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Optimization of the linear quadratic regulator  
(LQR) control quarter car suspension system  

using genetic algorithm

Optimización del regulador lineal cuadrático (LQR)  
del sistema de control de suspensión de coche usando  

el algoritmo genético

M. P. Nagarkar1, and G. J. Vikhe2

ABSTRACT

In this paper, a genetic algorithm (GA) based in an optimization approach is presented in order to search the optimum weighting 
matrix parameters of a linear quadratic regulator (LQR). A Macpherson strut quarter car suspension system is implemented for ride 
control application. Initially, the GA is implemented with the objective of minimizing root mean square (RMS) controller force. For 
single objective optimization, RMS controller force is reduced by 20.42 % with slight increase in RMS sprung mass acceleration. 
Trade-off is observed between controller force and sprung mass acceleration. Further, an analysis is extended to multi-objective 
optimization with objectives such as minimization of RMS controller force and RMS sprung mass acceleration and minimization of 
RMS controller force, RMS sprung mass acceleration and suspension space deflection. For multi-objective optimization, Pareto-front 
gives flexibility in order to choose the optimum solution as per designer’s need.
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RESUMEN

En este artículo se presenta un algoritmo genético (GA) basado en un enfoque de optimización con el fin de encontrar los parámetros 
de la matriz de ponderación del regulador lineal cuadrático (LQR). Se implementa un sistema de suspensión Macpherson para la 
aplicación del control de amortiguación. Inicialmente el GA se implementa con el objetivo de minimizar la raíz cuadrada media 
(RMS) del controlador de fuerza. Para la optimización de un único objetivo, el controlador RMS de la fuerza se reduce en un 20,42 % 
con un ligero aumento en la aceleración RMS de la masa suspendida. Se observa equilibrio entre el control de fuerza y la aceleración 
de la masa suspendida. Además, el análisis se extiende a la optimización multiobjetivo con objetivos como la minimización del 
control RMS de la fuerza y de la aceleración debida a la masa suspendida y la minimización del control RMS de la fuerza, RMS 
surgida por la aceleración de la masa y la deflexión del espacio de la suspensión. Para la optimización multiobjetivo el Pareto-frontal 
facilita elegir la solución óptima según la necesidad del diseñador.

Palabras clave: Algoritmo genético (AG), suspensión MacPherson, cuarto de coche, regulador lineal cuadrático (LQR), 
optimización.
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Introduction
Automobile suspension systems have been widely applied 
to vehicles from horse drawn carriages with flexible leaf 
springs to modern automobiles. The primary function of 
the suspension system is to isolate the passengers from 
vibrations due to road unevenness. A passive suspension 
system consists of conventional springs and dampers with a 
fixed spring rate and damping parameters. It has conflicting 
requirements between ride comfort and vehicle handling. 
It has no mechanism of feedback control. The active 
suspension system replaces the classical passive elements 
by a controlled system, which can supply external force to 
the system (Fuller, 1996). Various mathematical models for 
suspension systems have been presented by researchers to 
ride and control applications. A 2 degrees of freedom (DoF) 
quarter car suspension system was implemented by various 
researchers(Yahaya et al.,2000; Elmadany and Al-Majed 

2001; Assadian, 2002; Tueest et al., 2009; Darus and Enzai, 
2010; Nekoui and Hadavi, 2010; Isamil et al., 2012). The 
suspension system is modeled as lumped masses and linear 
springs and dampers. In this study, a 2 DoF Macpherson strut 
suspension model is implemented for control application.
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LQR control is an optimal control method with quadratic 
performance indexes. LQR is simple and can achieve closed 
loop optimal control with linear state feedback or output 
feedback. In designing an LQR controller, the selection of 
weighting matrices is a key issue which directly affects the 
control effort. An LQR problem is presented with full state 
feedback for suspension system. The weighting constants 
ql, q2, q3, and ρ, used to calculate matrices Q and R, were 
selected based on the designer’s preferences (Elamdany 
and Al-Majed, 2001). The LQR control scheme to control 
an actuator in an active suspension system was presented 
where the critical issue was to select the weight matrices 
which in turn determine the system performance. The 
values of weighting matrices were selected for simulation 
(Yahaya et al., 2000; Zhen et al., 2006). 

