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Determination of landslide susceptibility  
in linear infrastructure. Case: aqueduct  
network in Palacé, Popayan (Colombia)

Determinación de la susceptibilidad por movimientos  
en masa en infraestructura lineal. Caso: red de acueducto  

de Palacé, Popayán (Colombia)

N. A. Correa-Muñoz1, and J. F. Higidio-Castro2 

ABSTRACT

This research aimed to predict the occurrence of mass movements in the aqueduct network of Palacé, in the municipality of Popayan 
(Colombia). We evaluated the quality of SRTM and ASTER digital terrain models by comparing them with contour lines using a 
map scale of 1: 25000. The landscape parameters derived from the SRTM-DEM were analyzed with a multivariate procedure using 
algorithms implemented in free software, along with thematic information of the study area (coverage, distance to faults, rivers and 
precipitation). We selected non-redundant variables with the non-parametric ACP technique, and obtained a susceptibility prediction 
model using logistic regression, with two types of variables: dependent (landslides inventory from field observation) and independent 
(slope, slope length factor, topographic wetness index, flow path length, soil units and rate of convergence) resulting in a susceptibility 
map, reclassified into categories according to the values of probability. The prediction model could not be quantitatively assessed 
because of the absence of studies with a semi-detailed scale, but the estimation of the mean square error of elevation, from which the 
terrain parameters were derived, the level of detail and the performance of the classifier with ROC curve, yielded a zoning consistent 
with the findings of the field visits.
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RESUMEN

Esta investigación busca predecir la ocurrencia de movimientos en masa en la red de acueducto Palacé, en el municipio de 
Popayan (Cauca). Se evaluó la calidad de los modelos digitales del terreno SRTM y ASTER, comparándolos con curvas de nivel a 
escala 1:25000. Los parámetros del terreno, derivados del modelo DEM-SRTM, fueron analizados de forma multivariada mediante 
algoritmos implementados en software libre, junto con información temática de la zona de estudio (cobertura, distancia a fallas, a 
los ríos y la precipitación). Mediante la técnica no paramétrica del ACP se seleccionaron variables no redundantes, y se obtuvo un 
modelo de predicción de susceptibilidad mediante regresión logística utilizando variables dependientes (inventario de deslizamiento 
a partir del recorrido de campo) e independientes, correspondientes al terreno: la pendiente, el factor longitud de pendiente, el 
índice topográfico de humedad, la longitud de ruta de flujo, los suelos y el índice de convergencia. Esto permitió la obtención de un 
mapa de susceptibilidad que se reclasificó en categorías de acuerdo con valores de probabilidad obtenidos. El modelo de predicción 
no pudo evaluarse cuantitativamente al no haber estudios a escala semi-detallada, pero la estimación del error cuadrático medio de 
la elevación, desde la cual se derivaron los parámetros del terreno, el nivel de detalle obtenido y el desempeño del clasificador con 
la curva ROC, arrojó una zonificación concordante con lo encontrado en las visitas de campo realizadas.

Palabras clave: Geomorfometría, procesos de remoción en masa, parámetros del terreno, regresión logística, exactitud.
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Introduction

Landslides are complex natural processes that constitute 
a serious natural hazard in mountainous countries 
(Malamud et al., 2004). This term includes a wide variety of 
slope movements, such as soil landslides, deep landslides, 
mud flows, debris flows, and falling rocks, among others 
(Cruden et al., 1996). Inventories of landslides are the 
simplest form of landslide mapping (Guzzetti et al., 2000). 
An inventory map registers the type and position of mass 
movements, leaving discernible signs in the landscape.

http://dx.doi.org/10.15446/ing.investig.v37n2.59654
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In order to obtain quantitative risk maps, the first essential 
step is to make a quantitative assessment of the threat, 
mainly focusing on determining susceptibility, which 
is a spatial probability indicator and can be obtained by 
different analytical approaches. The statistical evaluation of 
this threat has become a widely applicable method using 
Geographic Information Systems. This method requires an 
inventory map for landslides, used in combination with 
a series of environmental factors, assuming that mass 
movements are likely to happen under the same conditions 
as in recent past events (van Westen et al., 2006).

