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Enhanced method for flaws depth estimation in CFRP 
slabs from FDTC thermal contrast sequences

Método mejorado de estimación de profundidad de defectos en láminas 
de CFRP a partir de secuencias de contraste térmico CTDF

A.D. Restrepo-Girón1

ABSTRACT 

After the detection of internal defects in materials, the characterization of these plays a decisive role in order to establish the severity 
of these flaws. Finite difference thermal contrast (FDTC) is a new technique proposed recently for contrast enhancement in sequences 
of thermal images in order to allow the detection of internal flaws in composite slabs with greater probability of success. Besides 
FDTC, a criterion was also conceived for the estimation of the depth of the detected defects, which brings good results for shallow 
and strong contrast defects, but poor estimations for deeper and weaker defects. Considering this problem, a revision of the original 
criterion is carried out in this paper to define a new and robust criterion for estimating the depth of defects, applied after FDTC en-
hancement and flaws detection. Results of the execution of the revised algorithm on a synthetized thermal sequence from an artificial 
CFRP slab (using ThermoCalc6L software) show a better performance of the estimation task, reducing the average relative error by 
more than half.

Keywords: Pulsed thermography, composite materials, thermal contrast, FDTC.

RESUMEN

Posterior a la detección de defectos internos en los materiales, su caracterización juega un papel decisivo para establecer la seve-
ridad de dichas fallas. El contraste térmico por diferencias finitas (CTDF) es una técnica novedosa propuesta recientemente para el 
mejoramiento del contraste en secuencias de imágenes térmicas que permite la detección de fallas internas en láminas de material 
compuesto con mayores probabilidades de éxito. A la par con el CTDF, se concibió un criterio de estimación de la profundidad de 
estos defectos que, aunque brinda buenos resultados para aquellos superficiales y más contrastados térmicamente, pierde calidad 
en la estimación de la profundidad de defectos más profundos y más débiles en su contraste térmico. Considerando este problema, 
en este artículo se adelanta una revisión de dicho criterio con el ánimo de definir un método más robusto para el cálculo de pro-
fundidad de los defectos contrastados por la técnica CTDF. Los resultados de la ejecución de este nuevo algoritmo sobre imágenes 
sintéticas generadas a partir de una lámina artificial de CFRP (mediante el software ThermoCalc6L) muestran un mejor desempeño 
en la estimación, reduciendo el error relativo promedio a más de la mitad.

Palabras clave: Termografía pulsada, materiales compuestos, contraste térmico, CTDF.
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(Benítez, Loaiza & Caicedo, 2011). However, flashing a 
surface makes the heating pulse spatially non-uniform 
(Ibarra-Castanedo, 2005), and so, the background thermal 
behavior influences adversely the subsequent detection and 
characterization stages. To overcome this problem, a thermal 
contrast enhancement (directly related to IR image contrast) 
needs to be carried out.

Many different processing methods are proposed to 
deal with this challenge, making use of time resolved 

Introduction
Nowadays, composite materials like Carbon Fiber 
Reinforced Plastic (CFRP) play a crucial role for aeronautical 
and automotive industry due mainly to the better strength/
weight relation with respect to common metallic materials. 
Nevertheless, the increased use of composites makes it 
necessary to implement suitable inspection techniques 
to ensure their quality and reliability (IATA, 2009; Pohl, 
1998). For this purpose, Pulsed Thermography (PT) is a non-
destructive evaluation (NDE) technique that has become a 
mature and important procedure in the task of analyzing 
composite materials, given its non-invasive and non-contact 
features (Bagavathiappan, Lahiri, Saravanan, Philip & 
Jayakumar, 2013). In an experiment of PT, a flash is used to 
heat the material under inspection and a sequence of infrared 
(IR) images or thermograms are recorded by a thermal 
camera; later, cooling profiles at every pixel are extracted 
from these images to be processed and make possible the 
detection and characterization of internal defects or flaws 

