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Optimal design for rectangular isolated footings  
using the real soil pressure

Diseño óptimo para zapatas aisladas rectangulares  
usando la presión real del suelo 

A. Luévanos-Rojas1, S. López-Chavarría2, and M. Medina-Elizondo3

ABSTRACT

The standard design method (classical method) for reinforced concrete rectangular footings is: First, a dimension is proposed and 
should comply with the allowable stresses; subsequently, the effective depth is obtained from the maximum moment and is checked 
against the bending shear and the punching shear until, it complies with these conditions and, then, steel reinforcement is obtained, 
but it is not guarantee that the minimum cost will be obtained. This paper shows an optimal design for reinforced concrete rectangular 
footings using the new model. A numerical experimentation is presented to show the model capability to estimate the minimum cost 
design of the materials used for a rectangular footing that supports an axial load and moments in two directions in accordance to the 
building code requirements for structural concrete and commentary (ACI 318-13). Also, a comparison is made between the optimal 
design and current design for rectangular footings. The solutions show that the optimal design is more economical and more precise 
with respect to the current design, because standard design is done by trial and error. Then, the optimal design should be used to 
obtain the minimum cost design for reinforced concrete rectangular footings.

Keywords: Optimal design, reinforced concrete rectangular footings, minimum cost design, moments, bending shear, punching 
shear.

RESUMEN

El método clásico de diseño estándar para zapatas rectangulares de concreto reforzado es: Primero, se propone una dimensión 
que cumpla con los esfuerzos admisibles; posteriormente, la profundidad efectiva se obtiene a partir del momento máximo y 
se comprueba con el cortante por flexión y el cortante por punzonamiento hasta que cumpla con estas condiciones y, luego, se 
obtiene el refuerzo de acero, aunque no se garantiza que se obtendrá el costo mínimo. Este trabajo muestra un diseño óptimo para 
zapatas rectangulares de concreto reforzado utilizando el nuevo modelo. Una experimentación numérica se presenta para mostrar la 
capacidad del modelo para estimar el diseño de costo mínimo de los materiales utilizados para una zapata rectangular que soporta 
una carga axial y momentos en dos direcciones, de acuerdo con los requisitos del código de construcción para concreto estructural 
y comentarios (ACI 318-13). Además, se hace una comparación entre el diseño óptimo y el diseño actual de zapatas rectangulares. 
Las soluciones muestran que el diseño óptimo es más económico y más preciso con respecto al diseño actual, ya que este último 
se realiza a través de ensayo y error. De este modo, el diseño óptimo se debe utilizar para obtener el diseño de costo mínimo para 
zapatas rectangulares de concreto reforzado.

Palabras clave: Diseño óptimo, zapatas rectangulares de concreto reforzado, diseño de costo mínimo, momentos, cortante por 
flexión, cortante por punzonamiento.
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Introduction

The foundation is the part of the structure which transmits the 
loads to the soil. The foundations are classified into superficial 
and deep, which have important differences: in terms of 
geometry, the behavior of the soil, its structural functionality 
and its constructive systems (Das et al., 2006; Ha, 1993).

The footings sizes are mostly governed by the axial load and 
moments, allowable soil pressure, unit weight of concrete, 
soil unit weight, and the depth of the footing base below 
the final grade (Al-Ansari, 2013).

Optimum design of structures has been the topic of many 
studies in the field of structural design. A designer’s goal 
is to develop an “optimal solution” for the structural 
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design under consideration. Normally, an optimal solution 
implies the most economic structure without impairing 
the functional purposes the structure is supposed to serve 
(Bhalchandra & Adsul, 2012).

The optimum design is generally considered to be the 
one design that best satisfies the criteria for the project. 
Typically, there is some kind of objective function that can 
be computed from the variables that define a design. The 
value of the objective function is used to compare feasible 
designs in order to determine the “best” or “optimum” 
design (Quimby, 2012).

