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Identifying explanatory variables of structural  
state for optimum asset management of urban drainage 

networks: a pilot study for the city of Bogota

Identificación de factores de riesgo para la gestión patrimonial óptima 
de sistemas de drenaje urbano: estudio piloto en la ciudad de Bogotá

H. Angarita1, P. Niño2, D. Vargas3, N. Hernández4, and A. Torres5 

ABSTRACT 

The aim of this work is to identify and quantify physical and environmental explanatory variables for the structural state of urban 
drainage networks in a pilot study located in Bogota, Colombia. The analysis used information from 2291 CCTV inspections collected 
by the Water and Sewerage Company of Bogota (EAAB, from its Spanish initials) using tele-operated equipment during 2008-2010. 
Linear regression models were established to identify the environmental and physical characteristics of the pipes that are significantly 
associated with the occurrence, magnitude and type of the failures commonly found. Despite the fact that the correlation levels show 
that the developed model has a very low predictive capacity, it was found that the process of selecting assets for CCTV inspection can 
be optimized, increasing the success rate in failure detection.
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RESUMEN

Este artículo presenta los resultados de un estudio piloto realizado en la ciudad de Bogotá para identificar y cuantificar factores de 
riesgo físicos y/o ambientales de las redes de drenaje urbano, en el marco de un enfoque proactivo de gestión patrimonial de la 
infraestructura de servicios públicos. El análisis utiliza información de 2291 inspecciones de CCTV recopiladas por la Empresa de 
Acueducto y Alcantarillado de Bogotá (EAAB) mediante equipos tele-operados durante los años 2008 a 2010. Mediante modelos de 
regresión lineal se establecieron entre el conjunto de variables recopiladas mediante procesos de inspección por CCTV, aquellas que 
muestran una asociación estadísticamente significativa con la ocurrencia, magnitud y/o tipo de fallos que típicamente se encuentran 
en las conducciones, entre otras, material (Gres y P.V.C) y diámetro de la tubería.  Los resultados muestran que es posible optimizar 
los recursos para la inspección de las redes con fines de mejorar la tasa de éxito en la detección de fallos. 
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Introduction

Currently, the infrastructure asset management for urban 
drainage has changed the perspective from reactive 
management (acting after failure) to adopt proactive 
strategies that seek to prevent failures in network 
components and their effects. In fact, the urban system 
stakeholders are facing important challenges to achieve a 
rational, efficient, effective and sustainable management 
and maintenance of this infrastructure while simultaneously 
considering the diversity of actors and constraints involved 
(budget limitations, environmental regulations and urban 
water infrastructure benefits) (Baik et al., 2006; Cardoso et 
al., 2012; Younis and Knight, 2012).

