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A novel finite element method for designing floor slabs on
grade and pavements with loads at edges

Novedoso método de elementos finitos para disenar losas para
pisos industriales con cargas en los bordes o juntas

H. E. Camero!

ABSTRACT

In the present paper a methodology to design slabs on grade for industrial floors and pavements using bi-dimensional finite elements
and integrating the subgrade in the design is presented. The suggested method to design slabs on grade for industrial floors and pave-
ments has been called the Camero Finite Element Method. An example of an industrial floor designed to be capable of sustaining an
infinite number of load applications (or a 50 years lifespan period) is here presented in order to be compared with the results of the
Camero Finite Element Method, the PCA (Portland Cement Association), and the WRI’s (Wire Reinforcement Institute) simplified me-
thods. In this example, an industrial floor is designed to be capable of sustaining an infinite number of load applications comparing
the results of the Camero Finite Element Method and the simplified methods of the PCA and WRI. The industrial floor or pavement
will be able to resist an infinite number of load applications if it is designed with the Camero Finite Element Method. On the other
hand, if it is designed using the PCA and the WRI methods, it will last a few years (in this example, in one year period, the number of
axle load applications is equal to the number of allowable repetitions). To conclude, if an industrial floor o pavement is designed with
the Camero Finite Element Method, it will be able to sustain an infinite number of load applications (up to 50 years lifespan period).

Keywords: Floor slab on grade, industrial floor slab, Portland Cement Association, wire reinforcement institute, slab design on
grade, floor design, industrial floor slab, concrete floor, concrete slab on grade, pavement, rigid pavement, Camero finite element
method.

RESUMEN

En el presente articulo se presenta una metodologia para el disefo de losas sobre terreno para pisos industriales y pavimentos uti-
lizando elementos finitos bidimensionales e integrando el suelo en el diseno. El método propuesto para disefar pisos industriales
ha sido llamado Camero Finite Element Method. Un ejemplo de un piso industrial disefiado para soportar un nimero infinito de
repeticiones de carga (o un periodo de vida dtil de 50 afios) es aqui presentado con el fin de comparar los resultados de Camero
Finite Element Method, los métodos simplificados de la PCA (portland Cement association) y la WRI (wire Reinforcement Institute).
En el ejemplo, un piso industrial es disenado para ser capaz de admitir un ndmero infinito de aplicaciones de carga (o un periodo
de vida dtil de 50 afos), comparando los resultados de Camero Finite Element Method y los métodos simplificados de las PCA y la
WRI. El piso industrial o pavimento serd capaz de resistir un niimero infinito de aplicaciones de carga (50 afios) si es disenado con
Camero Finite Element Method. De otra manera: Si es disenado por los métodos de la PCA y la WRI Gnicamente durard pocos afios
(en este ejemplo, en el periodo de un afo el nimero de aplicaciones del eje cargado es igual al nimero de repeticiones admisibles).
Concluimos que el piso industrial o pavimento sera capaz de admitir un nimero infinito de aplicaciones de carga (periodo de vida
Gatil de 50 afos) si es disefiado con Camero Finite Element Method.

Palabras clave: Losa sobre terreno, losa industrial, Portland Cement Association, Wire Reinforcement Institute, disefio de losas
sobre terreno, disefio de pisos, placas de pisos industriales, losas de pisos industriales, pisos de concreto, pisos de concreto sobre
terreno, pavimentos, pavimentos rigidos, método de elementos finitos de Camero.
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Introduction

Designing slab floors on gradg for industry consists in d(?sig- se presented under operational conditions by forklift trucks
ning slab% for storage and traffic loads produced by vehllcles being misaligned with the slab’s longitudinal axis centre
and forklift trucks, these generally being the most critical.  (eccentricity between slab centroid and the centre of the

This article shows how the Portland Cement Association  forklift's truck loaded axle).
(PCA) and Wire Reinforcement Institute (WRI) simplified ) .
methods for designing slabs for forklift truck traffic, consi- ~ Figure 1 shows the geometry of the forklift’s truck loaded

der the bending moments applied to slabs smaller than tho-  axle. WS is wheel spacing of the forklift truck’s loaded axle.
Figure 2 shows the loaded axle working on the slab. The
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forklift’s truck centre longitudinal axis has been called C_
and the slab’s centre longitudinal axis, has been called ¢.