The papers for optimal design of reinforced concrete 
foundations are: Flexural Strength of Square Spread Footing 
(Jiang, 1983); Closure to “Flexural Strength of Square 
Spread Footing” by Da Hua Jiang (Jiang, 1984); Flexural 
Limit Design of Column Footing (Hans, 1985); Economic 
Design Optimization of Foundation (Wang and Kulhawy, 
2008); Reliability-Based Economic Design Optimization 
of Spread Foundation (Wang, 2009); Structural Cost of 
Optimized Reinforced Concrete Isolated Footing (Al-Ansari, 
2013); Multi-objective Optimization of foundation using 
global-local gravitational search algorithm (Khajehzadeh et 
al., 2014).

Luévanos-Rojas (2013) presented a mathematical model for 
dimensioning of rectangular footings.

Luévanos-Rojas et al. (2013) proposed the design for 
isolated footings of rectangular form using a new model. 

Luévanos-Rojas (2016b) presented a comparative study 
for the design of rectangular and circular isolated footings 
using new models.

This paper shows an optimal design for reinforced concrete 
rectangular footings using a new model. A numerical 
example is presented to show the model capability to 
estimate the minimum cost design of the materials used 
for a rectangular footing that supports an axial load and 
moments in two directions in accordance to the building 
code requirements for structural concrete (ACI 318-13) 
and commentary. Also a comparison is made between the 
optimal design and current design for rectangular footings 
in order to observe differences. 

Methodology 

Model for dimensioning of rectangular footings 

Figure 1 presents a rectangular footing subjected to axial 
load and moment in two directions (biaxial bending), 
where pressure is different in the four corners of the contact 
surface.

General equation for any type of footings subjected to 
biaxial bending is:

 σ =
P
A
±
Mx y
Ix
±
Myx
I y

 (1)

where: σ is the stress exerted by the soil on the footing (soil 
pressure), A is the contact area of the footing, P is the axial 
load applied at the center of gravity of the footing, Mx is 
the moment around the axis “X”, My is the moment around 
the axis “Y”, x is the distance in the direction “X” measured 
from the axis “Y” to the fiber under study, y is the distance 
in direction “Y” measured from the axis “X” to the farthest 
under study, Iy is the moment of inertia around the axis “Y” 
and Ix is the moment of inertia around the axis “X”.

Figure 1. Rectangular isolated footing.
Source: (Luévanos-Rojas, 2013)

The maximum stress is the available load capacity of the 
soil:

 σ
1
= σmáx =

P
A
+
Mx y
Ix
+
Myx
I y

 (2)

Substituting the values of A = bh, Cy = h/2, Cx = b/2, Ix = bh3/12 
and Iy = hb3/12 into Equation (2) is obtained:

 σmáxb
2h2 = Pbh+6Mxb+6Myh  (3)

The minimum stress is zero:

 σ
4
= 0=

P
A
−
Mx y
Ix
−
Myx
I y

 (4)

Substituting the values of A = bh, Cy = h/2, Cx = b/2, Ix = bh3/12 
and Iy = hb3/12 into Equation (2) is obtained:

 0= Pbh−6Mxb−6Myh  (5)

First case. The axial load applied at the center of gravity of 
the footing (ex = 0 and ey = 0).

Substituting My = 0 and Mx = 0 into Equations (3) and (5) is 
obtained:

 σmáxbh= P  (6)

 0= Pbh  (7)

Substituting b = h into Equation (6) is found: 
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 b= h= P
σmáx

 (8)

Note: the values of b and h are governed by the maximum 
stress, and these values of b and h must be the minimum 
values.

Second case. The axial load located to eccentricities ex = 0 
and ey ≠ 0 (uniaxial bending).

Substituting My = 0 into Equations (3) and (5) is obtained:

 σmáxbh
2 = Ph+6Mx

 (9)

 0= Ph−6Mx  (10)

The value of h by Equation (10) is found:

 h =
6Mx

P
 (11)

Substituting Equation (11) into Equation (9) is obtained:

 b= P2

3σmáxMx

 (12)

Note: these values of b and h must be the minimum values.

Third case. The axial load is located to eccentricities ex ≠ 0 
and ey ≠ 0 (biaxial bending).