Nevertheless, this approach requires an in depth 
understanding of the multiple factors that affect the aging 
and deterioration processes of drainage infrastructure 
(Renaud et al., 2007; Le Gauffre et al., 2007;Tagherouit et 
al., 2011).
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Many authors have demonstrated that, generally, the 
development of a rational framework for proactive asset 
management requires a systematic approach: first, evaluate 
the current condition, performance and capacity of each 
element in the network; second, predict their future states 
within their life cycles; and finally, determine the priority of 
interventions before failure or malfunction (Fenney, 2009). 
Le Gauffre et al. (2007) highlight four types of assessment 
methods: a) direct observation using CCTV inspections, 
acoustic technologies, electrical/electromagnetic tools, 
etc. (Liu & Kleiner, 2013; Hao et al., 2012); b) run 
evaluations based on observation, in which latent problems 
are identified from inspection results; c) run evaluations 
based on explanatory variables, using statistical or aging 
models to assess the likely condition of a segment of the 
sewer system, even before assessment by CCTV; and d) 
composite indicators, which are a combination of two or 
more previous performance indicators. However, several 
factors bring significant complexity to the adoption of 
such a generalized framework. The inherent heterogeneity 
of the environmental, physical and operational conditions 
to which urban drainage infrastructures are subject, the 
difficulty in keeping an up-to-date census of network 
elements and the difficulty in quantifying the impact of the 
environmental factors usually require a trade-off between 
effectiveness and cost for the predictive/preventive 
approach. Studies have shown that some parameters, 
including sewer size, sewer depth, age of sewer, sewer 
material, root interference and ground movement, among 
others, exert an influence on the likelihood of a sewer 
failing structural and hydraulically (Davies et al., 2001a; 
Anbari et al., 2017). However, these factors are determined 
mainly from an experience base and therefore, many 
of the factors identified are difficult to support monitor 
comprehensively. Other studies include statistical analysis 
of data acquired from CCTV inspections:  Davies et al. 
(2001b) and Koo & Ariaratnam (2006) undertook logistic 
regression in order to predict the probability that a 
particular sewer is collapsed or the collapse is imminent 
based on the value of 18 explanatory variables. However, 
logistic regressions have extensive data requirements 
(Ana & Bauwens, 2010), and its binary nature could hide 
important information, limiting their decision-making in 
sewer asset management (Salman, 2010). Younis & Knight 
(2010) developed an ordinal regression model for the 
deterioration of wastewater pipelines based on cumulative 
logits, which has been applied to the city of Niagara Falls 
wastewater collection system. This model was constructed 
by using the Generalized Linear model formulation and 
took into account the effect between the explanatory 
variables. However, this model was proposed for the 
prediction of deterioration behavior for pipes in service 
and not for the investigation of explanatory variables.  
Between 2002 and 2005, the European Commission 
under the Fifth Framework Programme developed a joint 
research project between institutions from eight European 
countries known as CARE-S, Computed aided rehabilitation 
of sewer networks (Saegrov & Schilling, 2005). The project 

developed a set of tools to assess, predict and manage the 
problems found in aging networks.

In the city of Bogota, Colombia, most of the current 
efforts to improve sewer management are based on direct 
observation, so the adoption of a generalized framework 
still faces several limitations. In Bogota, with a total 
population of approximately 8 million, the Water Utilities 
Company (Empresa de Acueducto de Bogotá - EAB) 
has recently promoted several strategies to modernize 
asset management, by implementing CCTV inspections 
of the pipelines, developing standards to assess and 
qualify the system’s structural and operational status, 
improving cadastre GIS systems for networks and users 
and integrating support technologies such as enterprise 
risk management (ERM) and modeling tools for hydraulic 
systems. The NS-058 standard (EAAB, 2001), implemented 
by EAB in 2001 and revised in 2007, allows EAB to qualify 
problems and prioritize required interventions based on 
an evaluation of the pipe segments, as well as on defects 
found during inspections, according to three criteria: 
structural condition, operational status and inventory 
(i.e., incorrect connections, pests, water level, etc.). The 
standard prioritizes infrastructure rehabilitation based on 
a five-grade scale: immediate intervention (grades 4 and 
5), inspection or rehabilitation in the medium term (grades 
2 and 3, 3 years) and inspection in the long term (grade 
1, 5 years). However, the inspection rate is less than 2% 
per year, equivalent to an average inter-inspection period 
of more than 50 years, which is low compared with others 
(Caradot et al., 2013a). In addition, inspection activities do 
not respond to an established strategy based on field data or 
cost-risk optimization  (Berardi et al., 2009). Additionally, 
a comparison between the EAB and CARE-S indicators 
shows that the information handled by EAB cannot provide 
enough input to construct indicators similar to those used 
by CARE-S to predict future asset status. Consequently, 
despite the fact that the company collects information and 
that it can be quickly accessed, (i) the type of data currently 
collected does not provide enough information to make 
decisions using tools such as CARE-S, i.e., there is a lack of 
information about pipe characteristics such as their width 
and roughness coefficients, conditions such as infiltration 
and exfiltration rates, environmental data such as tree 
locations and soil information, etc.; and (ii) the information 
is not collected as often as necessary (Perez P. et al., 2011). 