The article explains the development a method to design
slabs on grade for industrial floors and pavements with fini-
te element analysis in two-dimensional problems including
the subgrade. The terms for stresses are obtained on the
assumption that the soil is a perfectly elastic material.

Loaded Axle

N 7

Contact Area of
Each Wheel

Figure 1. Geometry of the lift truck loaded axle on the slab (From Ca-
mero, 2007).
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Figure 2. Geometry of the lift truck loaded axle operating on the slab.
Shows the positives axes, X, Y, and Z and the positive direction of the
internal forces in a slab element. Shows probable, transversal pressure
distribution.

Analytical investigation

Stress due to load

The reduction of a three-dimensional problem to a two-di-
mensional problem can occur in plane stress and plane
strain. For each case, see Segerlind (1984) and Onate (1995).

The state of plane stress occurs if a pavement has isolation
joints, contraction joints and expansion joints. The stress
components associated with the direction perpendicular to
the plane of the applied loads, 6zz, 6zx, and czy are very
small and assumed to be zero, when the applied loads lie
in the x-y plane.

The example showed in this article is limited to elasticity
problems.

The generalized Hooke’s law can be written as (and re-
member that 6zz = 0, 6zx, and 6zy = 0):

M 16

o=D"¢ (1)
o is the stress vector and can be written as:
{UT} = [UU Jyy U)gv ] (2)

The matrix D is (Linero and Garzén, 2010, chapter 5)

1T v 0
E v 1 0
D:1 v (1-v) ¥
— —v
0 O
2

Where v is a constant called Poisson’s ratio and £ is the
modulus of young or modulus of elasticity.

&, the elastic strain vector is
T
{5 } = [sm €y £y (4)

The displacement equations

There are two unknown displacements in a two dimensio-
nal elasticity problem, p and v. The displacement parallel to
the z-axis, , is related to p and v.

The p and v displacements are modeled in a continuum
element by defining two displacement components at each
node (Figure 3).

Concentrated
Load, P

(i Vi)

p, A4

Figure 3. The nodal displacements for a triangular elasticity element.
Its six nodal degree of freedom are shown.

The linear triangular element is perhaps the earliest and
simplest finite element. A resume of formulation in element
finite is show below. The author recommends the readers to
read Segerlind (1984) and Onate (1995).

The horizontal displacement ps is approximated using:
w(x,y) =N, + N, + N, (5)

The vertical displacement component v is represented by:
V(x, y) =Ny, + Ny, + Ny, (6)

Utilizing matrix notation yields

w =)=l e o

x
X,

Where [N] is the matrix 2x6 that contains the element sha-

pe functions and {Un} is the vector that contains the ele-

ment nodal displacements.

INGENIERIA E INVESTIGACION vOL. 35 N.° 2, AUGUST - 2015 (15-22)



CAMERO

i
vi
0 Nk 0 and{Un}: IU_ (8)
0 Nk vj
wk
vk

Ni 0 Nj
0 Ni 0 Nj

[N)=

N, N, and N, are the linear shape functions that by a linear
triangular element are (Segerlind, 1984, pp. 51-67):

Ni= ﬁ[ai +bx+cyl
. 1
szﬂ[aj+bjx+cjy] 9)

. 1
leﬂ[akerkarcky]
And:
a=XY-XY, b=Y-Y c¢=X—-X
aj:XkY[_XiYk bj:Yk_ Y, C‘/:X[_Xk (10)
a=XY-XY b=Y—-Y

i J

The strain components and displacements are related. The-
se relationships are called the strain-displacement equations
and are derivated in all elasticity books (Linero and Garzén,
2010 and Timoshenko and Goodier, 1970). They are:

ou ov ou  Ov
En =", €, =—, &, =—+—
Toox Y oy Y 0y  Ox

Using matrix notation, the vector strain with Equations (4),
(5), (6), (7), (8), and Equation (11), is:

