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Performance of multiobjective computational  
intelligence algorithms for the routing  
and wavelength assignment problem 

Desempeño de algoritmos de inteligencia computacional  
multiobjetivo en el problema de enrutamiento  

y asignación de longitud de onda

J. L. Patiño1, B. M. Castañeda2, and G. A. Puerto3 

ABSTRACT 

This paper presents an evaluation performance of computational intelligence algorithms based on the multiobjective theory for the 
solution of the Routing and Wavelength Assignment problem (RWA) in optical networks. The study evaluates the Firefly Algorithm, 
the Differential Evolutionary Algorithm, the Simulated Annealing Algorithm and two versions of the Particle Swarm Optimization 
algorithm. The paper provides a description of the multiobjective algorithms; then, an evaluation based on the performance provided 
by the multiobjective algorithms versus mono-objective approaches when dealing with different traffic loads, different number 
of wavelengths and wavelength conversion process over the NSFNet topology is presented. Simulation results show that mono-
objective algorithms properly solve the RWA problem for low values of data traffic and low number of wavelengths. However, the 
multiobjective approaches adapt better to online traffic when the number of wavelengths available in the network increases as well 
as when wavelength conversion is implemented in the nodes.
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RESUMEN

Este artículo presenta una evaluación de desempeño de algoritmos de inteligencia computacional basados en teoría multiobjetivo 
para la solución del problema de enrutamiento y asignación de longitudes de onda en redes ópticas. El estudio evalúa el algoritmo de 
luciérnaga, el algoritmo evolutivo diferencial, el algoritmo de enfriamiento simulado y dos versiones del algoritmo de optimización 
por enjambre de partículas. El artículo provee una descripción de los algoritmos multiobjetivo, y luego presenta una evaluación 
basada en las prestaciones de dichos algoritmos contra las generadas por propuestas mono-objetivo al tratar diferentes cargas 
de tráfico, número de longitudes de onda y procesos de conversión de longitud de onda sobre la topología de red NSFNet. Los 
resultados de simulación muestran que los algoritmos mono-objetivo resuelven adecuadamente el problema RWA para valores bajos 
de tráfico y número de longitudes de onda. Sin embargo, las propuestas multiobjetivo se adaptan mejor al tráfico dinámico cuando el 
número de longitudes de onda disponibles en la red aumenta y también cuando los nodos incorporan características de conversión 
de longitud de onda. 
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Introduction
The increasing growth of data traffic consumption, which is 
expected to continue in the forthcoming years (Cisco Visual 
Networking Index, 2015), and the technological maturity 
reached by the optical fiber systems to allow deployments 
of optical networks capable of managing huge amounts of 
bandwidth while providing more functions other than point-
to-point transmission, such as switching and forwarding, 
have positioned the optical fiber as the preferred means 
of transmission in today’s high-speed and long reach data 
networks. These networks are known as wavelength-routing 
networks. A wavelength-routed network provides lightpaths 
to its clients i.e. optical connections carried end-to-end from 
a source node to a destination node using a wavelength on 
each intermediate link. Depending on the node capabilities, 
in some cases the lightpaths may be converted from one 
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wavelength to another wavelength allowing each optical 
channel to be spatially reused in different parts of the network. 
One of the fundamental problems for the development of 
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optical networks relies on strategies of routing and forwarding 
that efficiently manage the big bandwidth provided by 
the optical fiber. In this context, the control plane plays 
an important role in order to find the right lightpath using 
the available wavelengths. This fact allows the setting up 
of end-to-end connections while the blocking probability 
is reduced. Network blocking means that the connection 
between two nodes in the network was not successful due to 
a lack of optical resources to set up a lightpath. This aspect is 
known as the wavelength-dimensioning problem or Routing 
and Wavelength Assignment (RWA) problem when the 
lightpath routing process is involved in the general solution 
of the problem.