On the other hand, there are other local studies which 
have detected linear and non-linear relationships between 
physical sewer pipes characteristics and the structural 
condition of sewer pipes using PCA and clusters (López-
Kleine et al., 2016) and entropy concepts (Hernández et 
al., 2016) in order to develop deterioration models of the 
sewer pipes. However, according to Caradot et al. (2013b), 
the deterioration models based on the prediction of overall 
structural and operational condition overestimate them, 
because of the deterioration rates can vary significantly 
depending on the failure type. 
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Therefore, this paper considered two main objectives: (i) 
identifying and quantifying physical and environmental 
explanatory variables for the structural state of urban 
drainage networks in a pilot study in Bogota (Colombia); 
and (ii) identifying possible improvements in the inspection 
process itself, thus increasing the success rate in detecting 
structural failures, given the resources currently allocated 
for CCTV inspection.

Data and Methods

This pilot study was performed in the segment of the sewer 
network of the city called Zone 1 (See Figure 1), with a 
total pipe length of 2091,3 km, for which inspection data 
during 2008-2010 collected by means of two tele-operated 
CCTV equipment were available. Total inspected length is 
98,4 km of sanitary, storm and combined sewer pipes (2267 
surveys) chosen arbitrarily, corresponding to 4,7 % of the 
total length of the sewer network. The inspection records 
used in this study were originally collected to directly 
assess the state of the pipes and for maintenance planning 
according to the NS-058 standard (EAAB, 2001).

Each inspection record contains the following information: 
the date of the inspection, identification of the pipe, network 
type, length, diameter, material, state of the road, weather

conditions, a field identification of the upstream and 
downstream wells, and the severity and type of operational 
or structural failures. These failures found by CCTV 
inspections were identified following the NS-058 standard. 
Figure 2 and Table 1 present the frequencies and descriptions 
of each type of failure.  The most frequent defects were 
connection defects, displaced joints, flow in connections 
and fissures, cracks or fractures. The less common defects 
were the presence of pests and introduction of seal material 
into the pipe.

Figure 1. Pilot study’s area – Zone 1 of Bogota’s sewer system.
Source: Authors

Figure 2. Frequency of occurrence of each type of defect.
Source: Authors

Table 1. Codes and types of defects found in the dataset

Fault Category Code Description

Structure

1.1.1.1. Deformation or deflection

1.1.1.2. Crack or fracture

1.1.1.3. Breakage or collapse

1.1.1.4. Seal material introduced into the pipe

1.1.1.5. Displaced union

1.1.1.6. Surface damage

1.2.1.1. * Defect in the brick or masonry

1.2.1.2. * Lack of mortar

Operation

1.1.2.1. Obstruction by connection

1.1.2.2. Estate

1.1.2.3. Deposits stuck, sediment or soil entering

1.1.2.4. Other obstacles

1.1.2.5. Infiltration

Inventory

1.1.3.1. Repair, spot repair

1.1.3.2. Connection, connection defects

1.1.3.3. Water level in the network

1.1.3.4. Exfiltration

1.1.3.5. Pests

1.1.3.6. Flow in a connection

1.1.3.7. Curvature of the sewer

1.1.3.8. Change of material

1.1.3.9. Change in diameter

Source: Standard NS-058 (EAAB, 2001)
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The inspection dataset is summarized in Figure 3, showing 
scatter density diagrams between the variables of interest 
for the 2267 surveys.

Three groups of linear regression models were proposed 
to establish the relative influence of the physical and 
environmental factors on the structural state of the pipes. In 
Group I, the output variable is the structural score. This score 
is intended to reflect the cumulative effect of several defects 
occurring simultaneously in a pipe segment. In Group II, 
the output variable is the structural score of a particular 
defect, intended to predict the severity of a specific point 
of damage. Group III takes into account defect scores as 
output; however, the defects are differentiated by the type 
of failure, e.g. fissures, cracks or fractures. Even if nonlinear 
behaviors can be identified using statistical methods, these 
models are proposed as the simplest way to identify linear 
relationships between the physical and environmental 
factors and the structural condition of the pipes, thereby 
determining the explanatory variables. A summary of the 
model templates is given in Table 2. 