(11

i

9 .
Ox vi
O||Ni 0 Nj 0 Nk O||uj

=0 =
e} avll0 Ni 0 Ni 0 Nk||uj (12)

L) i
dy Ox 1k

Using matrix notation, the Equation (12) can be written as:

{e} =[B]{Un} 13)

Equation (13) defines the gradient matrix [B] for the triangu-
lar element. It is a 3x6 matrix.

The linear triangular element shown in Figure 3 has straight
sides and three nodes, one at each corner.

In each node of the linear triangular element or in each
node of the grid the designer has to evaluate the equilibrium
among the strain energy equations and the forces acting on
the system: work done by the forces due to concentrated
loads, work done by the stress components acting on the
outside surface and work done by the body forces (Linero,
Garzon and Ramirez, 2013, chapter 2, Linero and Garzdn,
2010, chapter 4 and Segerlind, 1984, chapter 18, 21, and
22), This is the principle of minimum potential energy.

The general form of the finite element equations for poten-
tial energy formulation is:

(K| {Un} =) a4

Where []= [[B] [D][B]: da (15)
A

Where [B] is defined by (13), [D] is defined by (3) and {Un}

is defined by (8). The element has a volume V that is equal

to its area, A by its thickness, t.

If calculating [K] according to Equation (15) by linear trian-
gular element:

K, K, K, K, K; K;
KZZ K23 K24 KZS KZG
[K]: tE K,, K, K, Ky
4A<1—v2) K, K, K 16
Ky K
SYM Ko
Where
1— 1—
Kn :b[Z + ( V>Ci2 ’ K1z = V+( V) bici
2 2
(171/) (1*1/)
K, =bibj + P GCi K, :Vbicj + bjC,
(1-») )
K5 =bb, + 5 ¢ |i Ko =vbe, + i
1—
K, =c¢’ + ( V)b[z ; K, =vbc + %b,cj]
K, =cc +ubb] K Vchrubc]
24 = GC; 051 25 = VOC > (g
1— 1—
Ky =cio + ( 21/) bzbk]; K, :bjz + (—21/>ch
(1—V) (1—1/)
K,, =ocolv+ 3 be, ; Ky =bb + 5 ¢,
_ 1
K;(, :Vbjck + ( V) bkC(,» , K44 _ j2 ( 2l/> b/z
1—v T—v
K, =vbhc; + %bj k‘, K, =cc + ubjbk]
1—
K :Ck2 + ( 2y)bk2]

[K] is symmetric and b, b, b,, c, c, and c, are definite by
Equation (10). A is the area of the triangle. [K] is called the
stiffness matrix.
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In the Equation (14), {f} is the force vector. If a Triangular 3-

Linear Element (Figure 3) has surface stress on the side i/’
p, and p , body force, b_and b, (bulk unit weight), and
concentrated load, P on node k., the resulting equation is:

P b, 0

Py b\ |0
{ry=t 4 bl 10 (17)

2 |py, 3 |b, 0

0 b,| o

0 bl P

As the linear triangular element has six de gree of free-
dom, if there are concentrated loads, it goes in {f} in the
position of its degree of freedom. L is the length of each side
of the element.

The Equation (14) is evaluated for each element of the grid.
The global stiffness matrix and the global force vector {f}
come from element contributions. The [K] and {f} of each
element are introduced in [K] and {f} global for all structu-
ral problem in function of each degree of freedom of each
element.

To solve Equation (14), find {Un} and with Equations (13)
and (1) find the stress o.

For a plain concrete slab it has been demonstrated in texts
on the mechanics of materials that the relationship between
bending moment and stress is as follows:

Mc

g, oy —
max bending ]

(18)

In the Equation (18), M (bending moment) = M_, and the 6.

moment of inertia regarding the neuter axis is /, and I =/ .
The direction of the axes is illustrated in Figure 2.