Depending on the type of transported traffic considered, 
two versions of the RWA problem can be defined. The first 
one is called offline RWA, in which all the lightpaths are 
given at once. The solution to this form of the problem is 
mainly useful at network planning stages. However, when 
the network is operational the online RWA suits better, as 
the problem has to be solved on demand for each lightpath 
at a time.

The solving of this issue is not trivial; according to the 
computational complexity theory, the RWA problem is 
considered as NP-complete, which means that it cannot 
be solved within a polynomial time, i.e. required time to 
solve any problem by means of deterministic algorithms. 
For this reason, traditional methods using deterministic 
algorithms might not be a good alternative to solve the 
RWA problem. Some nondeterministic algorithms may 
offer acceptable results; heuristic algorithms represent an 
alternate solution despite their iterative behavior. Different 
approaches from different perspectives have been proposed 
to solve the RWA problem. In this context, approaches 
based on Integer Linear Programming (ILP) where the 
routing and wavelength assignment were treated separately 
are described in (Pavarangkoon, et al., 2014), (Guitart et al., 
2012), (Rahman, 2012), (Harai et al., 1997), (Subramaniam 
et al., 1997). Nevertheless, for large networks with broad 
traffic to transport, the ILP solutions have shown that 
potential assignation of a number of lightpaths higher than 
the number of wavelengths available in the network is 
feasible; this fact brings about network blocking. Heuristic 
algorithms such as Tabu search (Morley et al., 2001) and 
Genetic Algorithms (GA) (Bisbal et al., 2004) have shown to 
be more efficient in solving the RWA problem than the ILP 
approaches. Different proposals for the optimization of the 
RWA problem have also been found in scientific literature, 
one of them based on Ant Colony (ACO) algorithms, which 
have been used to solve both static RWA (Varela et al., 
1999) and dynamic RWA (Shen et al., 2012), (Ngo et al., 
2004). 

This paper is focused on assessing the performance of the 
solution to the online RWA problem using multiobjective 
theory (Coello et al., 2007). The reason for using such 
paradigm relies on the necessity of solving more than one 
objective, aiming to find routes that better adapt to the 
online requests while reducing the blocking probability 
when the network is operational. The targeted objectives 

defined in this work are: the shortest number of hops, the 
use of a minimum number of wavelength converters along 
the path, the average number of available wavelengths 
along the path and the shortest physical path. In order to 
assess the multiobjective optimization algorithms, an initial 
solution to the RWA problem that consists of 30 random 
paths, and whose objective is to produce a significant 
amount of potential solutions in order to generate the 
Pareto front, is carried out. The algorithm to set up the 
initial paths is based on the work presented in (Cui et al., 
2003) and (Mu et al., 2009). In this paper the evaluation 
of five algorithms based on multiobjective computational 
intelligence used to solve the RWA problem is presented, 
namely: the Firefly Algorithm (FA) (Rubio-Largo et al., 
2012), the Differential Evolutionary Algorithm (DEA) 
(Quintero et al., 2004), the Simulated Annealing Algorithm 
(SAA) (Hernández et al., 2011) and two modifications of 
the Particle Swarm Optimization (PSO) algorithm (Bhushan 
et al., 2013). The evaluation is accomplished by varying the 
number of available wavelengths in the network and the 
capacity of the nodes to perform wavelength conversion. 
The performance of the evaluated algorithms will be 
contrasted with results obtained from solutions to the RWA 
problem following mono-objective heuristics.

Multiobjective Optimization Algorithms
This section presents the multiobjective computational 
intelligence algorithms that were considered in the 
comparative study, namely: FA, DEA, SAA and PSO. These 
algorithms, that were formerly proposed to solve mono-
objective problems, were modified and adapted to operate 
with multiobjective techniques. In the context of this work, 
i.e. the solution to the RWA problem, such algorithms are not 
dealing with a specific problem but, instead, four problems 
are considered as described above. This fact constitutes the 
novelty and one of the main contributions of this work.

