
IngenIería e InvestIgacIón vol. 37 n.° 2, august - 2017 (74-81)

74

Model-based implementation of self-configurable
intellectual property modules for image

histogram calculation in FPGAs

Implementación de módulos de Propiedad Intelectual
modificables para el cálculo de histogramas en FPGA

sobre un flujo de diseño basado en modelos

L.M. Garcés-Socarrás1, D.A. Romero2, A.J. Cabrera3, S. Sánchez-Solano4, and P. Brox5

ABSTRACT

This work presents the development of self-modifiable Intellectual Property (IP) modules for histogram calculation using the model-
based design technique provided by Xilinx System Generator. In this work, an analysis and a comparison among histogram calculation
architectures are presented, selecting the best solution for the design flow used. Also, the paper emphasizes the use of generic
architectures capable of been adjustable by a self-configurable procedure to ensure a processing flow adequate to the application
requirements. In addition, the implementation of a configurable IP module for histogram calculation using a model-based design
flow is described and some implementation results are shown over a Xilinx FPGA Spartan-6 LX45.

Keywords: Digital image processing, histogram calculation, FPGA, xilinx system generator, MATLAB®/Simulink®, self-configuration.

RESUMEN

Este artículo presenta el desarrollo de módulos de propiedad intelectual modificables automáticamente para el cálculo de
histogramas empleando el flujo de diseño basado en modelos provisto por Xilinx System Generator. En este artículo se realiza un
análisis y comparación entre las arquitecturas para el cálculo de histogramas, seleccionando la mejor solución para el flujo de diseño
empleado. También se hace énfasis en el uso de arquitecturas genéricas capaces de ajustarse a las necesidades del flujo de datos de
la aplicación mediante un procedimiento de configuración automática. Además, se describe la implementación de un módulo de
propiedad intelectual configurable para el cálculo de histogramas sobre el flujo de diseño basado en modelos, del cual se muestran
algunos detalles de implementación para diferentes opciones de configuración sobre un FPGA Spartan-6 LX45 de Xilinx.

Palabras clave: Procesado Digital de imágenes, cálculo de histogramas, FPGA, sistema de generación Xilinx MATLAB®/Simulink®,
configuración automática.

Received: January 31st 2017
Accepted: July 4th 2017

DOI: http://dx.doi.org/10.15446/ing.investig.v37n2.62328

How to cite: Garcés-Socarrás, L.M., Romero, D.A., Cabrera, A.J., Sán-
chez-Solano, S., Brox, P. (2017). Model-based implementation of self-con-
figurable Intellectual Property modules for image histogram calculation in
FPGAs. Ingeniería e Investigación, 37(2), 74-81.
DOI: 10.15446/ing.investig.v37n2.62328

Attribution 4.0 International (CC BY 4.0) Share - Adapt

2 B.Sc. in Automation Engineering, Technologic University of Havana “José
Antonio Echeverría” (CUJAE), Havana, Cuba. Affiliation: Instituto Central de
Investigaciones Digitales (ICID), Cuba. E-mail: dalejandro@icid.cu

3 B. Sc. and M.Sc. in Electrical Engineering and D. Sc. in Technical Sciences,
Technologic University of Havana “José Antonio Echeverría” (CUJAE), Hava-
na, Cuba. Affiliation: Automation and Computation Department, Technologic
University of Havana “José Antonio Echeverría” (CUJAE), Cuba. E-mail: alex@
automatica.cujae.edu.cu

4 D. Sc in Physis, Universidad de Sevilla, Spain. Affiliation: Instituto de Mi-
croelectrónica de Sevilla (CSIC/Universidad de Sevilla), Sevilla, Spain. E-mail:
santiago@imse-cnm.csic.es

5 D. Sc in Physis, Universidad de Sevilla, Spain. Affiliation: Instituto de Mi-
croelectrónica de Sevilla (CSIC/Universidad de Sevilla), Sevilla, Spain. E-mail:
brox@imse-cnm.csic.es