The permitted maximum eccentricity for that the tensile 
stresses are not present in the soil is 1/6 the side of the 
footing. Then the eccentricities are defined as follows 
(Luévanos-Rojas, 2013):

 ex =
My

P
=
b
6
→ P=

6My

b
 (13)

 ey =
Mx

P
=
h
6
→ P=

6Mx

h
 (14)

The value of “P” in Equation (13) is substituted into Equation 
(14), and the value “b” is obtained (Luévanos-Rojas, 2013):

 b=
Myh
Mx

 (15)

Now, substituting Equation (15) into Equation (5) is obtained 
(Luévanos-Rojas, 2013):

 h=
12Mx

P
 (16)

Substituting the Equation (15) into Equation (3) is obtained 
(Luévanos-Rojas, 2013):

 σmáxM yh
3− PMxh−12Mx

2 = 0  (17)

when soil pressure is zero by Equation (16) the value of 
“h” is obtained, and when soil pressure is the available 
load capacity “σmax” by Equation (17) the value of “h” is 
found, and of the two values   is taken the greater of the 
two conditions, because the pressure generated by the soil 
on the footing must greater than zero and less than the 
available load capacity of the soil (Luévanos-Rojas, 2013).

The available load capacity of the soil “σmax” is (Luévanos-
Rojas et al., 2013):

 σmáx = qa −γ ppz −γ pps  (18)

where: qa is the allowable load capacity of the soil, γppz is 
the self-weight of the footing in square meter, γpps is the 
self-weight of soil fill in square meter.

Note: if in the combinations are included the wind and/or 
the earthquake, the allowable load capacity of the soil can 
be increased by 33% (ACI 318-13).

Also, Equation (19) could be presented:

 σmáx = qa −γc(d+ r)−γg (H − d− r)  (19)

where: γc is concrete density = 24 kN/m3, γg is soil density, d 
is the footing effective depth, r is the footing coating and H 
is the depth of the footing base below the final grade. 

Once the value of “h” is obtained, the value of “b” is found 
by Equation (15).

New model for design of rectangular isolated 
footings

According to Building Code Requirements for Structural 
Concrete and Commentary (2013), the critical sections 
are: 1) the maximum moment is located in face of column, 
pedestal, or wall, for footings supporting a concrete 
column, pedestal, or wall; 2) bending shear is presented 
at a distance “d” (distance from extreme compression fiber 
to centroid of longitudinal tension reinforcement) shall be 
measured from face of column, pedestal, or wall for footings 
supporting a column, pedestal, or wall; 3) punching shear 
is localized so that it perimeter “bo” is a minimum but need 
not approach closer than “d/2” to: (a) Edges or corners of 
columns, concentrated loads, or reaction areas; and (b) 
Changes in slab thickness such as edges of capitals, drop 
panels, or shear caps (ACI 318-13).

Critical sections for moments are presented in section a’- a’ 
and b’-b’, as shown in Figure 2.

Moment “Ma’- a’” acting around the axis a’-a’ is (Luévanos-
Rojas et al., 2013; Luévanos-Rojas, 2016b):

 M ′a− ′a =
Puh

2+2Mux 2h+ c1( )⎡
⎣⎢

⎤
⎦⎥ h− c1( )2

8h3
 (20)



Optimal design fOr rectangular isOlated fOOtings using the real sOil pressure

IngenIería e InvestIgacIón vol. 37 n.° 2, august - 2017 (25-33)28

Figure 2. Critical sections for moments.
Source: (Luévanos-Rojas et al., 2013; Luévanos-Rojas, 2016b)

Moment “Mb’- b’” acting around the axis b’-b’ is (Luévanos-
Rojas et al., 2013; Luévanos-Rojas, 2016b):

 M ′b− ′b =
Pub

2+2Muy 2b+ c2( )⎡
⎣⎢

⎤
⎦⎥ b− c2( )2

8b3
 (21)

where: Pu is load; Mux and Muy are moments factored acting 
on the footing.