Yoon et al. had presented an application of optimal control 
law via an LQR control method for controlling altitude of the 
tri-rotor UAV. The system consists of a linearized analytical 
model of single tilt dynamics based on force and moment 
dynamics. To design an LQR control, a linearized model is 
assumed. In the designing process, Q and R matrices are 
chosen to regulate roll, pitch and yaw angles. Flight tests 
such as the hovering test, altitude test and yaw control tests 
are conducted. Authors had successfully demonstrated fast 
yaw control motion using LQR based attitude controller 
(Yoon et al., 2013). An approach to a LQR problem with an 
objective to translate the system’s performance objectives 
into the cost function parameters was presented (Oral et 
al., 2010). The selection of the elements of the performance 
index matrices, Q and R, was not carried out by trial 
and error but calculated for time domain design, which 
specifies steady and transient response of the system. The 
ratio between the weighting parameters was obtained using 
the mathematical relations. But, for minimum oscillations, 
the weighting parameters need to be adjusted. 

Either LQR weight matrices were arbitrarily chosen by the 
authors for ride control application (Yahaya et al., 2000; 
Zhen et al., 2006; Tusset et al. 2009; Darus and Enzai, 
2010; Nekoui and Hadavi, 2010; Hsabullah and Faris, 
2010; Ismail et al., 2012) or the weight matrices parameters 
of a LQR controller were adjusted by trial and error until 
desired performance was achieved (Oral et al., 2010). 

A LQR control of a 2 DoF Macpherson strut quarter car 
active suspension system is presented in this paper. The 
Genetic Algorithm search technique is implemented 
for optimum selection of weight matrices. Initially, 
minimization of RMS controller force objective is used for 
optimization. Minimum controller force means minimum 
energy expenditure. GA is implemented to search the 
optimum weighting matrices, Q and R, parameters. The 
study is further extended to multi-objective optimization. 
In multi-objective optimization, two objective functions 
are initially used viz. RMS controller force and RMS sprung 
mass acceleration. Minimization of RMS sprung mass 
acceleration leads to better ride comfort. Further, third 
objective function is added as suspension space. Due to 
multi-objective nature of LQR control action and objective 
are conflicting; the key issue is to select the weight matrices 

of LQR controller so as to fulfill these requirements. The trial 
and error method or arbitrarily choosing the weight matrices 
is cumbersome and time consuming. Hence, the GA based 
search technique is implemented to search the optimum 
weight matrices parameters. Macpherson strut suspension 
system is simulated in Matlab/Simulink® environment. The 
output is fed to the optimization algorithm to determine 
objectives and check the constraints. This optimization 
process is iteratively repeated until optimization stopping 
criterion is reached. In this paper, number of generations 
is used as an optimization stopping criterion. For multi-
objective optimization, trade-off front is obtained, which 
gives more flexibility to designers to choose solution.

Macpherson Strut Quarter Car Model
The Macpherson suspension was created by Earl 
Macpherson in 1949 for the Ford Company. This type of 
suspension is widely used in vehicles as it is compact size 
and light weight. 

A model of the Macpherson strut suspension with 
spindle properties developed by Hong et al.(1999) was 
implemented for ride control applications The schematic of 
a Macpherson strut suspension is shown in Figure 1.

Equation of Motion for Macpherson Strut Model (16)
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Figure 1. Macpherson strut quarter car model (Hong et al. 1999)

Where ms and mus sprung mass and unsprung mass in kg, 
ks and kt suspension spring stiffness and tyre stiffness in 
N/m, cs suspension damping coefficient in Ns/m, xs , !xs , 
and !!xs  sprung mass displacement in m, velocity in m/s and 
acceleration in m/s2 respectively, xr road roughness in m, lA, 
lB, and lC distance from O to A, O to B, control arm length in 
m respectively,  θ and θ0 rotation angle of control arm and 
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initial angular displacement of control arm, α angle made 
by link OA with horizontal, 

′α = α+ θ
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and output as !!xs . Linearization of Equation (1) is carried out 
at an equilibrium point (0,0, θ0,0)(Hong et al., 1999).

The linearization equation is (for details(Hong et al., 1999)):

 !x(t)= Ax(t)+ B
1
fLQR(t)+ B2xr (t)  (2)

and output equation – 

 y(t)= Cx(t)+ D
1
fLQR(t)+ D2xr (t)  (3)

where (A) is System matrix, and (B1),(B2) Control Input 
Matrix and Disturbance Matrix.
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LQR Controller
The LQR problem is a regulator problem using a linear 
system with a quadratic cost function. The LQR is an 
optimal control method for the linear system.

Let us consider the system described in Equation (2). 
Consider a state variable feedback regulator; 

 fLQR =−KLQRx  (4)

where fLQR is the LQR control force in N, KLQR the state 
feedback gain matrix, and x the state vector.