http://dx.doi.org/10.15446/ing.investig.v35n3.50552
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techniques (Larsen, 2011), polynomial fitting of thermal 
profiles (Balageas, Roche, Leroy, Liu & Gorbach, 2015), 
mathematical transforms (Marinetti et al., 2004; Rodríguez, 
Ibarra-Castanedo, Nicolau & Maldague, 2014a), frequency 
space conversion (Ibarra-Castanedo, 2005), or heat 
propagation models (Rodríguez, Nicolau, Ibarra-Castanedo, 
& Maldague, 2014b). Generally, the more accurate models 
take into account the three spatial dimensions and, at the same 
time, intend to reconstruct the temperature distribution at each 
time instant through a grid of points covering the surfaces and 
the inside body of the inspected material (Grinzato, Bison, 
Marinetti & Vavilov, 2000; Cheng-Hung & Meng-Ting, 2008; 
López, Nicolau, Ibarra-Castanedo & Maldague, 2014); this 
fact makes these models complex and heavy.

Accordingly, Finite Difference Thermal Contrast (FDTC) 
method was proposed to work with a discretized and 
reduced 3D heat propagation model to give a relative 
thermal estimation error, leading to a normalization 
procedure that brings stronger contrast profiles and, 
consequently, greater probability of detecting deeper 
defects without requiring an a priori selection of a sound 
area or a reference image (Restrepo & Loaiza, 2014a). For 
each pixel in each thermogram, and at every time instant, 
FDTC only estimates the value of temperature in the next 
time on the frontal surface of the specimen, based on actual 
temperature data of the same pixel and its neighbors. This 
feature not only makes this technique faster, but also more 
reliable. Additionally, this technique takes advantage of 
another contrast enhancement method proposed by the 
FDTC authors named Background Thermal Compensation 
by Filtering (Restrepo & Loaiza, 2013; Restrepo-Girón & 
Loaiza, 2014b) to flatten sound profiles even more and 
make defective profiles tend to zero with time.

FDTC uses the approximation to the time solution of the 
classic 3D heat propagation differential equation, introduced 
earlier by Tadeu and Simões (2006) for several configurations 
of diffusion mediums and different propagation ways. 
Specifically, the approximation defined for a slab medium 
is used in defects detection purposes, and the solution for a 
semi-infinite medium is used in defects depth estimation, for 
which a limited and simple method proposed in (Restrepo 
& Loaiza, 2012) was implemented. In this work, this depth 
estimation method is revised in order to achieve smaller 
errors. For this purpose, in the next section a brief summary of 
FDTC mathematical models and the foundations of the depth 
estimation technique are presented. Later, the modifications 
proposed will be discussed, followed by comparative results 
between the revised and original estimation methods applied 
to an artificial IR sequence. Finally, conclusions will show 
the relevant facts about the revision carried out.

FDTC method for detection and depth char-
acterization of internal defects

Contrast enhancement

The FDTC procedure is supported in the slab 3D differential 
thermal estimation model (Restrepo & Loaiza, 2012):
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• ∆x = ∆y = ∆z = spatial differential step;

• h = slab thickness.

• NS = arbitrary number of times that the heat wave 
reflects on both surfaces inside the slab, according to 
actual model.

• tm = m.Δt, with m = 0,1,2,...,M-1, being M the total 
number of thermograms acquired, and ∆t the 
acquisition period of the images;

• xi = i.Δx, with  i = 0,1,2,..., Nx-1, being Nx the total 
number of rows in each image;

• yj = j.Δy  , with j = 0,1,2,..., Ny-1, being Ny the total 
number of columns in each image;

• zk = k.Δz , with k = 0,1,2,..., Nk-1, being Nk the total 
number of steps dividing the thickness of the slab. The 
value of Nk is unknown in a real PT experiment;

• α = being the thermal diffusivity of the specimen.

• Tij0
m

 being temperature on pixel i, j, k for thermogram 
m. All images correspond to temperature distribution 
over the specimen surface, so k = 0.

The expression in Equation (1) comes from an initial 
discretization by finite differences in an explicit way of the 
complete 3D model of heat propagation through a specific 
medium. Considering that the specimen is isotropic and 
homogenous, the thermal excitation is very similar to an 
impulse function. No heat is generated inside the slab, and 
there are no losses by convection through its surfaces (i.e., 
after thermal excitation, heat flux is only due to conduction 
phenomena inside the slab, which makes heat spread 
throughout the slab until thermal equilibrium is reached). 