The critical section for bending shear (unidirectional shear 
force) is obtained at a distance “d” to from face of the 
column with the footing is presented in section c’- c’ as 
seen in Figure 3.

Now, the bending shear “Vf” is (Luévanos-Rojas et al., 
2013; Luévanos-Rojas, 2016b):

 Vf =
Puh

2+3Mux h+ c1+2d( )⎡
⎣⎢

⎤
⎦⎥ h− c1−2d( )

2h3
 (22)

The critical section for the punching shear (bidirectional 
shear force) appears at a distance “d/2” to from of column 
face with the footing in the two directions in section formed 
by points 5, 6, 7 and 8; see Figure 4.

Figure 3. Critical section for bending shear.
Source: (Luévanos-Rojas et al., 2013; Luévanos-Rojas, 2016b)

Figure 4. Critical section for punching shear.
Source: (Luévanos-Rojas et al., 2013; Luévanos-Rojas, 2016b)

Now, the punching shear “Vp” is (Luévanos-Rojas et al., 
2013; Luévanos-Rojas, 2016b):

 Vp =
Pu bh− c

1
+ d( ) c2+ d( )⎡

⎣⎢
⎤
⎦⎥

bh
 (23)

Equations provided by building code 
requirements for structural concrete  
and commentary (ACI 318-13)

Equations for moment in both axes are considered at the 
face of the column are (ACI 318-13; Luévanos-Rojas, 
2016a):

 Mu =ϕ f bwd
2ρ f y 1−

0,59ρ f y
′fc

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
 (24)

 
ρ =

As
bwd  (25)

 ρb =
0,85β

1
′fc

f y

600
600+ f y

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
 (26)
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 0,65≤ β
1
= 1,05−

′fc
140

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
≤ 0,85  (27)

 ρmáx = 0,75ρb  (28)

 ρ
min
=

0,25 ′fc
f y
1,4
f y

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

 (29)

where: Mu is the factored maximum moment, Øf is the 
strength reduction factor by bending, and its value is 0,90, 
bw is width of analysis in structural member, ρ is ratio 
of As to bd, β1 is the factor relating depth of equivalent 
rectangular compressive stress block to neutral axis depth, 
fy is the specified yield strength of reinforcement of steel, f’c 
is the specified compressive strength of concrete at 28 days.

Required strength U to resist factored loads or related 
internal moments and forces is (ACI 318-13):

 U =1,2D+1,6L  (30)

where: D are the dead loads, or related internal moments 
and forces, L are the live loads, or related internal moments 
and forces.

Equation for the bending shear (unidirectional shear force) 
is considered at a distance “d” to from of column face is 
(ACI 318-13):

 ϕvVcf = 0,17ϕv ′fc bwd  (31)

where: Vcf is bending shear resisting by concrete; Øv is the 
strength reduction factor by shear is 0,85.

Equations for the punching shear (shear force bidirectional) 
appears at a distance “d/2” to from of column face on the 
footing in the two directions are shown (ACI 318-13):

 ϕvVcp = 0,17ϕv 1+
2
βc

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
′fc b0d  (32a)

 ϕvVcp = 0,083ϕv
αsd
b
0

+2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
′fc b0d  (32b)

 ϕvVcp = 0,33ϕv ′fc b0d  (32c)

where: Vcp is punching shear resisting, βc is the ratio of long 
side to short side of the column, b0 is the perimeter of the 
critical section, αs is 40 for interior columns, 30 for edge 
columns, and 20 for corner columns. ØvVcp must be the 
largest value of Equations (32a), (32b) and (32c).

Objective function to minimize the cost

A cost function is defined as the total cost “Ct” which is 
equal to cost of flexural reinforcement more the cost of 
concrete. These costs involve material costs and fabrication 
costs, respectively. The cost of the rectangular footing is:

 Ct =VcCc +VsγsCs  (33)

where: Cc is cost of concrete for 1 m3 of ready mix reinforced 
concrete in dollars, Cs is cost of reinforcement steel for 1 
kN of steel in dollars, Vs is volume of reinforcement steel, Vc 
is volume of concrete and γs is steel density = 76,94 kN/m3.