Firefly Algorithm (FA)

The firefly algorithm is based on the behavior and 
characteristics of the fireflies. A firefly uses a luminescent 
flash pattern to attract other fireflies, the higher the 
luminescence the firefly exposes, the stronger the attraction. 
The algorithm modifies the initial worst solutions (the worst 
paths in our context) to approach them to the individuals 
that perform a better solution, i.e. individuals belonging 
to the Pareto front. Table I shows the pseudocode used for 
modeling the FA approach.

Table 1. Pseudocode for the Firefly Algorithm

//Generate initial population P = {X1, X2, …XN}
FOR i = 1 to N
 Xi = Generate_Random_Route ()
End FOR
Define value for constants Alfa, Bo and Gamma
WHILE number_of_Iterations < N1 && timer < 10 ms
FOR i = 1 to N
 FOR j = 1 to N
  // if Xj dominates Xi move Xi to Xj
  IF Xj dominates Xi

  
rij = Xi− Xj =  

k=1

d

∑ Xjk −  Xik( )2
   



IngenIería e InvestIgacIón vol. 36 n.° 1, aprIl - 2016 (111-117)

PATIÑO, CASTAÑEDA, AND PUERTO  

113

// Move Xi as long as such movement coincides with a valid route 
WHILE XiConst ∼=  Destination_ Node

XiConst ∼=  XiConst + Bo e−Gamma∗rij
2

XjConst − XiConst( )+ alfa rand 0,1⎡⎣⎢
⎤
⎦⎥ −

1
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

END WHILE

END IF
 END FOR
 END FOR
 // Update the Pareto vector and evaluates the routes that make part of the 
Pareto Front 
 PARETO(1 … N) = UpdatePareto()
//Evaluate which routes makes part of the Pareto front
FOR ii = 1 to N
 IF PARETO = Make_part_of_the_ParetoFront
PARETOFRONTii = 1
ELSE
  PARETOFrontii = 0
 END IF
END FOR
END WHILE
// Selection among the routes that make part of the Pareto front, giving priority to the shortest 
route
Chosen_Route = Best_route_of_the_ParetoFront(PARETOFRONT)
//update network state matrix 
State_of_the_network = update_state()

Differential Evolutionary Algorithm (DEA)

The genetic algorithms have been widely used to solve the 
RWA problem due to their relative ease to be implemented. 
In this work we propose a modification of the evolutionary 
algorithm of second generation called Differential 
Evolutionary Algorithm (Price et al., 2005), (Jong et al., 
2012). The proposed adaptation aims to find solutions 
following a multiobjective based operation in order to 
improve the performance of the solutions for the online 
version of the RWA problem. DEA is a modification of the 
traditional evolutionary algorithm that keeps a population 
of candidate solutions; then, recombination and mutation 
procedures applied to these solutions produce new 
individuals to be chosen according to a performance 
function. In this work the initial population corresponds to 
the random lightpaths that generate the Pareto front, i.e. the 
performance function. The mutant population is generated 
by randomly taking groups of three individuals following 
the well-known Rand/1/bin variant (Price et al., 2005), 
(Villate et al., 2011). From this recombined individuals, 
only those who represent valid lightpaths within the 
network are chosen. The generation of a new population is 
accomplished by comparing each recombined individual 
and the parent population; those individuals who dominate 
(parent or recombined individual) are chosen to make part 
of the Pareto front. This procedure guaranties that every 
new population generated is better than the previous one. 
The pseudocode defined for the DEA is shown in Table 2.