The design procedure consists of determining the control 
input fLQR, which minimizes the performance index. 
The performance index JLQR represents the performance 
characteristic requirement as well as the controller input 
limitation (Anderson and Moore, 1990; Ogata, 2002). In 
LQR, the quadratic performance index is expressed as:

 JLQR = (xTQx+ uT Ru)dt
0

∞

∫  (5)

where matrices Q and R are positive-definite (or positive-
semi definite) Hermitian or real symmetric ma trices and are 
known as weighting matrices.

The first term on the right-hand side of the Equation (5) 
accounts for the error and second term accounts for the 
expenditure of the energy of the control signal. Matrices Q 
and R determine the relative importance of the error and 
expenditure of the performance index. (For details refer to 
(Ogata, 2002)).

Gain matrix KLQR, which minimizes JLQR is:

 KLQR = R
−1BT P  (6)

where P is the positive definite matrix.

Genetic Algorithm
The genetic algorithm is an optimization and global search 
technique invented by Holland (1975, 1992). This technique 
uses the principle of genetics and natural selection. As 
random numbers are generated during the operation of 
genetic algorithms, GAs are stochastic algorithms. These 
random numbers generated determine the search result 
(Holland, 1975, 1992).



OptimizatiOn Of the linear quadratic regulatOr (lqr) cOntrOl quarter car suspensiOn system using genetic algOrithm

IngenIería e InvestIgacIón vol. 36 n.° 1, aprIl - 2016 (23-30)26

Yang et al. presented a GA based hybrid method of 
optimization for constrained optimization. This hybrid 
method combines the chaotic initialization method, 
improved boundary simulation and the GA. Backward 
binary search was implemented in the improved boundary 
initialization method for feasible boundary region. 
Author, along with bench mark function, presented three 
engineering problems with single objective function 
along with constraints (Yang et al., 2013). However, the 
suspension control problem is of multi-objective nature 
with constraints. 

The GA method is described as follows:

Population: The optimization process starts with an initial 
population or initial set also called as first generation. First 
generation is created by using random chosen designs. 

Selection: The objective function evaluates and then 
rates each solution in terms of fitness. All genes will be 
checked to satisfy design constraints. The fitness is numeric 
value represents the probability of survival. Selection is 
performed on the population by keeping the solutions with 
best fitness value. The genes having best fitness vales (i.e. 
minimum RMS LQR controller force or RMS sprung mass 
acceleration) are selected.

The optimization algorithm is an iterative process. Using 
operators such as cross-over operator, mutation operator, 
new generation is created. Genes having better fitness are 
allowed to survive and carried forward in next generations. 
Algorithm steps are repeated till some convergence criterion 
or number of generations or fitness or CPU time is reached.

Multi-Objective Optimization

Nature of objective functions (like controller force, sprung 
mass acceleration and suspension space requirement) is 
conflicting, so multi-objective optimization using NGPM 
(Song, 2011, 2014) (A NSGA-II Program in Matlab) is 
carried out (Deb et al., 2002).

Problem Statement
The main objective of this paper is to search optimum 
weighting parameters of Q and R matrices of a LQR 
controller to minimize the controller force. Hence RMS 
controller force is chosen as one of the optimization 
criterion.

RMS Controller Force – It is expressed as:

 RMS  FLQR =
FLQRi

2

i=1

i=N∑
N

 (7)

where N is the number of sample points.

While designing a suspension system, performance 
parameters which are under considerations are ride 
comfort, suspension travel (or rattle space). The ride comfort 
is characterized by the RMS sprung mass acceleration, and 
the suspension travel is characterized by the relative travel 
between sprung mass and unsprung mass.

Hence, RMS sprung mass acceleration and maximum 
suspension travel are considered as objective functions for 
multi-objective optimization.

RMS Sprung mass acceleration is expressed as:

 aRMS =
ai
2

i=1

i=N∑
N

  (8)

Suspension space requirement is attained by minimizing 
the maximum travel of suspension. Suspension working 
space is the distance between the car body and the tire,

 Suspension Working  Space= xs− xus  (9)

As per ISO 2631 (ISO, 1997), if RMS sprung mass acceleration 
is below 0.315 m/s2, passengers feel highly comfortable. 
At least 0.127 m of suspension travel is required and the 
maximum sprung mass acceleration should not increase 
4.5 m/s2 so as to avoid hitting the suspension stops (Baumal 
et al., 1998).

RMS sprung mass acceleration, maximum sprung mass 
acceleration and suspension travel are the constraints for 
optimization.