The volumes for rectangular footings are:

 Vs = Aslh+ Astb  (34)

 Vc = bht− Aslh− Astb  (35)

Substituting Equations (34) and (35) into Equation (33) is 
obtained:

 Ct = Cc bht− Aslh− Astb( )+ γsCs Aslh+ Astb( )  (36)

Substituting α = γsCs/Cc into Equation (36) is presented:

 Ct = Cc bh d+ r( )− Aslh+ Astb( ) 1−α( )⎡
⎣⎢

⎤
⎦⎥  (37)

Constraint functions

Equations of the model for dimensioning of rectangular 
footings, the new model for design of rectangular isolated 
footings and the building code requirements for structural 
concrete (ACI 318-13) and commentary are considered to 
obtain the constraint functions.

For the dimensioning

First case:

 h≥ P
qa −γc d+ r( )−γc H − d− r( )  (38)

 b= h  (39)

Second case:

 h≥
6Mx

P
 (40)

 b≥ P2

3[qa −γc(d+ r)−γg (H − d− r)]Mx
 (41)

Third case:

 h≥
12Mx

P
 (42)
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[qa −γc(d+ r)−γg (H − d− r)]

Myh
3− PMxh−12Mx

2 ≥ 0
 (43)

 b≥
Myh
Mx

 (44)

For the design

 
Puh

2+2Mux 2h+ c1( )⎡
⎣⎢

⎤
⎦⎥ h− c1( )2

8h3ϕ f f y
≤ dAsl 1−

0,59Asl f y
bd ′fc

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
 (45)

 
Pub

2+2Muy 2b+ c2( )⎡
⎣⎢

⎤
⎦⎥ b - c2( )2

8b3Øf f y
≤ dAst 1 – 

0,59Ast f y
hd ′fc

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
 (46)

 
Puh

2+3Mux h+ c1+2d( )⎡
⎣⎢

⎤
⎦⎥ h - c1 - 2d( )

2h3
≤ 0,17Æv f 'cbd   (47)

 

Pu bh - c1+ d( ) c2+ d( )⎡
⎣⎢

⎤
⎦⎥

bh

≤

0,17Øv 1+
2
βc

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
f 'c 2 c1+ c2+2d( )⎡
⎣⎢

⎤
⎦⎥ d

0,083Øv
asd
b
0

+2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
f 'c 2 c1+ c2+2d( )⎡
⎣⎢

⎤
⎦⎥ d

0,33Øv f 'c 2 c1+ c2+2d( )⎡
⎣⎢

⎤
⎦⎥ d

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

 (48)

 ρl ,ρt ≤ 0,75
0,85β

1
f 'c

f y

600
600+ f y

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
   (49)

 ρl ,ρt ≥

0,25 f 'c
f y
1,4
f y

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

     (50)

 Asl = ρlbd  (51)

 
Ast = ρthd   (52)

where: ρl is ratio of reinforcement steel in direction the long 
side, ρt is ratio of reinforcement steel in direction the short 
side, Asl is reinforcement steel in direction the long side, 
Ast is reinforcement steel in direction the short side of the 
footing.

Application of the model

The design for a reinforced concrete isolated footing of 
rectangular form that supports a square column with the basic 
information following: c1 = 40 cm; c2 = 40 cm; H = 1,5 m; 

PD = 700 kN; PL = 500 kN; MDx =140 kN-m; MLx = 100 kN-m; 
MDy = 120 kN-m; MLy = 80 kN- m; f’c = 21 MPa; fy = 420 MPa; 
qa = 220 kN/m2; γc = 24 kN/m3; γg = 15 kN/m3; r = 8 cm; 
α = 90. It is required to determine values of the optimum 
ratios of reinforcement steel ρl and ρt, the optimum areas 
of reinforcement steel Asl and Ast, the optimum dimensions 
of the footing b and h, and the optimum effective depth d.