Table 2. Pseudocode for the Differential Evolutionary Algorithm

//Generate initial population P = {X1, X2, …XN}
FOR i = 1 to N
 Xi = Generate_Random_Route ()
End FOR
Define value for constants Mut, Crossing_Probability and Gamma
WHILE Number_of_Iterations < N1 && timer < 10 ms
 FOR i = 1 to N
// Three random routes are computed and recombination is accomplished
 X1 = choose_random_route()
X2 = choose_random_route()
X3 = choose_random_route()
Mutant = X1 + Mut ( X2 – X3 )
// Recombination with Xi is done and it is evaluated if the route is valid

FOR J = 1 to d
 IF Crossing_probability < rand(0,1)
 Route_Productd = Xid
 ELSE
  Ruta_Productd = Mutantd
 END IF
END FOR
// The best solutions for the next generations is chosen 
 IF Xi dominates Route_Productd
 Xi = Xi
 ELSE
 Xi = Route_Product
 END IF  
 END FOR
// Update the Pareto vector and evaluates the routes that make part of the Pareto Front 
 PARETO(1 … N) = UpdatePareto()
// Evaluate which routes makes part of the Pareto front
FOR ii = 1 to N
 IF PARETO = Make_part_of_the_ParetoFront
PARETOFRONTii = 1
ELSE
 PARETOFRONTii = 0
 END IF
END FOR
END WHILE
// Selection among the routes that make part of the Pareto front, giving priority to the shortest 
route
Chosen_Route = Best_route_of_the_ParetoFront(PARETOFRONT)
//update network state matrix 
State_of_the_network = update_state()

Particle Swarm Optimization (PSO)

The PSO algorithm is based on the behavior of the bees 
when they look for areas with a significant amount of 
pollen (Bhushan et al., 2013) (Hu, et al., 2015). To this aim, 
each particle (bee) carries out a search and memorizes the 
best location found, i.e. they remember the best solution 
they have discovered. In addition, each particle keeps 
in memory the best solution provided by a k amount of 
informers they are connected to. The model is called lbest 
for low values of k and gbest for values of k as high as 
the swarm size. Both models were evaluated in this work; 
k = 5 was used in the context of lbest (low number of 
particles with the basic amount of informers to carry out an 
efficient search), whereas k = 30 was used to model gbest 
(each particle has as informers the remaining particles). 
Additionally, in the context of the proposed multiobjective 
algorithm, Vi is the velocity of the particle Xi, Pi is the best 
solution found by Xi and Gi is the best solution found by 
the swarm. The pseudocode to model the PSO algorithm is 
shown in Table 3.

Table 3. Pseudocode for the Particle Swarm Optimization Algorithm

//Generate initial population P = {X1, X2, …XN}
FOR i = 1 to N
 Xi = Generate_Random_Route()
End FOR
Define value for constants w, c1 and c2
FOR i = 1 to N
Vi = 0
Pi = Xi
// use method to find Gi in each neighborhood.
Gi = UpdateGi() 
End FOR
WHILE Number_of_Iterations < N1 && timer < 10ms
 FOR i = 1 to N 
 // Move Xi and Vi      

      

Vit+1= wVit + c1∗ Rand 0,1( )∗ Pi− Xi( )+ c2∗ Rand 0,1( )∗ Gi− Xi( )
Xit+1=Vit+1+ Xit

 //Update Pi
IF Xit+1dominates Pi 
 Pi = Xit+1 
 END IF
 END FOR
 // méthod to update Gi in each neighborhood.
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 Gi = UpdateGi()
END WHILE
// Selection among the routes that make part of the Pareto front and belong to Gi, giving 
priority to the shortest route 
Chosen_Route = Best_route (Gi)
// update network state matrix 
State_of_the_network = update_state()

Simulated Annealing Algorithm (SAA)

The simulated annealing algorithm is inspired by the 
annealing process of steel and ceramics in which the 
physical properties of the material is modified through 
heating (atoms increase its energy) and a subsequent 
controlled slow cooling process (higher probabilities to 
re-crystallize in configurations featuring a lower energy 
than the initial). This procedure gives a slow decrease in 
the probability of accepting worse solutions as it explores 
the solution space. For the sake of proposing an approach 
following the multiobjective theory, random solutions are 
used instead of neighbor solutions. These solutions will 
be constantly compared with the initial results in order to 
expand the search space during the cooling process. The 
SAA works on each one of the 30 initial lightpaths, i.e. each 
lightpath is compared with 30 different paths generated in 
the same way as the initial solution in every moment during 
the cooling process. If a solution generated in a given 
iteration is better than the initial, the lightpath is updated; 
otherwise, a probability is assigned for such lightpath to be 
chosen. The pseudocode for SAA is shown in Table 4.