Proposed method to design
(Camero Finite Element Method):

The following procedure is proposed:

1. Calculate the bending moment considering that the ve-
hicle is in the edge of the slab (See example).This is if
the axle load from a moving vehicle will move along
the floor or pavement and eventually crosses a joint.

Other loadings, such as rack posts, swing lift trucks, 9.

or columns must be considered. PCA and WRI charts
give thicknesses based on loadings at the interior of the
floor slab (if the forklift’s truck centre longitudinal axis,
C,, coincide with the slab’s centre longitudinal axis ¢).

Remember that the stress, o, was obtained by finite
element, and for each element with Equation (18) we
calculate the bending moment.

Establish allowable stresses: the stresses should not ex-
ceed the elastic limit at any point. The following maxi-
mum compression and tension

Umax compression =0.45 f /C (1 9)/

is allowable concrete compression.

1.6y fC

= (20),
Safety Factor

max tension

is allowable concrete tensile stress and the designer
must specific passive steel as control for shrinkage and
concrete temperature effects.

Calculate the thickness of the slab or pavement.

The typical way to calculate the thickness (t) of the slab
or pavement is using a 1.0 meter-wide slab trip (or 1.0
foot-wide slab strip or 1.0 inch — wide slab trip). The
Equation (18) takes the form:

M
maxbending ~ b *

7 e @1

6

Where b is the width of the transversal section of the
slab or pavement being analyzed, taken as 1 me-
ter(m.), 1 foot (12 inches) or 1 inch; and t is the slab
or pavement thickness (Camero, 2007, and Ringo and
Anderson, 1996).

Verify that the applied stress calculated in Equation
(21) is smaller than allowable, Equations (19) and (20).
If it is not satisfactory, increase the slab thickness.

Verify that the reaction on the sub-grade is smaller
than the bearing capacity of the same. Since soil can-
not take tension stresses, the engineer must verify it
(Bowles, 1975, pp. 504-514).

Verify slab shear stress resistance due to load action.

If the designer wants to design a structurally reinforced
slab, select the load factor to give the design moment
(greater than the applied moment). To this design mo-
ment, which is an ultimate moment, calculate the requi-
red steel areas and spacing. Use the theory of reinforce-
ment concrete to calculate the required steel areas.

Calculate the angular distortion. With finite element, for
each node of the grid we have found the settlement. The
results in Equation (14) gives us directly the settlement
in each point of application of loading and helps us to
calculate the angular distortion. For Flat floors a distor-
tion angular limit = 1/1000 is recommended. Lambe
and Whitman (1989, pp. 210-242) show an example.

In the following example, the slab adjacent and the mass of

2. From 1, the engineer obtains the maximum bending soil in the area of influence are considered. To determine
moment and with the results of finite element he ob- this mass of soil, the attenuation of stress with its depth
tains the maximum bending stress. He can also calcu- must be calculated. This can be done with Equation (14)
late the maximum bending stress applied to the slab (or and a big grid. The stress distribution can also be calculated

pavement) with Equation (18).
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by Perloff (1975) indicate that the use of an equivalent cir-
cular area is an excellent approximation. Perloff (1975)
shows it at the centerline: the stress due to the loaded area
is maximum immediately below the loaded area, and at-
tenuates to less than 10 percent of the initial vertical stress
at a depth equal to twice the width of the loaded area or
effective diameter of contact area.

Example to calculate bending moments

Example 1: Calculate the bending moment for designing an
industrial floor with the following values:

Characteristics of the materials, site:

Concrete:

Concrete modulus of elasticity: E =21000 MPa
(3000kpsi=21x10°kN/m?)

Modulus of rupture: MR=4.2 MPa (600 psi).

Concrete Poisson’s ratio, v=0.24 (See Mindess, young and
Darwin, 2003).