Since the discrete terms modeling the contribution in heat 
flux along the depth axis (z axis) are not directly measurable 
from surface temperature images, it was assumed that lateral 
heat dispersion was negligible for a thermal propagation of 
Δz, and so, they were replaced by the expressions obtained 
from approximated solutions of the differential equation 
of heat diffusion applying Green Functions, proposed by 
Tadeu and Simões (2006).
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Finally, applying this equation, the next value of temperature 
(in the time domain) for each pixel is predicted. If Tij0

m+1  
and !Tij0

m+1  denote, respectively, the real and the estimated 
next temperature for a specific pixel, Fij0

m  in Equation (2) 
represents the relative error in estimation, which may be 
expected to be less for pixels corresponding to healthy 
zones than for pixels laying on defective areas; this feature 
leads to enhanced contrast images. Then, taking Fij0

m  along 
time (m = 0, 1, 2,..., M-1) we have differential error profiles 
which will be different between defective and healthy 
points, as shown in Figure 1a.

 Fij0
m =

Tij0
m+1− !Tij0

m+1

Tij0
m+1

 (2)

The previous method constitutes the basis of the FDTC 
technique. The most relevant fact in applying it is that the 
decay rate of FDTC profiles for defect points, when the flaw 
depth increases, is less than the decay rate evidenced in 
other time-resolved techniques, which becomes a factor 
for better global contrast and, as a consequence, results 
in a greater probability of defects detection with a smaller 
diameter/depth ratio (Restrepo & Loaiza, 2014a).

Depth estimation

In an IR thermography experiment, once internal defects 
are found, it is desirable to estimate the depth at which 
each one was found, among other features. If we use the 
solution corresponding to a semi-infinite propagation 
medium, assuming null normal flux at the surface (once 
irradiated heat increases the frontal surface temperature, 
the model assumes that there is no heat flux returning from 
the surface to the surrounding medium), we have the Half-
space 3D Differential Thermal Estimation:
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Figure 1b reveals examples of differential profiles obtained 
with FDTC based on both Equation (3) and the relative error 
of Equation (2). What is interesting here is that previous 
profiles (even those for sound points of material) do not 
tend to zero as in Figure 1a, but exhibit a positive peak of 
temperature excess, as if healthy regions of material were 
cooling slower than expected. This phenomenon is related 
to the presence of the back surface of the slab that reflects 
the thermal wave, since this reflection would not exist if the 
medium were semi-infinite.

From this point, and assuming very thin flaws with a large 
diffusivity compared to that of the slab material (as the 
situation where there are delaminations inside composite 
slabs), a basic mathematical criterion to estimate the depth 
of detected flaws is used:

 zd = zL
td
max

tL
max

 (4)

Where:

• td
max is the peak time instant of the differential profile 

corresponding to a specific defect obtained from FDTC 
based on Equation (1);

• tL
max is the peak time instant of any differential profile 

corresponding to a healthy point obtained from FDTC 
based on Equation (3);

• zd is the depth to estimate;

• zL is the thickness of the slab.

Figure 1. Differential profiles: a) Obtained from Equations (1) and (2); 
b) Obtained from Equations (3) and (2); and c) Background Reference 
Profile.

For its part, the particular form of the healthy profile in 
Figure 1b is reproducible in a very similar way if any profile 
yielded by FDTC based on Equation (1) is subtracted from 
the corresponding profile (the same i and j parameters) 
yielded by FDTC based on Equation (3) as presented in 
Figure 1c (Restrepo-Girón & Loaiza, 2015). Furthermore, 
this resulting profile is practically the same whatever the 
selected pair of corresponding profiles and, for that reason, 
it will be identified from now as Background Reference 
Profile. Consequently, tL

max could be taken as the peak time 
instant of this reference profile.
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Revision of depth estimation method
Despite the advantage of generating a background reference 
profile from subtraction of corresponding differential 
profiles obtained with both previous discretized models for 
FDTC, there are two aspects that may adversely influence 
an estimation task: a) noise in real sequences can make 
peak time instant vary slightly according to the pair of 
corresponding profiles selected to be subtracted to generate 
the background reference profile; b) additionally, since td

max 
belongs to a differential profile obtained from FDTC based 
on Equation (1), where healthy profiles do not exhibit a 
similar behaviour than background reference profile, but 
tend to zero during almost all of the time axis, the peak 
time instants suffer a left shift in time, more appreciable for 
profiles taken from deeper defects.