For each model group, linear regression analysis was 
performed to explore and quantify the relationships 
between the dependent variable Y (the structural score) and 
each of the independent random variables xi: diameter, 
material, network type and area type. The structural score 
(Y) is the rating of the failure type and its severity observed 
during CCTV inspection according to the local standard 
NS-058 (EAB, 2001). 

The purpose of the regression analysis was to find, among 
all the possible available explanatory variables, those 
that best explain the dependent variable. To determine 
whether the association between xi and Y was significant 
statistically, the following hypothesis was tested with a level 
of significance < 0,05: Ho, the regression coefficient of a 
variable is equal to 0; H1, the regression coefficient is not 0. 
The regression models for the qualitative variables, such as 
pipe material and network type, use dummy variables that 
take values of 0 or 1 to sort the data into mutually exclusive 
categories. The regression model with m categories takes 
the following form:

Figure 3. Scatter diagrams of the inspection variables.
Source: Authors
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 Y (X )= α+ yii=1

m−1∑ Di + ε  (1)

Equation (1): Regression model

where Di are the variables defined as 1 if X is within a given 
category i (for instance, if material = concrete), and defined 
as 0 otherwise. Therefore, the dummy-variable coefficients 
γi represent the differences between each of the categories 
and the reference category m, whose estimate is given by 
α. Once a statistical association between a variable and a 
category is found to be statistically significant, the estimates 
of γ or, conversely, the slope are compared to determine 
the relative importance of the explanatory variable to the 
structural state of the pipe. For each model, it was verified 
that the number of elements in a given category i was 
greater than 30 to improve the consistency of the sample 
sizes. As a result, some models excluded some categories 
because of this sample size requirement. (i.e., materials 
such as polypropylene, polyethylene, etc.)

Table 2. Groups of models (I, II and III) and variables (a, b, c and 
d) evaluated to identify structural and environmental explanatory 
variables of the sewer pipes

Model 
group

Name and domain of the 
dependent variable Yi = f(X)

Name and domain of the 
environmental and structural 

variables X = {x1, x2, xn}

I Y1: Overall score of the pipe (real 
number ≥ 0)

x1: Diameter (inches > 0)

II Y2: Score of the structural defect 
(real number ≥ 0)

x2: Material (concrete, PVC, 
stoneware, masonry, polyethylene, 

polypropylene)

III
Y3: Score of the structural defect 
for a given type (within catego-

ries shown in Table 1)

x3: Network type (sanitary, storm, 
combined)

x4: Area type (paved road, unpaved 
road, green)

Source: Authors

Results and Discussions

Figure 4 and Table 3 shows the results of the models for 
the prediction of the structural state of a pipe segment 
(Group I). The regression results show that several 
categories have a significant correlation with the pipe’s 
structural score (p-value < 0,05). Based on the slope 
estimates, the most important factors are (i) material 
type: stoneware (slope estimate = 58,3) or PVC (31,5); (ii) 
network type: sanitary (52,8); and (iii) area type: green 
(41,4). Additionally, a greater prevalence and frequency 
of failures for small-diameter pipes, especially those 
smaller than 500 mm (20 in), was observed. In contrast, 
the factors that did not show a significant level of 
association with the structural state of the pipes include 
material type (masonry), the network type (combined), 
and the area type (unpaved). 

Table 3. Regression summary -Models in Group I

Model Variable
Estimate  
(95% CI)

Std. 
Error

t-value Pr(>|t|)

I.a y1~Material

Concrete 10,9 (7,0, 14,8) 2,0 5,5 3,81e-08 ***

PVC 31,5 (20,3, 42,7) 5,7 5,5 3,66e-08 ***

Stoneware 58,3 (52,8, 63,7) 2,8 20,9 <2,00e-16 ***

I,b y1~Diameter Diameter -1,2 (-1,4,-1,0) 0,1 -10,2 <2,00e-16 ***

I,c
y1~Network 
type

Sanitary 52,8 (47,8,57,7) 2,5 20,9 <2,00e-16 ***

Storm 10,8 (7,1,14,5) 1,9 5,7 1,26e-08 ***

I,d
y1~Area 
cover

Green 41,4 (17,1, 65,7) 12,4 3,3 0,000856 ***

Paved 25,4 (22,3, 28,5) 1,6 16,1 <2,00e-16 ***

Unpaved 26,5 (4,0, 48,9) 11,4 2,31 0,02 *

Significance codes: *** = 0, ** = 0,001, * = 0,01
Source: Authors

a.

b.
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conclusions reached by previous studies such as one by 
Salman (2010). 