There are many quantitative and qualitative techniques to 
analyze the relationships between conditioning parameters 
and landslides. The most common statistical models used 
for threat analysis include logistic regression, hierarchical 
analytical processes and frequency of relationships 
(Shahabi et al., 2014).

Multiple logistic regression evaluates the multivariate 
regression relationships between a dependent and 
several independent variables. The advantage of logistic 
regression is that variables can be continuous or discrete, 
or a combination of both types (not necessarily normal), 
by adding a proper relational function to the usual linear 
regression model (Lee et al., 2001). A logistic regression 
algorithm applies maximum reliability in estimation after 
transforming the dependent variable into a logit variable (the 
natural log of the odds of the dependent variable occurring 
or not occurring). Thus, logistic regression estimates the 
probability that a certain event will occur (Dai et al., 2002). 

In this study on landslide susceptibility mapping, the aim 
of the linear regression was to find the best setup model to 
describe the relationship between the presence or absence 
of landslides (dependent variable) and a set of independent 
parameters such as slope, aspect and lithology. The 
independent variables in this model were predictors of the 
dependent variable and can be measured on a nominal, 
ordinal, range or relational scale. The model used for the 
logistic regression analysis is given by Equations (1) and (2).

	 log p( )= βo + β1Χ1+ β2Χ2
+⋅⋅⋅+ βnΧn 	 (1)

	 log p( )= ln p
1− p
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ 	 (2)

Where p is the occurrence odds of the dependent variable 
(Y), which is 1; p/(1-p) is the frequency ratio; β0 is the 
intercept and β1 to βn the coefficients that measure the 
contribution of independent factors (X1, X2, ..., Xn) to 
variations in Y.

A positive sign in correlations between landslides and each 
factor indicates that the explanatory variable increased 
the probability of change, and a negative sign implies the 
opposite effect. This statistical technique is a method of 

multivariate estimation that evaluates the relative strength 
and the significance of the factors.

This study analyzed the statistical distribution of the factors 
controlling landslides susceptibility, the DEM uncertainty, 
from which the terrain parameters were derived, and the 
combination of the factors with bigger contribution for 
predicting susceptibility.

Materials and methods

Study area

The study area is located in the basin of the Palacé river, 
between the coordinates 2°28’19,2” north and 76°32’16,8” 
west, and 2°30’57,61” north and 76°29’13,2” west. It 
covers a 4 m wide bank where there is a raw sewage pipe 
that is over a length of 5,72 km, with a pressure of 686 mm; 
and elevations between 1894 and 2012 m.a.s.l. The pipe 
passes over five viaducts, specifically a concrete pontoon 
and four tunnels with lengths of 13 m, 349 m, 170 m and 
98 m. The target population that the aqueduct of Palacé 
serves is approximately 20,000 inhabitants in the northern 
sector of Popayan and the surrounding villages. Figure 1 
shows the national and regional location of the study area.

Figure 1.	 Regional and local localization in the study area.
Source:  Authors
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Materials

The materials used for the quantitative evaluation of the 
landslide susceptibility processes are presented in Table 1.

Table 1.	 Materials used in research

Data input Denomination Detail level Source

Digital Elevation 
Model.

ASTER SR = 30 m NASA

3”SRTM SR = 90 m CIAT

1”SRTM SR = 30 m IGAC

TOPO maps Scale of 1:25K Precision = 12,5 m IGAC

Satellite image Landsat 8 SR=15 m NASA

SR: Spatial Resolution – VA: Vertical accuracy – IGAC: Instituto 
Geográfico Agustín Codazzi of Colombia.