Where: PD is dead load, PL is live load, MDx is moment 
around of axis “X-X” of dead load, MLx is moment around 
of axis “X-X” of live load, MDy is moment around of axis 
“Y-Y” of dead load, MLy is moment around of axis “Y-Y” of 
live load.

Loads and moments acting on soil are: P = 1200 kN, 
Mx = 240 kN-m, My = 200 kN-m. 

Loads and moments acting on the footing by Equation (30) 
are factored: Pu = 1640 kN, Mux = 328 kN-m, Muy = 272 kN-m. 

Substituting corresponding values into Equation (37) to 
obtain the objective function, and also into Equations (42) 
to (52) to find the constraints, these are:

Objective function to minimize the cost:

 
Ct = Cc bh d+0,08( )+89 Aslh+ Astb( )⎡

⎣⎢
⎤
⎦⎥

Subject to: 

h≥ 2,4
39356h3 -1800dh3 - 288000h - 691200≥ 0

b≥ 5h
6

5h - 2( )2 25h2+20h+ 4( )
h3

≤
47250000

41
dAsl 1-

11,8Asl
bd

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

5b - 2( )2 1025b2+680b+136( )
b3

≤ 47250000dAst 1-
11,8Ast
hd

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

5h -10d - 2( ) 25h2+30d+15h+6( )
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Ast = ρthd
Asl = ρlbd

 Assume all variables nonnegative.

The MAPLE-15 software for the optimization problem 
has been used to assess the optimal design with respect 
to minimum cost for the reinforced concrete rectangular 
footing using the new model.

Now a numerical experimentation is developed by the 
optimal design model using Equation (37) and Equations 
(42) to (52). Also, results are verified by the standard design 

Table 1. Effective depth d varies

b (cm) h (cm) d (cm) ρl Asl (cm2) ρt Ast (cm2) Total cost ($)

294,67 353,61 38,33 0,00456 51,54 0,00333 45,17 7,634 Cc

294,77 353,72 40,00 0,00417 49,16 0,00333 47,12 7,789 Cc

295,34 354,41 50,00 0,00333 49,22 0,00333 59,07 9,176 Cc

295,92 355,10 60,00 0,00333 59,18 0,00333 71,02 10,886 Cc

296,50 355,80 70,00 0,00333 69,18 0,00333 83,02 12,610 Cc

Table 2. Short dimension b of the footing is modified

b (cm) h (cm) d (cm) ρl Asl (cm2) ρt Ast (cm2) Total cost ($)

294,67 353,61 38,33 0,00456 51,54 0,00333 45,17 7,634 Cc

300,00 353,61 38,35 0,00447 51,44 0,00333 45,21 7,743 Cc

310,00 353,61 38,41 0,00431 51,26 0,00333 45,23 7,949 Cc

320,00 353,61 38,45 0,00415 51,12 0,00333 45,32 8,155 Cc

330,00 353,62 38,49 0,00401 50,97 0,00333 45,37 8,362 Cc

Table 3. Greater dimension h of the footing is changed

b (cm) h (cm) d (cm) ρl Asl (cm2) ρt Ast (cm2) Total cost ($)

294,67 353,61 38,33 0,00456 51,54 0,00333 45,17 7,634 Cc

300,00 360,00 38,38 0,00455 52,34 0,00333 46,01 7,914 Cc

308,33 370,00 38,46 0,00454 53,85 0,00333 47,39 8,374 Cc

316,67 380,00 38,53 0,00453 55,26 0,00333 48,76 8,842 Cc

325,00 390,00 38,60 0,00452 56,67 0,00333 50,13 9,324 Cc

Table 4. Ratios of reinforcement steel ρl varies

b (cm) h (cm) d (cm) ρl Asl (cm2) ρt Ast (cm2) Total cost ($)