Concrete, bulk unit weight: 24 kN/m? (149.8 |b/ft})

Soil:

Subgrade soil modulus of elasticity, E
Soil:=25100 kN/m? (3570 psi)

Soil, bulk unit weight: 18 kN/m?* (112.4 1b/ft*)
Soil Poisson’s ratio, v=0.50

Safety Factor: 2.0

Slab width:3.66 m=12 ft.

Depth of analysis to consider (area of influence):
0.9m=2.95 ft.

Wide of analysis of slab adjacent:

Consider 0.90m=2.95 ft.

Forklift truck specifications:

Total axle load: 13000 kg (28.6 kips=127.4 kN), with
equal wheel axle kpsi, then in Figure 2, P, =P, = 6500kg
(14.3 Kips=63.7 kN for calculates,

| have taken 65 kN).

Post Load in Slab Adjacent: 70.0 kN = 15.75 kpsi.
Wheel Spacing (WS): 1.83m (72 in).

Tire Pressure: 65 kg/cm? (930 psi). The wheel tread is a
very hard material.

When the tire pressure is low (example:

5.6 kg/cm?=80psi), building the grid of finite element
including the tire is recommended.

Slab width where the forklift truck goes was determina-
te by (Figures 2):

A=1.76m (69.29 in)

B=0.07m (2.76 in)

C=3.59m (141.34 in)

L=3.66m (144.09 in)

In Figure 4:

Wide joint: 0.01m (0.39 in)

In Slab adjacent: A=0.05m (1.97 in) In this point there is
a post load.

Slab thickness: 0.193m=7.6 in.

We will lay a grid as shown on Figure 4 and 5 with trian-
gular elements on slab (transversal section). The boundary
conditions can be seen: the line of soil where vertical dis-

placements are zero (v, v, v, = 0 in the Equation (8) on the
bottom line, Figure 4 ).

Slab adyacent., 0.90

L =3.66 mts. = 144.09 inches mts. =35.43 inches

0.193 mts. = 7.6 inches

t

0.90 mts. = 2.95 feet

Figure 4. Grid of transversal section of slab with triangular elements
(Tin=0.0254 m)

The Grid has 4974 elements and 2647 nodes.

To solve the Equation (14) we have created a software. This
software was created taking as a guide the software PEFICA
(Linero, 2010). Examples of computer output are shown in
Figures 6, 7 and 8.

[ so

[ concrete "

1913 BTN

Figure 5. Detail about the materials on grid. Detail of joint into slab to
design and slab adjacent. Details on elements 1 and 2 — Grid with nodes.

The following moments were found by calculating the ben-
ding moment applied according to PCA and WRI methodo-
logies (their design charts are given in Ringo and Anderson,
1996 and ACI 360, 2010. These documents present infor-
mation on the design of slabs on grade with methods attri-
buted to the PCA and WRI and examples that appear in the
appendix. The design chart of PCA is shown in Gunalan,
1986, as well):

M PCAmmhod:29OO Ib-in/in=1.32T-m/m=12.9 kN-m/m
M =2850 Ib-in/in=1.3T-m/m=12.7kN-m/m

WRI method

The following is obtained if the applied bending moment
is calculated according to Camero Finite Element Method
(Figure 4, 5, 6, 7 and 8):

=4718 Ib-in/in=2.14T-m/m =

CAMERO Finite Element method

20.973 kN-m/m.

For this example it was found that the real bending moment
applied to the slab was 65 % greater than the one calcula-
ted by the PCA and/or WRI methods.
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Figure 9. lllustrates the bending moment applied on the a1 c2 G ca cs 6
slab calculated with Camero Finite Element Method (on
line “OS” in Figure 5).