Table 4. Regression summary -Models in Group II

Model Variable
Estimate 
(95 % CI)

Std. 
Error

t-value Pr(>|t|)

II.a y1 ~ Material

Concrete 13,3 (2,0, 24,6) 5,7 2,3 2,10e-02 *

PVC 20,4 (8,4, 32,3) 6,1 3,0 8,63e-04 ***

Stoneware 23,3 (12,0, 34,6) 5,8 4,0 5,09e-05 ***

II.b y1 ~ Diameter Diameter -0,3 (-0,4,-0,2) 0,1 -5,0 5,02e-07 ***

II.c
y1 ~ Area 
cover

Green 26,6 (17,7, 35,5) 4,5 5,8 5,45e-09 ***

Paved 19,4 (18,2, 20,6) 0,6 30,8 <2,00e-16 ***

Unpaved 16,5 (8,4, 24,6) 4,1 4,0 6,11e-05 ***

IIc
y1 ~ Network 
type

Combined 8,0 (2,3, 13,8) 2,9 2,7 6,29e-03 **

Sanitary 24,1 (22,5, 25,7) 0,8 29,9 <2,00e-16 ***

Storm 13,9 (12,0, 15,8) 1,0 14,2 <2,00e-16 ***

Significance codes: *** = 0, ** = 0,001, * = 0,01 
Source: Authors

Figures 5 and 6 (Table 5 and 6) show the results of the 
Group III models. Unlike the two previous model groups, 
the area type (paved, uncovered or green) was a significant 
explanatory variable (p-value < 0,05).

d.

Figure 4. Models in Group I. Structural score of pipe = f(xi); a) x1: 
material, b) x2: diameter, c) x3: xarea type y and d) x4: network type.
Source: Authors

Figure 4 and Table 4 shows the results of the models 
for Group II. Some categories for all the explanatory 
variables show significant correlation with the defect 
scores. However, the most important relationships found 
with the structural scores of the defects were (i) material 
type: PVC (slope estimate = 23,3) or stoneware (20,4); (ii) 
network type: sanitary (24,1); and (iii) area type: green 
(26,6). Conversely, materials such as masonry, concrete 
and brick did not show a significant level of association 
with structural pipe defects. The above results support 

c.

a.
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d.

Figure 5. Models in Group II. Individual defect score = f(xi); a) x1: 
material, b) x2: diameter, c) x3:network type and d) x4: area type.
Source: Authors

Table 5. Regression summary -Models in Group III  
(Failure type: 1115)

Model Variable
Estimate  
(95 % CI)

Std. 
Error

t-value Pr(>|t|)

III.a  y1 ~ Material
x1 Concrete 41,3 (33,8, 48,8) 3,8 10,8 <2e-16 ***

x1 Stoneware 41,3 (36,2, 46,4) 2,6 16,0 <2e-16 ***

III.b  y1 ~ Diameter No association found

III.c
y1 ~ Area 
cover

No association found

III.d
y1 ~ Network 
type

x1 Sanitary 46,0 (41,1, 50,9) 2.494 18.5 <2e-16 ***

x1 Storm 30,1 (22,8, 37,4) 3725 8079 6,6e-15 ***

Significance codes: *** = 0, ** = 0,001, * = 0,01 
Source: Authors

b.

c. a.

b.
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d.