Introduction

Digital Image Processing (DIP) tasks have, as their main
objective, the application of certain mathematical
operations over an image to obtain a desired result
(González & Woods, 2007). To achieve this objective,
many software-based (SW) solutions have been developed
in recent decades, using sequential algorithms for
General Purpose Processors (GPPs) (Bailey, 2011; Pulli,
Baksheev, Kornyakov, & Eruhimov, 2012). On the other
hand, hardware-based (HW) implementations - like
Field Programmable Gates Arrays (FPGAs) – have been
used to increase the operation frequency of DIP systems
(Alsuwailem & Alshebeili, 2005; Bailey, 2011; Barranco,

1 B.Sc. in Automation Engineering. M.Sc. in Digital Systems and D. Sc. in Tech-
nical Sciences, Technologic University of Havana “José Antonio Echeverría”
(CUJAE), Havana, Cuba. Affiliation: Automation and Computation Depart-
ment, Technologic University of Havana “José Antonio Echeverría” (CUJAE),
Cuba. E-mail: lmgarcess@automatica.cujae.edu.cu

http://dx.doi.org/10.15446/ing.investig.v37n2.62328
http://dx.doi.org/10.15446/ing.investig.v37n2.62328

IngenIería e InvestIgacIón vol. 37 n.° 2, august - 2017 (74-81) 75

GARCÉS-SOCARRÁS, ROMERO, CABRERA, SÁNCHEZ-SOLANO, AND BROX

Díaz, Gibaldi, Sabatini, & Ros, 2012; Hanumantharaju,
Ravishankar, Rameshbabu, & Ramachandran, 2011). These
devices are suitable for parallel computing systems that
allow the implementation of elaborate functions.

Increasing computing power required by current DIP
algorithms can be achieved by performing intensive
computing tasks in HW, as well as by exploiting the
parallelism of the devices and the partial independence of
the algorithms (Bailey, 2011; Qasim, Abbasi, & Almashary,
2009).

but makes difficult the modification of the internal
architecture of the block. MATLAB®/Simulink® delivers
some instructions for adding, deleting and interconnecting
Simulink® blocks using a complex MATLAB® script,
changing the architecture of the block and increasing
its versatility (Popinchalk, 2008a, 2008b, 2008c). Those
instructions are used to develop a new methodology to
create self-configurable Image Processing blocks for XSG
(Garcés-Socarrás et al., 2016).

Histogram processing is a frequent operation in DIP,
showing the statistical distribution of gray or color levels
of an image (Bailey, 2011; González & Woods, 2007).
The correct manipulation of the histogram permits the
equalization of the levels, to obtain a better image. This
information is also used for segmentation and image
compression (Blair, Robertson, & Hume, 2013; Cho, Jin,
Pham, Kim, & Jeon, 2007; González & Woods, 2007; Gu,
Noman, Aoyama, Takaki, & Ishii, 2013; Kelly, Siddiqui,
Bardak, & Woods, 2014; Kokufuta & Maruyama, 2010; Ma,
Najjar, & Roy-Chowdhury, 2014).

Applications of this technique are mostly software-based
sequential solutions with limited parallelism, depending
on the processing capabilities of the processor and the
characteristics of the code executed on it (González &
Woods, 2007). Hardware solutions need some modifications
to improve resource utilization and exploit HW parallelism.
Some histogram calculation architectures for FPGAs use
different variations described in the bibliography, which
allow choosing an adequate tradeoff between resources
consumption and operation frequency (Bailey, 2011; Jamro,
Wielgosz, & Wiatr, 2007; Muller, 1995; Shahbahrami, Hur,
Juurlink, & Wong, 2008).

The present article describes the implementation of a
self-configurable IP module for histogram calculation
that could change its internal architecture using a System
Generator model-based design flow. This module is part
of the image processing toolbox XIL XSGImgLib designed
for the development of computer vision systems using
XSG (Garcés-Socarrás, Sánchez-Solano, Brox Jiménez,
& Cabrera Sarmiento, 2013). First, some theoretical
concepts about image histogram techniques are presented,
analyzing the architectures of the histogram calculation
methods, choosing the most adequate for the selected
design flow. Then, the implementation of a modifiable IP
module by a self-configurable procedure is performed,
comparing and evaluating the resource consumption and
operating frequency for different configurations. Finally,
main conclusions of this work are presented, exposing the
advantages of the implementations of highly configurable
modules, adaptable to different applications.