Regarding the first issue, the background reference profile 
can be produced in a more analytical way, subtracting 
the previous models from which differential profiles are 
generated. If we call Fij0

SL( )m  and Fij0
HS( )m  the relative errors, 

given the pixel (i,j) at the thermogram m, for FDTC 
method using the slab approximation and the half-space 
approximation, respectively, the model of the background 
reference profile would be equivalent to:
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According to Equation (6), one profile is needed to extract 
the temperature values Tij0

m  and Tij0
m+1  at each iteration of 

the algorithm. However, knowing that the background 
reference profile is practically the same whatever the 
selected pair of corresponding profiles, if we choose a 
healthy profile we will be sure that temperature values do 
not change considerably along time, and therefore, we can 
assume that: Tij0

m+1≈ Tij0
m . In this way, Equation (6) can be 

reformulated:

 Δ !Fij0
m = β Γ m−Λm( )  (8)

Taking all valid values for m, Equation (8) introduces an 
analytical model for the background reference profile 
shown in Figure 1c, making it unique for a specified 
sequence and allowing it does not require any selection of 
thermal profiles. So, returning to Equation (4), the parameter 
tL
max would then be the peak time instant of this analytical 

profile.

Regarding the second issue mentioned above, and analyzing 
the performance of Equation (4), it can be concluded that 
td
max instants tend to be smaller than they should be for 

acceptable estimation of deeper defects (Restrepo-Girón & 
Loaiza, 2015). The reason for these results is the fact that 
using the FDTC version based on Equation (1) to evaluate 
td
max parameters, we have to work with defective profiles that 

do not exhibit the implicit presence of elevation contrast 
produced by the opposite face of the slab. Therefore, we 
would initially think of using the FDTC version based on 
Equation (3) to take all of the td

max  parameters as a suitable 
solution; but in this case, unfortunately, differential profiles 
corresponding to the deepest defects become distorted 
enough to get too close to the reference peak (at tL

max).

To deal with this problem, we suggest the use of defective 
differential profiles obtained from FDTC version based on 
Equation (1), which will be called Fij

SL( ) ; but this time we 
will add the background reference profile, denoted by Δ!Fij, 
to every one of them to obtain distorted profiles defined as 
!Fij
HS( ) . Also, let us define:

• max Fij
SL( )( ), max !Fij

HS( )( ), max Δ !Fij( ): global 

maximums of Fij
SL( ) , !Fij

HS( )  and Δ!Fij .

• t
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!Fij
HS( ) and Δ !Fij.

When the previous addition is carried out, the next possible 
results can be observed, as depicted in Figure 2.

1. max Fij
SL( )( )  is greater than max Δ!Fij( )  as in Figure 2a. 

In such case: td
max = t

max !Fij
HS( )⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
.
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Figure 2. Possible results in adding Δ!Fij  to profiles from FDTC ver-
sion based on Equation (1): a) case 1; b) case 2a; c) case 2b

2. max Fij
SL( )( ) is equal to or smaller than max Δ !Fij( ),  

in which case a local minimum is searched among 
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is weaker than Δ!Fij , distorting estimation results. 

In this case, the next procedure is proposed:

i. Find the left half value of max !Fij
HS( )( )  and its 

corresponding time instant: t1
2
max !Fij

HS( )⎛
⎝
⎜⎜⎜

⎞
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.

ii. Find the left half value of max Δ!Fij( )  and its 
corresponding time instant: t

1
2
max Δ!Fij( )

.

iii. Apply Equation (4) using time instants at half 
values of corresponding peaks (see Figure 2c):

 zd = zL

t
1
2
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⎞
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t
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Synthesis of the analytical background reference profile 
and execution of the previous algorithm makes it possible 
to enhance the performance of the estimation criterion 
represented in Equation (4), as the next section will describe.