Table 4. Pseudocode for the Simulated Annealing Algorithm

//Generate initial Population = {X1, X2, …XN}
FOR i = 1 to N
 Xi = Generate_Random_Route ()
End FOR
// Update the Pareto vector of the initial routes 
PARETO(1 … N) = UpdatePareto ()
Define value for constants Initial_temperature, Final_temperature, alfa y N_iteraciones
Temp_actual = Initial_temperature
WHILE Temp_actual > Final_Temperature && timer < 10ms
 FOR i = 1 to N_iterations
// Generate random population P = {XX1, XX2, …XXN}
FOR i = 1 to N 
 XXi = Generate_Random_Route ()
END FOR
// Update Pareto vector of routes XX 
PARETOXX(1 … N) = UpdatePareto()
  delta = 0
  FOR i = 1 to N
//Evalaute which generated routes are better than the former created
// and assings value to delta
IF Xi dominates XXi

 delta= PARETO− PARETOXX  
 ELSE

 
delta=

k=1

d

∑ PARETOXXik −  PARETOik( )2

 END IF
 // with the value of delta a probability is assigned to update new routes 
 IF delta < 0
   Xi = XXi 
 ELSE

 

Probability = delta
eTemp_ actual

IFProbability> Rand 0,1( )
Xi= XXi

END IF
 END IF
END FOR
//Update temperature
Temp_actual = Temp_actual * alfa
END WHILE
// Update Pareto vector and evaluates routes that make part of the Pareto front 
PARETO(1 … N) = UpdatePareto()
//Evaluate which routes make part of the Pareto front

FOR ii = 1 to N
 IF PARETO = Make_part_of_the_ParetoFront
FRENTEPARETOii = 1
ELSE
 FRENTEPARETOii = 0
 END IF
END FOR
// Selection among the routes that make part of the Pareto front, giving priority to the shortest 
route
Chosen_Route = Best_route_of_the_ParetoFront(PARETOFRONT)
//update network state matrix 
State_of_the_network = update_state()

Configuration of the simulation environment
The simulations were carried out using C++ language 
programming in the Visual Studio 2013 platform. The 
conducted simulations were performed based on the 
topology characteristics of the National Science Foundation 
Network (NSFNet), which consists of 14 nodes and 42 
optical links (Rubio-Largo et al., 2010). The evaluation of 
the algorithms is based on the normalized traffic load that 
is present in the network. The normalized load in Erlangs 
is given by:

 Load = λtotalT  (1)

Where T is the average time during which a given lightpath 
is active in the network. If N is the initial number of nodes 
that generate traffic and λn is the average number of requests 
of the initial node n, then λtotal is the average number of 
requests per unit time:

 λtotal = λnN  (2)

In the context of this work, the online traffic is defined 
following a Poisson distribution as seen in (Shen et al., 
2015), (Rubio-Largo et al., 2012), (Hassan et al., 2009) 
and (Bisbal et al., 2004). Once the network topology and 
the data traffic are defined, the modelled algorithms are 
contrasted based on the capacity of the network to perform 
wavelength conversion. With this feature, a lightpath may be 
set up in such a way that several wavelengths are used along 
the path, which in turn provides flexibility to the network 
as the probability to set up such lightpath is increased. The 
conducted simulations involved configurations in the NSFNet 
topology featuring Full Wavelength Conversion (FWC) and 
No Wavelength Conversion (NWC). FWC implies that all 
the nodes in the network have the capability to perform 
wavelength conversion, while NWC means that wavelength 
conversion processes are not performed in the network. The 
number of wavelengths available in the network was 8 and 
16 respectively, with a normalized traffic load ranging from 
0.28 to 0.83. The performance of each algorithm is examined 
based on the blocking probability as a function of the traffic 
load presented in the NSFNet topology.