Images histogram

A histogram represents a variable in a bar graph, where the
height of each bar is proportional to the number of times that

b.

Figure 1. Histogram calculation. a) Image under test (256 × 256 × 8-bits).
b) Histogram graph.
Source: MATLAB® Software.

The integration of Electronic Design Automation (EDA)
tools (Sangiovanni-Vincentelli, 2005) and model-based
development frameworks such as MATLAB®/Simulink®
has motivated the development of new design techniques
for autonomous and modular processing systems,
reducing the global design time. System Generator tool
(XSG), developed by Xilinx, uses a schematic description
to create and parameterize the components of the design,

a.

Model-based iMpleMentation of self-configurable intellectual property Modules for iMage histograM calculation in fpgas

IngenIería e InvestIgacIón vol. 37 n.° 2, august - 2017 (74-81)76

appears each specific value or group of values. For a digital
image, the histogram provides a graphical representation
of the tonal distribution. The histogram function (H(i)) of
a gray scale image is the quantity of pixels (ti) for each
gray level (i) in the image (González & Woods, 2007).
Mathematically, the histogram function (l) is defined as the
summatory of the number of pixels with the same gray level
(l). Each pixel at the coordinates x and y is denoted as f(x,y)
and the image size contains m × n pixels (Bailey, 2011).

 H (i)=
1, f (x, y)= i
0, f (x, y)≠ i

⎧
⎨
⎪⎪

⎩⎪⎪x=0,y=0

m−1,n−1

∑ (1)

The total number of histogram levels (L) can be reduced
by grouping consecutive pixel values in the same interval
(Alsuwailem & Alshebeili, 2005; Jamro et al., 2007). In this
case, the counting of histogram values in (l) is increased

when f x,y()×G / L⎡
⎣⎢

⎤
⎦⎥ = i , being G the new number of

histogram levels. Figure 1 shows an 8-bit gray scale image
and its respective histogram graph. The abscissa (horizontal
axis) of the graph represents the possible gray levels in the
image (L = G =28 =256) while the ordinate (vertical axis)
denotes the quantification for each gray level.

Architectures for histogram calculation

According to its mathematical definition, histogram
calculation requires counting the pixels of each color or
gray level to access this information in the processing step.
Before the quantification process, an initialization stage
is needed because all histogram level records should be
reset to zero before analyzing a new image. Two different
architectures for histogram calculation are applicable for
hardware device implementations, where the base for the
pixel level accumulation is counter blocks (Figure 2a) or
memory blocks (Figure 2b), respectively.

The architecture shown in Figure 2a uses counter blocks to
increase calculation speed and to perform the initialization
stage on a single clock cycle. With the arrival of a new
pixel (f(x,y)) at the histogram calculation block, the
respective level counter (Counteri, where 0 ≤ i ≤ G − 1) is

selected and its value is incremented. Once the image is
fully analyzed, values of the index signal are appropriately
swept so that the count output sequentially provides the
cumulative values for each color or gray level in the image.
This operation requires as many clock cycles as the number
of levels considered in the histogram. At the end of the
processing cycle, a control system activates the clear signal
that simultaneously returns all counters to zero, performing
the initialization stage of the block.

The main problem in this architecture is the use of many
logic resources for the counters array, whose size is equal
to the number of color or gray levels selected for the image
histogram calculation. Also the counters value width is set,
for each counter, to the worst case (when the hole image
only has one color or gray level) which is equal to the
image size (m × n-pixels). The utilization of the schematic
description provided by XSG needs a self-configuration
methodology and a generic architecture, explained in
(Garcés-Socarrás et al., 2016), for the parameterization of
the number of levels for the histogram, meanwhile, the use
of HDL techniques is more common in this task.