F4  1040520,31 -3750449,94 -5274391,28 10490109,13 4233870,97 -6739659,19

F5 -793175,42 -4233870,97 -2561070,49 4233870,97 335424591 0,00
More accurate values for bending moment are obtained

. . . . . F6  -2674023,77 -2087303,73 2674023,77 -6739659,19 0,00 8826962,93
using grids with a larger number of linear triangular ele-

Dxy() desplazamiento ordenados de cada nudo (2647x2)

ments to obtain the Converging value. The maximum ben- Dxy() nodal displacment values, m using Equation (14) for all structure (2647x2)
ding moments for the various grids are summarized in Ta- (only are shown some nodes)

ble1. If we are interested in quantities, then we need a fine i &

grid of linear triangular elements or other types like several FI -3,1233E04 0,0000E+00

quadratlc elements. F2125 1,2652E-04 -3,8146E-03

Table 1. Computer Solutions with Software Camero Finete Element F2137 1,2666E-04 -3,8552E-03
Method. F2138 1,7739E-04 -3,8455E-03
. Maximum Bending ~ Maximum Bending F2139 1,6682E-03 -2,0268E-04
Grid (number
of elements) Moment Moment
[Pounds-in /in] (kN-m/m). F2149 1,2680E-04 -3,8951E-03
1478 -3262 14,5
1716 -3937 17,5 Figure 7. Results for example 1.
2901 -4432 -19,7
4011 -4612 20,5
4974 -4718 -20,97 *kx Software camero finite element method

with two dimensional elements *****

List of nodes on superior line “0s”, on the slab (110x1)
**+* Software camero finite element method (only are shown some nodes)
with two dimensional elements *****

C1
Xyz() (2647x2) nodal coordinates (only are shown some nodes). 1 2183
X (m) y (m)
F2 2165
F2125 3,6293 0,7070
F2137 3,6448 0,7070 F3 2128
F2138 3,6411 0,7266 F4 2113
Element data (only are shown some elements) F5 2096
Ele M " M F6 2055
2 2125 2137 2138
F7 2040
Concentrated forces
F8 2025
kN kN
Node fx fy F9 2010
1010 0,000 -65,000 F10 1994
2128 0,000 -65,000 oxx (kN/m?), stress average in nodes Nodal
2225 0,000 -70,000 of superior coordinates. Bending moment
applied on the
Surface stress and body forces on elements line “0s” on the slab, oxx for node Nodles ) slab, kKN-m
(only are shown some elements) on superior line 4
(110x1) (only are shown some nodes)
of slab. (m)
kN/m? kN/m?
1
Elem b, b ¢
1 0,00 24,00 F1 -3,3579 3,66 0,0208
F2 30,9051 3,63 0,1919
Figure 6. Results for example 1.
3 -433,9163 3,59 2,6938
F4 82,1369 3,57 0,5099
kkkk ni
S})ﬂware camero finite element method F5 341,3994 3,55 21195
with two dimensional elements *****
— F6 925,9585 3,49 -5,7485
Valor modulo elasticidad elemento2 (1x1)
21.000.000,00 F7 1048,9263 3,47 -6,5119
Valor relacion de poisson2 (1x1)
0,24 F8 1197,0083 3,45 -7,4312
Valor espesor elemento2 (1x1)
1 F9 1344,6360 3,43 -8,3477
Matriz de rigidez triangular lineal de elasticidad, elemento2 (6x6) F10 1456,2993 3,41 29,0409
Element stiffness matrix for element 2 (6x6) F11 1877,8004 3,35 11,6577
“ < © 4 © co F12 1959,2321 3,33 12,1632
F1  14251169,07 1633503,46 -13457993,65 1040520,31 -793175,42 -2674023,77 F13 2108,6861 3,31 13,0911

F2  1633503,46 5837753,67 2600367,51 -3750449,94 -4233870,97 -2087303,73

F3  -13457993,65 2600367,51 16019064,14 -5274391,28 -2561070,49 2674023,77 Figure 8. Results for example1
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Moment (KN-mts)

Abscissas (mts).

Figure 9. Bending moment caused by the lift truck, Example 1
(kKN m/m = 224.96 Pounds —in/in).