Source: Authors

General Method

State of the art review: Systematic review of pertinent 
literature, summarizing advances from different researchers 
on the methods and results in the subject of susceptibility 
to landslides processes.

Field trip: Observation of the study corridor to locate and 
describe pipe network elements and landslide processes in 
the main line. 

Database: Building of a database with geo-referenced 
positions, types and descriptions of landslide processes in 
the analyzed corridor.

Procurement of materials: Gathering information from 
digital elevation models, satellite images from the Landsat 8 
platform, topographic base maps, thematic maps of land use, 
failures and precipitation data for the period 1985-2013.

Data preprocessing: All spatial information was unified in 
an identical reference system and cut to the study area.

Generating a TOPO-DEM withy interpolation: Screen 
digitalization of vector objects, corresponding to drainage 
networks, roads, forest coverage and contour lines every 
50m, with a topographic base map with a 1:25K scale and 
the Spline Interpolation method.

DEM-SRTM and DEM-ASTER accuracy: Obtaining altitude 
differences across the raster grid with spatial comparison 
of NASA DEMs and TOPO-DEM, which calculated the 
RMS error. These results, and a DEMs 3D visualization, 
allowed for the selection of SRTM 1” DEM to derive terrain 
parameters as model’s input data.

Terrain parameters: Obtaining elevation parameters with 
numerical analysis by available algorithms from SAGA 
software, such as: slope (Zevenbergen et al., 1987), Index 

of convergence (Köthe et al., 1996), Topographic wetness 
index (Conrad, 2007), Flow path length (Quinn et al., 
1991), and LS Factor (Moore et al., 1991).

Image processing of Landsat 8: Downloading January 
2014 satellite imagery in bands, combined with ERDAS 
software and cut to the study area to calculate the index of 
normalized vegetation. 

Processing of precipitation: Identification of weather 
stations next to the study area and calculation of the 
maximum monthly and daily precipitation during the 
1985-2013 period. The spline interpolation resulted in 
continuous distribution maps for this variable. 

Multivariate analysis of data: using the Principal Component 
Analysis technique for 10 factors: slope, distance to falls, 
distance to drainage, rate of convergence, length of the 
flow path, LS factor, topographic wetness index, maximum 
monthly precipitation, normalized vegetation index and 
elevation. We obtained six factors without redundant 
information for the logistic regression model.

Statistical method for susceptibility analysis: Implementation 
of the Arc-SDM (Spatial Data Modeller for ArcView 3.2) 
package which contains tools of logistic regression for 
analyzing weight evidence (Logistic Regression/Weights of 
Evidence) (Kemp et al., 2001). The inventory of landslide 
processes was a dichotomous independent variable for 
the study corridor, along with the following independent 
variables: slope, LS factor, topographic index of humidity, 
flow path length, soil units and index of convergence.

Information analysis and susceptibility model: Comparison 
of applied susceptibility models to existing studies to 
categorize the probabilities obtained in relevant ranges. We 
generated a layout of susceptibility results into categories 
and area elements.

Validation of results: Accuracy evaluation of DEM input 
from which we derived the ground parameters used in 
the model to infer the results’ work scale, but as there are 
no semi-scale studies in the study corridor, we could not 
quantitatively evaluate the accuracy of the susceptibility. 
However, we did evaluate the performance of the classifier 
with the Receiver Operating Curve (ROC).

Results

Landslides processes inventory

Under the premise that future movements will occur under 
similar geo-environmental conditions that originated past 
events (Carrara et al., 1991), the inventory of landslide 
processes is essential for precisely identifying the locations 
and properties of previous landslides and determining 
the factors needed to predict future ones. 23 landslide 
processes were identified along the transmission system; 17 
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of them located in the first 2,8 km on the Palacé river slopes 
and only 6 in the remaining length. The types landslides, 
according to the classification of (Varnes, 1978), were 
rotational slides, landslides, rock fall, rock toppling and 
earth fall.