Figure 6. Models in Group III. Failure type 1115: Displaced joint 
(n = 437). Score = f(xi); a) x1: material,  b) x2: diameter, c) x3: network 
type and d) x4: area cover.
Source: Authors

Table 6. Regression summary - Models in Group III (Failure type: 
1112, 1123, 1113, 1121

Model
Failure 
Type

Variable
Estimate 
(95 % CI)

Std. 
Error

t-value Pr(>|t|)

III.1. 
y1 ~ 
Material

1112

x Concrete 35.1 (30,1,40,2) 2,6 13,7 <2e-16 ***

x Stoneware 31.9 (29,0,34,7) 1,4 22,2 <2e-16 ***

III.1.a 
y1~ 
Network 
type

1112

x Sanitary 34.8 (31,7, 37,8) 1,5 22,7 <2e-16 ***

x Storm 30.4 (25,9, 34,9) 2,3 13,3 <2e-16 ***

II-
I.1.b 

y1 ~ 
Material

1123

x Concrete 4.9 (4,6, 5,2) 0,1 33,8 <2e-16 ***

x Stoneware 5.1 (4,7, 5,5) 0,2 26,4 <2e-16 ***

III.1. 
y1 ~ 
Network 
type

1123

x Sanitary 5.4 (5,0,5,8) 0,2 29,4 <2e-16 ***

x Storm 4.7 (4,4, 5,0) 0,1 32,2 <2e-16 ***

Model
Failure 
Type

Variable
Estimate 
(95 % CI)

Std. 
Error

t-value Pr(>|t|)

III.1. 
y1 ~ 
Material

1113

x Concrete 102.9 (90,4, 115,3) 6,3 16,3 <2e-16 ***

x Stoneware 101.8 (95,6, 108,0) 3,2 32,2 <2e-16 ***

III.1. 
y1 ~  
Diameter

1113 x Diameter 1.1 (0,5,1,7) 0,3 3,6 3,8e-04 ***

III.1.c 
y1 ~ 
Network 
type

1113

x Sanitary 95.2 (89,4,100,8) 2,9 33,1 <2e-16 ***

x Storm 116,1 (105,0,127,2) 5,6 20,6 <2e-16 ***

II-
I.1.d 

y1 ~ 
Material

1121

x Concrete 4,0 (3,5, 4,6) 0,28 14,4 <2e-16 ***

x Stoneware 4,4 (4,0, 4,8) 0,2 20,6 <2e-16 ***

III.1. 
y1 ~  
Diameter

1121 x Diameter 0,0 (0,0, 0,1) 0,0 2,7 7,07e-03 **

III.1. 
y1 ~ 
Network 
type

1121

x Sanitary 4,1 (3,7,4,5) 0,2 20,0 <2e-16 ***

x Storm 4,7 (4,2,5,2) 0,3 18,6 <2e-16 ***

Significance codes: *** = 0, ** = 0,001, * = 0,01 
Source: Authors

c.

a.

b.
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d.

Figure 7. Other models in Group III. Significant associations with 
other types of failures: 1112: Crack or fracture, 1123: Deposits 
stuck, sediment or soil entering, 1113: Breakage or collapse, 1121: 
Obstruction by connection.
Source: Authors

These figures and tables shows that the material, diameter 
and network type did not show a significant level of 
association with the failure type 1.1.1.5 – displaced union. 
For less common failure types (Figure 1), the area type 
(faults 1.1.1.2 and 1.1.2.3), the network type (faults 1.1.1.2, 
1.1.2.3, 1.1.1.3 and 1.1.2.1) and the diameter (faults 1.1.1.3 
and 1.1.2.1) showed high levels of significance.

The prioritized explanatory variables are summarized 
in Table 7. This table provides a two-level guide for 
sewer inspection planning. The first level is based on the 
existence of a statistically significant relationship between 
the variables and the structural condition of the pipes. The 
second level is based on the relative importance of the 
explanatory variables using the magnitude of the slope. 
From the results of the second level in Table 3, sanitary 
sewers, VCP, small diameters and green areas correlate 
with the worst structural states, and therefore should be 
targeted for future inspections. Level 1 in Table 3 gives 

additional categories that should be considered during 
further development of the inspection process, i.e., PVC 
pipes, storm networks and paved areas.