294,67 353,61 38,33 0,00600 67,76 0,00333 45,17 8,144 Cc

294,67 353,61 38,33 0,00500 56,47 0,00333 45,17 7,789 Cc

294,67 353,61 38,33 0,00456 51,54 0,00333 45,17 7,634 Cc

294,81 353,78 40,79 0,00400 48,11 0,00333 48,11 7,866 Cc

294,81 353,78 44,53 0,00333 43,72 0,00333 52,46 8,232 Cc

Source: Authors

method using Equations (15) to (32a,b,c). The results are 
presented in Tables 1, 2, 3 and 4. Table 1 shows when the 
effective depth “d” takes into account the values of 38,33, 
40,00, 50,00, 60,00 and 70,00 cm. Table 2 presents, when 
the short side “b” of the footing varies of 294,67, 300,00, 
310,00, 320,00 and 330,00 cm. Table 3 presents when the 
long side “h” of the footing changes its value of 353,61, 
360,00, 370,00, 380,00 and 390,00 cm. Table 4 shows 
when the ratios of reinforcement steel “ρl” varies its value 
of 0,00600, 0,00500, 0,00456, 0,00400 and 0,00333. 
In these tables are marked the derived optimum design 
formulae for the reinforced concrete isolated footings of 
rectangular form and, it gives an accurate estimate of the 
minimum material cost.



Optimal design fOr rectangular isOlated fOOtings using the real sOil pressure

IngenIería e InvestIgacIón vol. 37 n.° 2, august - 2017 (25-33)32

Results

Table 1 shows the numerical experimentation varying the 
effective depth “d”. When the value of “d” is increased, 
the values of “ρl” and “Asl” are reduced until the minimum 
value of “ρl” and to from of this value “Asl” is increased; the 
values of “Ast”, “b” and “h” are increased; the value of “ρt” 
is constant, and the total material cost is greater.

Table 2 presents the numerical experimentation modifying 
the dimension the short side “b” of the footing. When the 
value of “b” is increased, the values of “Ast”, “h” and “d” 
are increased; the values of “ρl” and “Asl” are reduced; 
the value of “ρt” is constant, and the total material cost is 
larger.

Table 3 shows the numerical experimentation changing the 
dimension the greater side “h” of the footing. When the 
value of “h” is increased, the values of “Asl”, “Ast”, “b” and 
“d” are increased; the value of “ρl” is reduced; the value of 
“ρt” is constant, and the total material cost is greater.

Table 4 presents the numerical experimentation varying 
the ratios of reinforcement steel “ρl”. When the value of 
“ρl” is reduced, the value of “Asl” is reduced; the values of 
“b”, “h”, “d” and “Ast” are increased; the value of “ρt” is 
constant, and the total material cost is reduced until the 
cost of 7,634Cc, and to from of this value is increased.

The corresponding total material cost Ct of the rectangular 
isolated footing is obtained from Equation (37) that is 
7,634Cc as minimum value in terms the concrete cost, 
and numerical experimentation presented by the optimal 
design model and standard design method are verified.

Conclusions 

This study deals the design of minimum cost for reinforced 
concrete isolated footings of rectangular form subjected to 
a concentrated load and moments in two directions using 
the new model generalized.

A mathematical approach of the problem based on a 
criterion of minimum cost design and a set of constraints in 
accordance to the building code requirements for structural 
concrete (ACI 318-13) and commentary are formulated. 
We assume that the constant parameters are: c1, c2, H, P, 
Mx, My, qa, γc, γg, r, α, f’c and fy, the design variables are: b, 
h, d, ρl, ρt, Asl and Ast.

The optimal design equations obtained for the reinforced 
concrete rectangular isolated footings using the new model 
give a very accurate estimate of the minimum cost.

Using the optimal design, this paper successfully acquires 
a model to predict the ratios of reinforcement steel ρl and 
ρt, the optimum areas of reinforcement steel Asl and Ast, the 
optimum dimensions of the footing b and h, the optimum 

effective depth d and minimum cost for reinforced concrete 
rectangular isolated footings subjected to a concentrated 
load and moments in two directions generalized.

The optimal design model proposed in this paper can be 
used for other codes of design, modifying the equations of 
the factored moments, bending shear resisted by concrete 
and punching shear resisted by concrete to obtain the 
total material cost for the reinforced concrete rectangular 
isolated footings. 
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