Accuracy of Digital Elevation Models

The SRTM DEM, 1” and 3”, and the ASTER DEM were 
compared using vertical differences from the TOPO-DEM 
errors, and we found a RMS error of 21,1 m, 21,2 m and 
25,8 m, respectively. The result of the SRTM1” DEM and 
the ASTER DEM were relatively close to the results, where 
an average error of 18,1 m and 33,1 m was obtained 
(Martinez et al., 2016) in a study area containing the region 
of this analysis. We selected the SRTM1” DEM as the most 
representative for the analysis of susceptibility, because 
recent studies have shown that, in terms of overall statistics, 
SRTM1” DEM is more accurate than ASTER DEM at one arc 
second resolution (Abbak et al., 2017;Abbak, 2014).

Principal Component Analysis (PCA)

Remondo Tejerina (2001) used a reduced set of morphometric 
variables in a susceptibility model, because incorporating 
other variables led to little improvement and very similar 
results. Therefore, and within the principle of Parsimony, 
we performed a PCA according to the methodology and 
computational approach of Pardo & del Campo (2007) to 
incorporate independent variables into the susceptibility 
model with more representativeness and no correlation or 
duplicate information with others (Figure 2).

has a 2,8 km long path from the water intake, impacting 
the geomorphology of the rugged and mountainous terrain 
(Figure 3a).

LS Factor: The specific topographic effects on soil erosion 
were estimated with the dimensionless topographic factor, 
LS, as the product of slope length and inclination at a point 
of interest (Van Remortel et al., 2001). This parameter 
varied between 0 and 80,3 m with a median of 8 m and 
a relative dispersion of 68 %. The highest LS values were 
found in the areas with highest slope gradients, such as 
the Palacé river canyon, in the initial 2,8 kilometers of the 
pipeline. This section had the highest speeds of surface 
flows, and therefore the highest rates of erosion because 
of a greater inclination and length (Haan et al., 1994) 
(Figure 3b).

Topographical wetness index: This parameter describes 
the effect of topography on the accumulation of water 
(Wilson & Gallant, 2000). We found values between 6,1 
and 23,4, with a median of 9,8 and 19,5 %. The average 
value was very similar to the expected 10,1, obtained with 
the Montecarlo simulation by Martinez & Correa (2016) in 
the surrounding area of the ​study. The highest values were 
in the concave areas traversed by the Palacé River and its 
tributaries, between the K0 + 000 and K3 + 200 abscissas in 
the canyon over the Palacé river; and between K3 + 600 and 
K4 + 600 in areas where the pipe is crossed by smaller flows 
(Figure 3c).

Convergence Index: This index, proposed by Köthe et al. 
(1996), calculates the flow’s convergence and divergence, 
departed from the appearance values of adjacent cells, 
without dependence on the absolute heights differences; 
negative values correspond to low ground convergence 
and positive ones to divergence in terrain crest points. This 
index ranged from -100 to 100, with a median of 0,011, 
and with symmetrical distribution similar to the results of 
Martinez & Correa (2016). In the first 2,8 km of the pipeline, 
we obtained negative values as expected; in the rest of the 
section, the index exposed the land’s concave areas where 
water and convex shapes on the ground crests accumulated 
(Figure 3d).

Flow path length: The average distance along the flow 
path for each cell varied between 0 and 40 m with an 
average of 20,3 m and a relative dispersion of 66,7 %. The 
longest distances covered by the flow to find the nearest 
drain was in the concave areas, mainly represented by 
the Palacé River canyon and its tributaries. In front of the 
K2 + 800 abscissa, the representative flow paths were seen 
with smaller streams, specifically located in the abscissas 
K5 + 100, K5 + 400, K5 + 800 and K5 + 900 (Figure 3e).