Experimental results

As seen in the discussions above, for each evaluated algorithm 
a stopping rule that defines the maximum time of execution 
of 10 ms was considered. This is a prudential value in which 
each algorithm may stabilize its execution; therefore, if the 
algorithm did not reach its own stopping rule, then it will 
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finish its execution in 10 ms. This fact allows the algorithms 
to be pertinent for online traffic. Simulations that evaluate the 
blocking probability as a function of the traffic load were used 
to perform the comparison between multiobjective and mono-
objective algorithms. It should be emphasized that the target 
of the mono-objective algorithms is the optimization of the 
shortest number of hops, unlike the multiobjective algorithms 
that seek the optimization of four different problems. 

Figure 1 shows the blocking probability as a function of 
the normalized load for 8 and 16 wavelengths available in 
the network. Note that at high coarsely traffic loads, NWC 
leads to roughly 57 % of blocking probability whereas FWC 
approximately derives to 44 %. Overall, for 8 wavelength 
channels the blocking probability is improved by 10 % 
when the load is high (> 0.8), 20 % for medium traffic 
loads (0.5) and 13 % for low traffic loads (< 0.3). As seen, 
the highest improvement is obtained in the medium zone, 
i.e. when the channel operates at half of its capacity. Low 
traffic loads lead to few inputs for the algorithms to find the 
best solution while the high traffic demand featured at high 
loads does not allow the algorithms to find an appropriate 
solution within the short time interval of each request. As far 
as the behavior of the evaluated algorithms is concerned, 
negligible differences between them were found in the 
FWC configuration, for NWC, DEA and SAA algorithms, 
respectively, had a lower performance compared with the 
remaining algorithms. When the network incorporates 16 
wavelengths the blocking performance is improved.

Figure 1. Blocking probability with 8 and 16 wavelength channels 
featuring NWC (dotted lines) and FWC (solid lines)

Note that at a high traffic load for NWC, the blocking 
probability is reduced to 28 % (this is 29 % less than the 
value obtained with 8 wavelengths). It was also found that 
from medium to low traffic loads, the blocking probability 
is very low, less than 5 % for the NWC configuration and 
no blocking for FWC. From medium to high loads, the 
FWC configuration led to blocking probabilities lower 
than 5 % at high traffic loads with negligible differences 
between the evaluated algorithms. In this context, despite 
minimum differences in the obtained results, the algorithm 
that derived the lower performance was the SAA while the 
best performance was given by PSO lbest. In order to assess 

the general performance of the multiobjective optimization, 
a comparative framework with mono-objective algorithm 
studies published in scientific literature was set up. In such 
context, this work replicated the simulation environment of 
other studies in terms of data traffic generated, modeling run 
time and network topology. Figure 2 shows the performance 
of the multiobjective algorithms (dotted lines) against the 
blocking probability as a function of the normalized load 
for four mono-objective algorithms (solid lines) found in 
the mentioned scientific literature. The mono-objective 
algorithms were based on Genetic Algorithms (GA1) (Bisbal 
et al., 2004) and (GA2) (Vinh, 2004), a traditional particle 
swarm optimization algorithm (PSOT) (Hassan et al., 2009), 
(Hassan et al., 2009a) and an algorithm based on a graph 
theory model (Y. Zhou et al., 2007). In this comparative 
framework the network topology managed 8 wavelengths 
and no wavelength conversion is implemented in the nodes. 
The results depicted 

in Figure 2 show that the absence of wavelength conversion 
processes minimizes the contribution of the multiobjective 
optimization, mainly from medium to high traffic loads 
(> 0.4). This is caused by the lack of adaptation of the 
algorithms to the online behavior presented by the data 
traffic. In this context, the GA1, GA2 and PSOT featured 
a better performance compared to the multiobjective 
algorithms, while the mono-objective approaches presented 
a blocking probability of 45 % at high traffic loads (> 0.7), 
the multiobjective algorithms featured 53 %. The solution 
based on graph theory presented the lowest performance; 
at high traffic loads featured a 75 % of blocking probability. 
In Figure 3, note how the adaptation of the multiobjective 
algorithms improved as the number of wavelengths available 
in the network was incremented to 16.