The dual-port memory solution, as shown in Figure 2b,
reduces the logic resources consumption, substituting them
by memory blocks, which can be easily parameterized.
When a new pixel (f(x,y)) from the image arrives at the
histogram calculation block, its value is used to address the
corresponding color or gray level cell in the memory. Then,
the accumulated value of the pixel level is obtained by
reading the active memory location using Port 1. This value
is incremented by one and stored at the same memory
location using Port 2. Taking into account the hardware
perspective, a delayed writing operation at Port 2 is needed
because the cumulative value for this pixel level is read by
Port 1 in the next clock cycle, and it needs to be updated
and re-written before a new pixel arrives and another
memory location is selected (Bailey, 2011). Once the
image is completely analyzed, the control system reads all
memory locations for the pixel level accumulation through
Port 1 output, using as many read cycles as color or gray
levels were configured for the histogram calculation, at the
same time the initialization stage of the memory cells is
performed.

a. b.

Figure 2. Architectures for histogram calculation. a) Using counters; b) Using dual-port memories (Bailey, 2011).
Source: Authors

IngenIería e InvestIgacIón vol. 37 n.° 2, august - 2017 (74-81) 77

GARCÉS-SOCARRÁS, ROMERO, CABRERA, SÁNCHEZ-SOLANO, AND BROX

In this architecture, a simultaneous access to the same
memory cell could occur, and then, the value read is not
valid in this clock cycle. E. Jamro presented a solution in
Jamro et al. (2007) where the value of the histogram level
for the pixel under test is active during two clock cycles.
At the first cycle, the operations of memory reading and
the increment of the quantification value are performed
and, at the second cycle, the updated quantification value
is written in the same memory cell. This solution does
not work when the next pixel to analyze has the same
color or gray level as the previous pixel. D. Bailey solved
this problem in (Bailey, 2011) using a comparator block
with two inputs (the previous and the actual pixels); if
the previous and the actual pixels are equals, the read
operation of the accumulation at Port 1 is discarded and
a new update operation is performed to the previous
accumulation value. This solution prevents a read/write
operation in the same memory cell when continuous
pixels have the same color or gray level, which often
occurs in many regions of an image.

Basic histogram calculation architectures use a simple data-
flow of pixels where only one histogram counter module is
needed (HistCell1), as shown in Figure 3a. This architecture
works in two steps. In the first step, the whole image is
analyzed calculating the histogram, for obtaining the results
in the second step. This architecture causes a delay in the
processing flow equal to as many clock cycles as pixels in
the image, obtaining a new histogram every two images.
To solve this issue some authors propose the use of a dual
flow architecture (Figure 3b) with two counter modules
(Gorgon & Tadeusiewicz, 2000; Maggiani, Salvadori,
Petracca, Pagano, & Saletti, 2014). While the first module
is active for histogram calculation (HistCell1), the second
one (HistCell2) delivers the result of the histogram of the
previous image. Once this process is finished the switches
SW1 and SW2 commute positions swapping functions of
the counter modules, generating a continuous data flow.

The development of a modifiable processing block for
simple and dual data-flow requires a self-configurable
methodology where the redistribution of Simulink®
modules in the architecture is possible (Garcés-Socarrás et
al., 2016).

Implementation of histogram calculation IP

Xilinx System Generator is a development tool for the
design and implementation of embedded systems with
basics IP modules and a model-based design technique
that speeds up the elaboration of complex systems. The
tool performs the process of synthesis and implementation
of the design, and the process of configuring the target
device automatically from a Simulink® model. This
development tool was used to design the IP modules of the
image processing toolbox XIL XSGImgLib, which provides
parameterizable blocks for basic image processing tasks
and allows the implementation of advanced DIP technique
over FPGAs (Garcés-Socarrás et al., 2013). The IP module
presented in this article is part of this image processing
toolbox.

IP module for histogram calculation

As mentioned previously, the development of IP modules
for histogram calculation based on counters use several
logic resources. For this reason, the design based on dual-
port memories is the solution selected for implementing
this block. The modifications to the initial architecture
proposed in (Bailey, 2011) are applied to solve read/write
accesses to memory cells at the same time. Also, the use
of simple or dual data-flow architecture is selected in the
configuration of the block, to choose the appropriate data
flow for the final application.