Geometric Parameters

Distance to drains: Euclidean distances to drains. Rivers 
have great effects on landslides: slope erosion or bottom 
material saturation in increased water levels (Dai et al., 

Figure 2.	 Circle of correlations of the first factorial plane of the PCA.
Source: Authors

Terrain Parameters

Slope: Varies between 0 and 65°; the highest inclinations are 
located in the canyon of the Palacé river, where the pipeline 
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2002). We found distances between 0 and 829 m, with a 
higher frequency in short distances, indicating closeness to 
drainage channels.

Distance to geological faults: The pipeline is crossed by 
two geological faults: La Estrella and El Crucero. They have 
uncertain activity in the abscissas K2 + 000 and K4 + 500 
(IGAC, 2009). These failures generate areas of interest of up 
to 2,3 km on both sides.

Geo-environmental Parameters

Soil types: A study in the department of Cauca at a scale 
of 100000 (IGAC, 2009) highlighted the units LQAf2 and 
AQBe2. The first corresponded to soils with moderately 
coarse to fine texture, slightly corrugated to steep reliefs, 
derived from discontinuous volcanic ash layers of igneous 
and sedimentary rocks, and moderate to severe erosion. 
The second consisted of soils with moderately fine to fine 
textures, from undifferentiated igneous rocks and thick 
layers of volcanic ash, slightly corrugated reliefs and 
moderate erosion (Figure 3f).

Vegetation index: Shows the spatial distribution of vegetation 
cover. It had values ​​between -1 and +1, indicating the 
strength of the vegetation (Deering et al., 1975). In the 
study area, this index varied between 0,12 and 0,61 with a 
median of 0,41, which is a good indicator of photosynthetic 
activity in the vegetation cover. The lowest rates were in the 
K0 + 200 to K1+ 600 section because of, the presence of 
exposed steep slopes with sparse vegetation, and between 
the abscissas K2 + 000 to K3 + 000, on exposed areas 
because of erosion in terracettes. In the abscissa K2 + 800, 
where a viaduct was built to mitigate rotational landslides, 
we found a NDVI corresponding to low vegetation cover in 
the area because of its sliding in a relatively recent move. In 
front of the K3 + 000, we observed high indexes, indicating 
higher density and vegetation strength, with the exception 
of the abscissa K4 + 800.

The variables: slope, LS factor, flow path length, topographic 
wetness index and index of convergence contributed to 
81,4% of the information inertia, and were well represented 
in the first factorial plane, close to 1 radius. This indicated 
little correlation, ensuring the parameters extraction with 
little redundancy of intrinsic information between the 
predictor variables of ground instability.

The distance to faults and to drainage network did not 
have a good representation in the first factorial plane, 
indicating that their contribution was not significant to 
the predictive model of susceptibility, consistent with the 
study by Bonachea (2006), where distances of geometric 
proximity did not contribute significantly to the model. 
We found the same condition for vegetation index 
variables, maximum monthly precipitation and elevation. 
Figure 3 shows the independent variables within the 
susceptibility model.

Figure 3.	 Spatial distribution of input variables in prediction model.

Source: Authors

Models of susceptibility to landslide processes

Applying WofE methods (Weight of Evidence factors), 
and Logistic Regression, implemented in the ArcSDM of 
ArcView 3.2 software, we found better correlation between 
slope and inventory of landslide, which measures spatial 
association between predictors and landslides (Thiery 
et al., 2005, 2007); when this value tends to zero, the 
presence of the parameter does not affect the distribution 
of landslides in the area, that means that the two variables 
are completely independent, and when the contrast value 
is larger than 2, the correlation is very significant (Barbieri 
et al., 2009). This same behavior is present in the other 
variables included in the prediction model: LS factor, 
topographic index of humidity, flow path length, soil units 
and index of convergence (Table 2).