The formulation of optimization problem is:

• Case I: Single objective optimization

 fobj = Minimize (RMS fLQR )

• Case II: Multi objective optimization (2 Objectives)

 fobj1 = Minimize (RMS fLQR )

 fobj2 = Minimize (RMS arms )

• Case III: Multi objective optimization (3 Objectives)

 fobj1 = Minimize (RMS fLQR )

 fobj2 = Minimize (RMS arms )

 fobj3 = Minimize (max(Suspension Travel))

Three optimization cases are subject to constraints:

arms ≤ 0,315m / s
2 ,max(Suspension Travel)≤ 0,127m ,

arms ≤ 4,5m / s
2

Genetic Algorithm Parameters
Population: 100, Generations: 100, Selection: Tournament

Mutation: 0.5 %, Crossover fraction: 55 %,Crossover: Single 
point

Search Space for Q and R Matrices

Depending upon the weight matrices Q and R, the system 
will exhibit a different response. The selection of larger 
values of Q, to keep small JLQR, will result in smaller values 
of state x and thus state decays faster to zero (Levine W, 
2010).
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 1009 ≤ Q11 ≤ 1011, 103 ≤ Q22 ≤ 106, 10-2 ≤ Q33 ≤ 101,   

 10-2 ≤ Q44 ≤ 101, 10-3 ≤ R1 ≤ 10-1

Results and Discussions
The LQR controller and GA based LQR controllers are 
simulated in Matlab® environment.

Quarter car parameters: 

ms = 453 kg  mus = 71 kg

ks = 17658 N/m cs = 1950 N.sec/m kt = 183887 N/m

lA = 0.66 m, lB = 0.34 m, lC = 0.37 m, α = 74˚, θ0 = -2˚ 

Input road condition is modeled as class E road. Refer to 
Figure 2. 

Figure 2. Road profile (Class E, Velocity 80 kmph)

The degree of road roughness is 4096 × 10-6 m2/(cycle/m) 
(Zhang et al., 2007). The Vehicle is travelling with a speed 
of 80 km/h.

Single Objective Optimization

The primary objective of controller design is to minimize 
the controller force by searching optimum weighting 
parameters of a LQR controller using GA. This is attained by 
minimizing the RMS value of controller force, which leads 
to a lower amount of controller force supplied to the active 
suspension system in order to minimize acceleration values 
experienced by the passengers.

The RMS value of controller force is 76.4657 N. The 
convergence of objective function is shown in Figure 3. 
RMS controller force is observed to be constant after the 
40th generation.

From Figure 4 and Table 1, for single objective optimization, 
RMS controller force is reduced by 20.42 %, whereas a 
slight increase in RMS sprung mass acceleration is observed 
(3.65 %) when compared to an un-optimized LQR controller.

Figure 3. RMS controller force at each generation (Population: 100).

Figure 4. Quarter car response for single objective optimization

Multi Objective Optimization

The vehicle active suspension system has to fulfill some 
conflicting criterion such as minimum controller force, ride 
comfort and suspension space requirement. Ride comfort is 
attained by minimizing the RMS sprung mass acceleration. 

The following cases of multi-objective optimization are 
studied:

RMS controller force and RMS sprung mass acceleration.

RMS controller force and RMS sprung mass acceleration 
and maximum suspension working space.

Figure 5 shows the pareto front of multi-objective 
optimization of RMS controller force and RMS sprung mass 
acceleration. The pareto front has the concave portion. 
The trade-off between controller force and sprung mass 
acceleration can be clearly observed in Figure 5. In this 
situation the designer has to make the decision of selecting 
final values of weighting matrices. 

For multi-objective optimization, there are three cases of 
example. Cases I, II and III, as shown in Figure 5, are selected 
to be studied. Figure 6 shows sprung mass acceleration, 
suspension space and controller force for Cases I, II and III.

From Figure 6 and Table 1, regarding Case I, the RMS 
controller force is decreased by 19.6 % and the maximum 
controller force is also reduced by 17.8 %, while a slight 
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increase in RMS sprung mass acceleration (3.5 %) is observed 
when compared to an un-optimized LQR controller. For 
Case II, the RMS controller force is increased by 158.95 %, 
while the RMS sprung mass acceleration is reduced by 
33 %. In Case III, the RMS sprung mass acceleration is 
reduced by 55.38 % whereas the RMS controller force is 
increased by 395.21 %.Due to trade-off, it is the designer’s 
decision to choose parameters as per requirement.

Figure 5. Pareto front – Two objectives.

Figure 7 shows the pareto front of multi-objective 
optimization of RMS controller force, RMS sprung mass 
acceleration and maximum suspension space requirement. 
In this type of multi-objective optimization, there are three 
cases of example. Cases IV, V and VI, as shown in Figure 7, 
are selected to be studied. Figure 8 shows controller force, 
sprung mass acceleration and suspension space for Cases IV, 
V and VI.