Results analysis of the modified FDTC depth 
estimation method

To assess the performance of the modified FDTC depth 
estimation, without the influence of noise, emissivity or any 
optical distortion, a sequence of IR images obtained from a 
simulated squared CFRP slab, 2 mm thick, with 9 air-filled 
defects (Figure 3) was used. This sequence was synthetized by 
using ThermoCalc6L software with parameters listed in Tables 
1 and 2, assuming the flashing focus on the center of images. 
For thermal enhancement purposes, FDTC was applied to the 
sequence with parameters registered in Table 3.

Figure 3. Synthetic CFRP slab used for depth estimation analysis.
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Table 1. Simulation parameters for the synthetized CFRP slab.

Δp 
[mm]

Δz 
[mm]

K 
[W.s/kg.K]

C 
[W.s/kg.K]

ρ 
[kg/m3]

Δt 
[ms]

Time 
window 

[s]

Pulse 
density 
[W/m2]

Pulse 
width 
[ms]

1 0.1 0.7 1200 1600 6.3 9 1x105 12.6

Table 2. Simulation parameters of defects.

Defects 
area  

[mm2]

Defects  
thick 
[mm]

Defects  
diffusivity 

[m2/s]

Defects depth 
[mm]

100 0.1 5.8x10
Defect 1: 0.2 / Defect 2: 0.4 / Defect 3: 0.6 / Defect 4: 

0.8 / Defect 5: 1.0 / Defect 6: 1.2 / Defect 7: 1.4 / Defect 
8: 1.6 / Defect 9: 2.0

Table 3. FDTC execution parameters.

Differential 
(Δz) 
[mm]

Spatial resolution 
 for synthetized  
data (Δx=Δy)  
[mm/pixel]

Number  
of thermal 
reflections  

(N)

Mask size for 
adjustment  
procedure  

(BTCF) [pixels]

Effective  
mask size 

(BTCF) 
[pixels]

0.12 1.0 10 0.1 5.8x10

In order to evaluate the revised method, the differential 
profile corresponding to the centroid of each defect in 
Figure 3 was taken as Fij

SL( ) , and the background reference 
profile was generated by the application of Equation (8). 
The discrete time instants at the maximum of Δ!Fij  and its 
left half value were respectively 740 and 388, which are 
equivalent to 4.66 and 2.44 seconds for this sequence. All 
of the differential profiles were smoothed by an iterative 
3rd order Savitzky-Golay filter. Tables 4 and 5 show 
characteristic discrete time instants (thermogram indexes) 
for differential profiles, and the estimated depth for each 
defect using the original criterion and the revised criterion 
as well. For its part, Figure 4 displays the linearity of both 
versions of the method.

The more relevant thing that can be seen is the notorious 
deviation of depth estimation from the ideal performance 
for depths greater than half of the slab thickness, when 
strictly using the reason between peak time instants of 
Fij

SL( )  profiles and Δ!Fij . When using the revised method the 
problem is corrected, leading to a better behavior of the 
relative error for those deeper defects. In fact, the average 
absolute relative error is reduced from 8.7 % to 4.2 %, and 
the worst absolute error for deeper defects decreases from 
18.9 % to 5.2 %. The performance at shallow defects remains 
unaffected, as it was expected; but the estimation of depth 
for the 0.4 mm defect has an atypical deviation caused 
by some artifact introduced by the contrast enhancement 
technique or the previous noise filtering procedure.

If we take partial derivatives of Equation (4) with respect 
to peak time instants to define sensitivity coefficients, 
the variation of zd for small variations of td

max and tL
max 

can be approximated respectively by Equations (10) and 
(11). Figure  5 shows the approximated behavior of these 
sensitivities.

Table 4. Comparative results in characteristic time instants.