Table 2.	 Results of the WoFe model to predict landslide processes

Factor Weight Contrast Standarized contrast

Slope 5,34 8,3 0,8

LS factor 4,22 6,3 3,2

Topographic wetness index 1,99 6,0 0,6

Convergence index 0,13 5,9 0,6

Flow path length 0,64 4,6 0,5

Soil unit 0,29 4,4 0,4

Source: Authors



Determination of landslide susceptibility in linear infrastructure. Case: aqueduct network in Palacé, Popayan (Colombia)

Ingeniería e Investigación vol. 37 n.° 2, august - 2017 (17-24)22

This confirms slope as an important terrain parameter in 
the statistical analysis of landslide threats, as observed by: 
(Brabb et al., 1972; Corominas et al., 2003; Turcotte et al., 
2006). The prediction of landslide processes (Figure   4) 
shows that landslides will be more frequent in reliefs with 
average slopes of 48° (areas with a high slope and fractured 
rock), high LS values of 40 m (higher erosion rates because 
of increasing slope inclination and length) (Haan et al., 
1994)), topographical indexes of humidity (17), indicating 
areas prone to soil saturation because of topographical 
tendency for water accumulation, indexes of convergence 
with a convergence of the water flow and flow path lengths 
of 29 m, and class 5 soils (LQAf2 type) and moderately 
coarse to fine textures and reliefs (from corrugated to steep), 
with layers of discontinuous volcanic ash over igneous and 
sedimentary rocks in the influence area of the transmission 
system.

metric of evaluation of the model’s error. We indirectly 
establish the uncertainty of the results with the following 
strategies:

Level of detail of the method: When comparing the degree 
of the slope algorithm information over the SRTM1” DEM, 
used to generate it, with a map of slope from an IGAC digital 
mapping, we observed a higher level of information of this 
parameter, obtained with the geomorphometry approach 
implemented in this study. 

Comparison of drainage network: By comparing the 
drainage network, obtained by screen typing a topographic 
map (IGAC), with the flow accumulation algorithm over 
DEM-SRTM1”, we obtained visual concordance on 
overlapping data, confirming the DEM potential to derive 
primary and secondary terrain parameters.

Receiver Operating Characteristic (ROC): A ROC plot 
measures the performance for a binary classifier. The curve 
showed the true positive percentage and the false positive 
percentage values for each class of the curve. The area 
under the curve (AUC) is the metric of the performance 
of the classifier (Robin et al., 2011). This was done with 
samples of training and validation in a proportion of 70/30 
from landslide database. Finally, we obtained an AUC value 
of 0,66 which indicated a regular fit compared to a perfect 
fit when AUC is equal to 1. 

Conclusions

We obtained a zoning map of susceptibility by landslides 
using the statistical method of logistic regression that 
related the inventory of landslide processes to independent 
variables derived numerically from a DEM-SRTM. 

The PCA nonparametric method was used to analyse 
maximized variables related to terrain parameters, 
coverage, geometric parameters and precipitation, and 
found that a set of five parameters explained 80 % of the 
total variability information, resulting in the maximum 
monthly precipitation with low representation in the first 
factorial plane.

It was not possible to quantify the accuracy of the prediction 
model because of the unavailability of a valid pattern of 
comparison. However, we evaluated the DEM RMS error 
used to derive terrain parameters, and we compared the 
level of detail in the contour line maps and the drainage 
network to those obtained in topographic base maps with 
screen digitization and the results of the AUC value of the 
ROC curve. 

We combined all active landslides in a group to generate 
statistical relationships with terrain factors. Separate 
statistical models for different types of landslides, should 
be developed.

Figure 4.	 Map of susceptibility to landslide processes obtained by re-
categorization of prediction, RLM method.

Source: Authors

The susceptibility model with logistic regression resulted in 
the following prediction Equation (3).

	

LSsusceptibility = 0,28×Slope+0,78×LSfactor
+0,16×TWI−0,06×FlowPathL
+7,29×Soil−0,21×CONVI

	 ( 3)

Validation of Results

In this study, we did not see a comparison pattern in 
the strict sense of the term, so we could not produce a 
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