Figure 4a shows the generic architecture of the proposed IP
module for histogram calculation, which is composed by
four main blocks: the histogram controller, two histogram
memories (Hist. DP Memx) and the output multiplexer
(MUX). This architecture, saved in a Simulink® file
(.mdl / slx), is analyzed by a MATLAB® script (.m) saving the
position and orientation of all modules in the architecture
into a MATLAB file (.mat) (Figure 5), making a SW
description of a graphical architecture (Garcés-Socarrás et
al., 2016).

a. b.

Figure 3. Architectures for histogram calculation. a) Simple data-flow. b) Dual data-flow.
Source: Authors

Model-based iMpleMentation of self-configurable intellectual property Modules for iMage histograM calculation in fpgas

IngenIería e InvestIgacIón vol. 37 n.° 2, august - 2017 (74-81)78

b.

a.

Figure 4. Architectures of histogram calculation. a) Histogram calculation IP Block. b) Dual-port histogram module.
Source: Authors

Figure 5. Analysis of a generic architecture.
Source: Authors

When the designer, using the configuration mask of the
processing block (Figure 6), selects a different memory
architecture, a configuration script analyses the structure
of the Simulink® file, detecting which modules have to be
erased and which have to be added, and creates a modified
Simulink® file (MOD File.mdl / slx) using the data previously
stored in MATLAB® workspace (Block.mat).

Figure 6. Modification of an architecture.
Source: Authors

In a simple data-flow (1 − Way), only one histogram memory
module is needed (Hist. DP Mem1), deleting the second
one (Hist. DP Mem2) and the output multiplexer (MUX) by
the configuration script, while, when a dual data-flow is
selected (2 − Way) by the designer those modules are added

IngenIería e InvestIgacIón vol. 37 n.° 2, august - 2017 (74-81) 79

GARCÉS-SOCARRÁS, ROMERO, CABRERA, SÁNCHEZ-SOLANO, AND BROX

automatically into the architecture reducing the processing
delay between images.

The first block (Histogram Controller) receives the input
pixel (pxl), as well as the enable (en) and the initialization
(rst) signals to handle the flow of image pixels into the
module. Once the image is being processed (en = ‘1‘), the
control block classifies the pixels according to the number
of histogram levels chosen by the designer. It generates
the address signal of each pixel (addrsig) for the writing
operation, the counter signal (countsig) for mapping the
histogram levels in the reading operation, and the write
enable signal (wesig) to switch the histogram dual-port
memory blocks operation and commute the histogram
outputs (histxsig). The control block also generates the
validation signal (activesig) to indicate a valid histogram
value, which allows to synchronize other modules in the
image processing system.

Dual-port histogram memory block (Figure 4b) is
composed by a multiplexer (MUX), a dual-port memory,
a pixel analysis unit and an update counter module. The
multiplexer selects the input of the memory from the
address signal (addrsig) or the counter signal (countsig), both
coming from the controller module. When the memory is
set for write operation (wesig = ‘1‘), port A of the memory
is used to obtain the current value of the histogram for the
input pixel (addrsig), and port B to update this value when
the next pixel arrives. The pixel analysis compares the
current (pxl0) and the previous (pxl1) pixels to ensure the
correct delayed writing for continuous pixels values, and
produces a control signal (S) to the update module. This
signal has one clock cycle delay, in order to synchronize
the system with the memory access, and it is high when
the current pixel is equal to the previous one, indicating
that the update module has to reject the value read from
the memory and the update module has to increase the
value of the previous operation. This block redirects the
result (newhist) to port B data input (dinB) to refresh the
previous value.

When the memory is set for reading operation (wesig = ‘0‘),
the memory receives the counter signal (countsig) to sweep
all locations, obtaining the histogram values (storedhist)
from port A. At the same time, the initialization process
of the memory cells is performed, writing a zero value to
each cell.