From Figure 8 and Table 1, for Case IV,the RMS controller 
force is decreased by 18.77 %, while a slight increase in RMS 
sprung mass acceleration (3.29 %) and a slight decrease in 
maximum suspension space deflection (3.53 %) is observed 
when compared to an un-optimized LQR controller. For Case 
V, the RMS controller force is increased by 145.16 % while 
the RMS sprung mass acceleration is reduced by 31.22 % 
and the maximum suspension space deflection is increased 
by 51.41 %. In Case VI, the RMS sprung mass acceleration 
is reduced by 56.11 %, whereas the RMS controller force is 
increased by 405.66 % and the maximum suspension space 
deflection is increased by 98.23 %.

A trade-off is observed between controller force and sprung 
mass acceleration and suspension space deflection. It is the 
designer’s decision to choose parameters as per requirement.

An optimal control of a linear 2 DoF vehicle suspension 
based on a simulated annealing (SA) optimization 
algorithm was presented by Meng et al. The LQR control 
weight matrices were searched using vertical acceleration 
of sprung mass, suspension space displacement and tyre 
displacement as objective functions. 

A multi-objective optimization problem was converted into 
an uni-objective optimization problem using normalization. 
During simulation the vehicle was travelling over a class 
B road at 20 kmph speed. A sprung mass acceleration of 
0.3326 m/ s2 and suspension space travel of 0.354843m 
was observed using SA optimized LQR control (Meng et 
al., 2014).

Figure 6. Response of quarter car model to Case I, II and III.

Figure 7. Pareto front -Three objectives.

A current GA based optimization technique incorporates 
multi-objective optimization. Current paper discusses 
optimization using Macpherson strut quarter car model 
travelling over class E road at 80 kmph speed. For validation, 
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the GA optimized LQR control is compared with un-
optimized LQR control. In multi-objective optimization, 
for Cases III and VI, an RMS sprung mass acceleration of 
0.1355 and 0.1333 m/s2 is observed, respectively, which is 
less than 0.3326 m/s2 obtained by SA. In GA, a population 
of 100 genes is used; hence, a pareto front of 100 different 
solutions is obtained, which gives designers more flexibility. 
Additionally, GA is successfully implemented for a single 
objective, two objective and three objective optimization, 
thus showing robustness.

Figure 8. Response of quarter car model to Case IV, V and VI.

Table 1. Response of LQR and GA based LQR controller

Optimization 
Type

RMS FLQR 
(N)

Fmax 
(N)

aRMS 
(N/m2)

amax 
(N/m2)

Suspension  
Space  

Deflection (m)

Un-optimized 96.0892 323.5891 0.3037 0.9146 0.0085

Single objective 76.4657 263.4127 0.3148 0.9974 0.0083

Case I 77.2579 265.9790 0.3144 0.9941 0.0083

Case II 248.8203 716.5896 0.2033 0.5678 0.0131

Case III 475.8472 1289.662 0.1355 0.3685 0.0166

Case IV 78.0496 268.3454 0.3137 0.9905 0.00828

Case V 235.5755 684.2633 0.2089 0.5841 0.01287

Case VI 485.8867 1313.626 0.1333 0.3632 0.01685

Conclusion
The work presents optimization of weighting matrices of the 
LQR controller. A Macpherson strut quarter car suspension 
model is used for control application.

1. Instead of trial and error or adjusting the weighting 
matrix parameters of the LQR controller, a GA based 
method is proposed to determine the parameters to set 
an objective or objectives.

2. Single objective optimization is successfully achieved 
using GA optimization to minimize the controller for-
ce. In single objective optimization, the controller for-
ce is reduced by 20.42 % with slight increase of 3.65 % 
in sprung mass acceleration.

3. Multi-objective optimization with two objectives and 
three objectives has been successfully implemented to 
search for optimum weighting parameters of the LQR 
controller.

4. Multi-objective optimization with two objectives, RMS 
controller force and RMS sprung mass acceleration, is 
successfully implemented using GA. Cases I, II and III 
are studied from pareto front. A trade-off is observed be-
tween controller force and sprung mass acceleration. In 
this case the designer generally chooses Case-II, which 
lies in the central region of the pareto front.

5. GA optimization with three objectives i.e. RMS con-
troller force, RMS sprung mass acceleration and maxi-
mum deflection of suspension space is implemented 
using GA. Three cases, viz. IV, V and VI, are studied 
from pareto front. A trade-off is observed between con-
troller force and sprung mass acceleration and suspen-
sion space requirements. 

6. In multi-objective optimization, as per the require-
ment, the designer has greater flexibility to choose the 
solution from the sets of solution from the pareto front.
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