In this case, the mono-objective approaches were based 
on a cognitive algorithm CRWA (Zonglong et al., 2012), 
an algorithm that solved static routes SRWA (Rahman et 
al., 2012) and three algorithms evaluated in the previous 
scenario: PSOT, GA1 and GA2. In the context of the evaluation 
using 16 wavelengths, the multiobjective algorithms (dotted 
lines) presented in all cases a better performance than the 
mono-objective approaches (solid lines). Unfortunately, the 
referred scientific literature that evaluated these algorithms 
performed the assessment only from low to medium 
traffic loads. Note the poor performance of the algorithm 
for the offline traffic, which at medium loads presented 
a blocking probability of 55 %, in comparison with the 
online traffic results of the multiobjective approaches; this 
performance is nearly 50 % higher. To assess the impact of 
having wavelength conversion capabilities, Figure 4 shows 
the performance of the multiobjective solutions (dotted 
lines) against the results of the single proposal found in the 
scientific literature review, based on mono-objective theory 
(solid line), that was feasible to be compared given the full 
wavelength conversion characteristic assumed to be offered 
by the network. In this scenario, the network managed 8 
wavelengths. As it can be observed, the performance of the 
multiobjective solutions is superior in all of the evaluated 
traffic loads. The improvement in average is roughly of 
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35 % at low traffic loads (< 0.3) and 30 % at medium traffic 
loads (0.5). As mentioned above, unfortunately the authors 
in (Bisbal et al., 2004), (Hassan et al., 2009), (Hassan, et 
al. 2009a) and (Vinh 2004) did not provide information to 
make a comparison with their algorithms using FWC.

Figure 2. Blocking probability with 8 wavelength channels and no 
wavelength conversion. Dotted lines: multiobjective algorithms. Solid 
lines: mono-objective algorithms

Figure 3. Blocking probability with 16 wavelength channels and no 
wavelength conversion. Dotted lines: multiobjective algorithms. Solid 
lines: mono-objective algorithms

Figure 4. Blocking probability with 8 wavelength channels and full 
wavelength conversion. Dotted lines: multiobjective algorithms. Solid 
lines: mono-objective algorithms

Conclusions
The evaluation performance of five heuristic algorithms 
based on multiobjective optimization were described 
and evaluated in this paper. The evaluated algorithms 
properly solved the problem of wavelength and routing 
assignment in the NSFNet topology and dealt with online 
traffic transport. The algorithms were evaluated based on 
the normalized traffic load ranging from 0.28 to 0.83. 
In general, the multiobjective nature of the evaluated 
algorithms appropriately solved the RWA problem and 
similar results were found in all cases. This study has 
revealed that the usage of multiobjective approaches to 
solve the RWA problem is very suitable. In particular, there 
are remarkable differences in the quality of the solutions 
between the multiobjective intelligence and the mono-
objective proposals, especially when the wavelength 
conversion domain is a capability offered by the network. 
In this context, the available number of wavelengths 
along with the capability of wavelength conversion is 
an important feature to implement in optical networks. 
This characteristic allows the significant reduction of 
network blocking by reusing optical channels all along 
the lightpath. The wavelength conversion process allows 
the network control and management subsystem of the 
optical networks to be more adaptive to traffic changes 
while it supports better high data traffic loads. In the 
context of the multiobjective approaches, the best results 
were given by the PSO lbest. This may be due to the fact 
that each one of the six swarms used in the configuration 
carry out searches all over the optimization space, and 
this avoided that the potential routes to choose were not 
blocked or held back in a local minimum.
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