Defect No. t
max Fij

SL( )⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

t
max !Fij

HS( )⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

td
max t

1
2
max !Fij

HS( )⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

1 7 7 7 -

2 38 38 38 -

3 75 75 75 -

4 118 118 118 -

5 176 179 179 -

6 233 256 256 -

7 281 372 - 181

8 330 612 - 275

9 394 671 - 340

Table 5. Comparative results in depth estimations.

Defect  
No.

Actual  
depth  
[mm]

Depth estimation 
– Original criterion 

[mm]
% error

Depth estimation 
 – Revised criterion 

[mm]
% error

1 0.2 0,195 -2,7 % 0,195 -2,7 %

2 0.4 0,453 13,3 % 0,453 13,3 %

3 0.6 0,637 6,1 % 0,637 6,1 %

4 0.8 0,799 -0,2 % 0,799 -0,2 %

5 1.0 0,975 -2,5 % 0,984 -1,6 %

6 1.2 1,122 -6,5 % 1,176 -2,0 %

7 1.4 1,232 -12,0 % 1,366 -2,4 %

8 1.6 1,336 -16,5 % 1,684 5,2 %

9 1.8 1,459 -18,9 % 1,872 4,0 %

Figure 4. Comparative linearity between original and revised depth 
estimation methods.

 Δzd ≈
zL

2 tL
maxtd

max
Δtd

max
 (10)

 Δzd ≈
zL

2tL
max tL

maxtd
max
ΔtL

max
 (11)
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Figure 5. Depth estimation sensitivity with respect to td
max (upper gra-

ph) and tL
max (lower graph) variations.

Identical expressions are obtained in cases where t1
2
max !Fij

HS( )⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
 

and t1
2
max Δ!Fij( )  must be used. It is clear that, in general, the 

closer that defects are from the irradiated surface, the 
more sensitive the depth estimation to the uncertainty of 
calculated td

max and tL
max. This fact helps to explain why the 

greater error in Table 5 belongs to the defect at 0.4 mm 
depth. Nevertheless, shallower defects usually have a 
greater SNR, which makes them easier to characterize. 
However, it is interesting that in using t1

2
max !Fij

HS( )⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
 and t1

2
max Δ!Fij( )  

the sensitivity magnitude rises again, though it resumes the 
same decreasing behavior with respect to depth. For its 
part, depth estimation is much less sensitive to variations of 
tL
max, which will be ever greater than the other characteristic 

time instants.

Conclusions
In this paper a simple criterion to estimate the depth of 
defects detected inside slabs, after processing the sequences 
of thermal images with Finite Difference Thermal Contrast 
(FDTC), is revised and modified in order to enhance its 
performance. The original depth estimation criterion works 
with an approximated solution to the discretized heat 
propagation model for semi-infinite mediums; because 
FDTC contrast profiles result from heat propagation inside 
a slab medium, the use of the semi-infinite medium model 
creates a late deformation on differential contrast profiles 
caused by the presence of the opposite face of the slab, not 
considered in this model.

The deformation described plays the role of time reference 
to calculate the depth of detected defects, previously 
knowing the slab thickness. But for deeper defects, working 
with peak time instants of differential profiles obtained from 
Equation (1) or from Equation (3) exclusively, large errors 
can arise. So, the revision of the method led, in general, to 
two modifications: first, an analytical background reference 
profile Δ!Fij  is synthetized from a suitable mix of the two 
discretized models used before for FDTC according to 
Equation (8), bringing a reference of the opposite face of 
the slab, independent from any pixel selection. Second, 
an algorithm that adjusts the characteristic time td

max of 

Equation (4), depending on intensities of differential profiles 
with respect to that of Δ!Fij , and even, modifies slightly 
Equation (4) into Equation (9) when using the instants at 
left half-values of peaks is more reliable for the estimation 
task. Executing this modified criterion an average error of 
4.2 % and a maximum error of 5.2 % for deeper defects 
were achieved, in comparison to the errors of 8.7 % and 
18.9 %, respectively, resulting from the original version.

For future work, the revised estimation criterion must be 
carried out in real sequences of thermal images where 
noise, distortions and other artifacts alter pixel intensities, 
to establish the practical robustness of this method.
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