Table 7. Two-level cross-comparison of the explanatory variables for 
each model group

Explanatory 
Variable

Model group I:  
Structural score

Model group II:  
defect structural score

Level 1 Level 2 Level 1 Level 2

Material

Stoneware

Stoneware

Stoneware

StonewarePVC
PVC

Concrete

Diameter
Smaller 

diameters
Smaller 

diameters
Smaller 

diameters
Smaller 

diameters

Network type
Sanitary

Sanitary Sanitary Sanitary
Storm

Area type

Green

Green

Green

Green
Paved

Paved

Unpaved

Source: Authors

Conclusions and Recommendations

This pilot study identified and quantified explanatory 
variables associated with the structural and structural 
defects of urban drainage pipes. This identification is 
intended to guide sewer inspections and not to predict 
the condition of pipes used for different purposes 
(i.e., failure modeling – see Ana & Bauwens, 2007 for 
more information). Statistically significant associations 
(obtained by linear regressions without interactions) 
between the occurrence, magnitude and type of sewer 
pipe defects were found in the data from 2291 CCTV 
inspections compiled by the Water and Sewerage 
Company of Bogotá (EAB).

The primary explanatory variable identified is the material 
type. There is a significant relation between stoneware 
(VCP) and PVC and the severity and number of failures 
identified in a pipe. The association of these two materials 
with both the general structural state of a pipe and the 
gravity of a specific failure was verified with a confidence 
level higher than 95 %. In addition, for stoneware 
(VCP) and PVC, the average number of failures found 
by inspection was 1,10 and 0,64, respectively, which is 
higher than the mean of the entire sample (0,50). The 
other materials had a considerably lower average number 
of defects per inspection (0,22 and 0,07 for concrete and 
masonry, respectively).

Additionally, despite the fact that the dataset included more 
inspections of concrete pipes (1331) than other materials 
(660 for VCP and 156 for PVC), most of the failures were 
in the latter. Thus, the effectiveness of the inspections can 

c.
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be increased if material type is included as a primary 
criterion for selecting assets to inspect. In the analysis of the 
specific types of faults, it was found that PVC is significantly 
associated with pipe breaking and cracking, while brick is 
associated with deposits and sediments.

Diameter was also identified as an explanatory variable. 
The analysis of the data shows a higher incidence and 
frequency of failures in small-diameter pipes, especially 
those with diameters less than 500 mm (20 in). This should 
also be a determining factor in the planning of inspections.

The other variables had a lower level of association with 
the structural condition of the networks. However, from 
the analysis performed at the level of specific failure types, 
it was possible to identify some relationships between 
variables such as the type of surface (paved, unpaved or 
green) and the network type (sanitary, storm or combined) 
with failures such as cracks and fractures, deposits, 
breakages and obstructions.

The analysis presented in this paper shows that through 
data currently collected by EAB, it is possible to establish 
explanatory variables for the infrastructure that can 
optimize the use of resources in the inspection process. This 
methodology and these results demonstrate that information 
available from sewer inspections can be used to identify 
inspection priorities, regardless of the completeness of the 
data or its coverage of the studied sewer network, which is 
important for asset management in developing countries. 
The identification of explanatory variables could reduce 
uncertainty for interventions in the drainage network 
and could also provide tools for better planning of future 
inspections with a higher success rate.

Nevertheless, this study does not analyze some variables 
proposed by other authors (i.e., Chughtai & Zayed, 2008), 
such as the depth and the age of the networks, because 
of the limited information currently available in the CCTV 
inspection datasets. Additionally, this study did not use 
other deterministic (Salman & Salem, 2012), probabilistic 
(Sinha & McKim, 2007) or expert-based (Tagherouit et 
al., 2011) tools explored by other authors, nor did it 
take uncertainties in the overall condition assessment 
into account (Dirksen et al., 2011). However, the results 
demonstrate the possibility of increasing the success rate 
in detecting equipment failures through inspections by 
adopting a prioritization scheme based on explanatory 
variables. Additionally, in light of the results, the authors 
recommend that EAB further develop the methodology 
presented in this paper by including in their datasets all 
the physical information available in other datasets, such as 
pipe class, age and slope, as well as street categories and 
construction conditions, which are identified as relevant 
variables in related studies (Salman & Salem, 2012; Ana & 
Bauwens, 2007; Chughtai & Zayed, 2008).
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