Results discussion

If the maximum stresses applied to the slab were calcu-
lated with PCA and WRI methods, the thickness of slab
(applying Equation (21)) would be t=7.6 in (19.3cm.),
M= 2900 Ib-in/in (12.9 kN-m/m) and safety factor of 2.0,
and with Equation (18):

=300 psi = 2.1 MPa. = 21 kg/cm?

maximum applied tensile stress

If the stress applied to the slab (pavement) is calculated
according to the applied bending moment found with
CAMERO Finite Element Method, the thickness of the plain
concrete slab (with safety factor of 2.0, and with Equation
21), should be, t=9.71 in (24.7 cm).

It can be found that with t = 7.6 in (19.3 cm) and
M=4718 |b-in/in (20.97 kN-m/m):

Gmaximum applied tensile stress =490 pSl (lb/lnz) =3.4MPa.=34.5 kg/
cm? (This value is obtained with the software; see Figure 9).

If the o . /MR relationship is calculated, then the fo-
applie

llowing is found:

g .
applied _ 490 _ 081
MR 600

Plain concrete slabs will generally sustain an infinite num-
ber of load repetitions (infinite amount of forklift truck tra-
ffic), as long as extreme fiber stress does not exceed 50 %
of static modulus of rupture (see Camero, 2007, pp. 93-100
and Yoder and Witczak, 1975, p. 603).

Minor’s charts (published in Yoder et al., 1975, p. 566, 603)
show that there are 90 allowable repetitions of loaded axles
of 13000 kg (127.4 kN), when g, i/ MR = 0.81. PCA and
WRI safety factor for this exampre is 1.2 and not 2.0 as
we believed according to PCA and WRI design charts. MA
Minor found that if a load produces bending stress greater
than half concrete rupture modulus, then such load indu-
ces material fatigue.

With the bending moment found with Camero Finite Ele-
ment Method and safety factor of 2.0 we must select the
Slab thickness. A plain concrete slabs design with Came-
ro Finite Element Method will generally sustain an infini-
te number of load repetitions (infinite amount of forklift
truck traffic), because the extreme fiber stress does not ex-
ceed 50 % of static modulus of rupture (Yoder et al., 1975,

p.602). In structural terms, the slab designed or pavement
designed with Camero Finite Element Method has a lifelong
useful life. The durability of concrete is very important too.
If properly designed for the environment to which it will be
exposed, and if carefully produced with good quality con-
trol, concrete is capable of maintenance free performance
for decades without the need of protective coatings. The en-
gineer can find an example of this in Mindess et al., 2003.

Conclusion

A new method to design slabs on grade for industrial floors
is presented in this paper. The Camero Finite Element Me-
thod is the new solution to design slabs on grade and pa-
vements.

The Camero Finite Element Method shows that the bending
moment applied by the forklift truck on the slab is bigger
than those considered by the simplified PCA and WRI de-
sign methods. This article explains how the traditional way
of designing industrial floors critically reduces the lifespan
of the floor.

Industrial floor design using the Camero Finite Element Me-
thod can sustain an infinite amount of traffic; while floors
designed by traditional methods will only sustain a limited
amount of traffic (limited number of load repetitions).

Industrial floors using the PCA and WRI methods can only
support a smaller amount of traffic due to concrete fatigue.
Even though 2.0 was used as a safety factor (calculated in
relation to the modulus of rupture), this happens when the
forklift truck’s centroid loaded axle is eccentric with the
slab’s centroid. When the preceding occurs, the bending
moment applied by the forklift truck loads is greater than
that proposed by the PCA and WRI methods. The designed
slabs (with PCA and WRI methods) allow a smaller amount
of load repetitions to fail by fatigue. Ringo and Anderson,
1996, p. 29 quote: “PCA charts give thicknesses based on
loading at the interior of the floor slab. The same is true for
WRI charts”. In other words, if the axle load from a moving
vehicle travels along the floor and eventually cross a joint,
the CAMERO FINITE ELEMENT METHOD is the best and
recommended method to be used.
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