forward position, 

velocity and acceleration analyses were translated into a Maple12 

sheet. The relevant plots thus obtained are provided in Fig. 3. 

             Using screw theory       

 

 

 

 

Using ADAMS © 

 

 

 

 

 

Figure 3. Time history of the forward kinematics of the knob (point 
P). 
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Furthermore, in order to verify the numerical results obtained via 
screw theory, the forward kinematics of the numerical example 

was carried-out by means of a different approach such is the ap-

plication of commercially available software like ADAMS©. For a 

rapid comparison between both strategies the plots generated 

with ADAMS© were added to Fig. 3. The virtual prototype is 

shown in Fig. 4. 

 
Figure 4. Virtual prototype of the manipulator realized with AD-
AMS©. 

The next part of the exercise is dedicated to the inverse kinemat-
ics of the manipulator. To this end, it must be taken into proper 

account that the manipulator at hand is a limited-dof serial manip-

ulator, i.e. the vectors contained in the velocity state are depend-

ent vectors each other. Thus, it is necessary to select properly the 

task assigned to the end-effector. One feasible selection is to as-

sume that point 𝑷 can adopt arbitrary positions with respect to 

the base link. With these assumptions in mind it is desired that 

upon the home position of the antenna, i.e. when 𝑷 =
(𝟎. 𝟐𝟏𝟕, 𝟎. 𝟕𝟏𝟑,−𝟎. 𝟎𝟕𝟗), point 𝑷 = (𝑷𝒙, 𝑷𝒚,𝑷𝒛) is com-

manded to follow periodical functions given by 

𝑃𝑥 = 0.217 + 0.15 sin(𝑡) , 𝑃𝑦 = 0.713 −
0.125 sin(𝑡) , 𝑃𝑧 = −0.079 + 0.175sin (𝑡)  

(28) 

keeping a constant orientation of body 𝑚 with respect to body 𝑘, 

e.g. �̇� = 0. With these data it is required to compute the general-

ized coordinates, and their time derivatives, that allow the manip-

ulator to perform the assigned task. 

The extendible length 𝑙 is computed directly from Eq. (8) while 

the angles ∅ and 𝜃 are calculated, respectively, by means of Eqs. 
(9) and (11). Furthermore, the generalized speeds and accelera-

tions are obtained based on the first and second time derivatives 

of Eqs. (28). Figure 5 shows the plots of the obtained simulations. 

In order to exemplify the mobility limitations of the manipulator 

concerned with the virtual prototype realized with ADAMS© the 

following trajectories were imposed to point 𝑃 of the knob: three 

rotations + 𝑃𝑋, three rotations + 𝑃𝑦 , three rotations + 𝑃𝑍. All the 

imposed trajectories were successfully performed by the manipu-

lator. However, when additional conditions were assigned to point 

𝑃, e.g. three rotations+𝑃𝑋 + 𝑃𝑌, the simulations with ADAMS© 

fail invariably. 

 

     

 

Figure 5. Time history of the inverse kinematics of the numerical 
example. 

Conclusions 

“Unfortunately, screw theory is usually explained following de-

scriptive definitions rather than short axiomatic lines of reason-

ing”, Minguzzi (2013). 

“Screw theory allows simple geometrical interpretation, but it is 

restricted to speed and infinitesimal displacement analysis”, 

Legnani et al (1996). 

Comments like the above given can be found in the specialized 

literature. In this work, the kinematics of a four-degrees-of-free-

dom serial manipulator employed as an actuating mechanism for a 

telescoping antenna is investigated by means of the theory of 

screws. Simple equations in closure form are easily obtained to 

solve the displacement analysis of the manipulator. After, the in-

put-output equations of velocity and acceleration are systemati-

cally obtained by resorting to the theory of screws. Numerical ex-

amples, which were successfully verified with the aid of special 

software like ADAMS©, are provided in order to show the appli-

cation of the method. This work is a proof that screw theory is 

not an “old-fashioned” mathematical resource confined to the so-

called first-order kinematics of rigid body. 
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