The configuration mask of the IP is shown in Figure 7,
using basic and advanced parameters. Basic parameters
allow to define the input pixel precision, the image size
and optional control signals to the module, while advanced
parameters configure the memory architecture and the
overflow method used when a pixel is greater than the
pixel precision defined in the basic parameters. The size
of the image under test determines the maximum value
that could be stored in the memory cells, which should be

configured for the worse case (when the images only have
one color or grey level). To reduce the quantity of memory
cells used for the histogram calculation, this IP also allows
the parameterization of the number of levels considered for
the histogram (Level Size) being usually power of 2 factor.

Table 1 shows the resource consumption for this IP
module with different numbers of histogram levels for
simple and dual-flow over a Spartan-6 LX45 FPGA and
a 512×384-pixels image. The first column displays the
resource type and in parenthesis the total available of
each one in the FPGA. Look-up tables (LUTs) and flip-
flops (FFs) consumption are reduced when the levels for
histogram quantification are lower and also when the
architecture changes from dual data-flow to simple data-
flow. The use of memory blocks (BRAM16) is constant for
each data-flow, because the maximum amount of memory
needed for the gray scale image under test is 26-bits
(obtained from the quantity of block cells and the width
of each one for a 512×384-pixels image), which does not
fulfill one memory block that contains 18-kbits per block
(Xilinx, 2010). The operating frequency for the IP module
is 165,262 MHz for the worst case in the dual data-flow,
which allows performing real-time operations over high
definition images. Comparing dual data-flow and simple
data-flow frequencies, dual-memory architecture provides
little increment of the processing speed and also requires
two times more memory. The most important goal of dual-
flow architecture is the continuous output flow that allows
to process video sequences.

a.

b.

Figure 7. Configuration or the histogram calculation IP. a) Basic
parameters; b) Advanced parameters.
Source: Authors

Model-based iMpleMentation of self-configurable intellectual property Modules for iMage histograM calculation in fpgas

IngenIería e InvestIgacIón vol. 37 n.° 2, august - 2017 (74-81)80

Table 1. Resource consumption for Histogram calculation IP
module: analysis of data-flow and histogram levels

Resources Dual flow Simple Flow

XC6SLX45 Full Half Sixteenth Full

FFs (54,576) 92 89 80 61

LUTs (27,288) 141 139 135 85

BRAM16 (116) 2 2 2 1

Frequency (MHz) 171,174 171,174 165,262 167,280

Source: Authors

Conclusions

In this article a modifiable histogram calculation IP module
using System Generator model-based design flow and a
self-configuration procedure are presented, compatible
with XIL XSGImgLib toolbox (available on https://www.
researchgate.net/project/XIL-XSGImgLib-Biblioteca-de-
procesado-de-imagenes-y-videos-para-System-Generator)
for Xilinx FPGAs. This IP allows to speed up the design
process of complex computer vision systems, adjusting the
resource consumption for the application requirements.

Counter-based architectures for histogram calculation
require several logic resources. On the contrary, memory-
based architectures allow the reduction of logic resources,
but several modifications are needed to avoid simultaneous
access at the same memory cells. Dual-flow architecture is
an advantage over simple-flow for video processing because
it provides a continuous output flow, even when it uses two
times more BRAM blocks, and simple-flow architecture is
a better solution for a static image processing. So, a self-
modifiable processing block is a versatile improvement
to adjust the resource consumption according to the
application. The selection of the histogram levels allows
the reduction of the quantity of memory cells used for
the implementation of the histogram calculation block,
with a compromise between the number of levels and the
variations obtained in the processing blocks connected
to this one, like histogram equalization and threshold
calculation. This difference is caused by the grouping of
levels in the histogram calculation that are reflected in the
next processing step.

Acknowledgment

The authors acknowledge the Spanish Agency for
International Development Cooperation (AECID) for
partially funding this work in the projects PCI D/024124/09,
PCI D/030769/10 and PCI A1/039607/11 (http://www.
imse-cnm.csic.es/fortin), as well the CAPES/MES program
with the project 219/2013.

References

Alsuwailem, A. M., & Alshebeili, S. A. (2005). A new approach
for real-time histogram equalization using FPGA. In Inter-
national Symposium on Intelligent Signal Processing and
Communication Systems (pp. 397–400). Hong Kong: IEEE.
http://doi.org/10.1109/ISPACS.2005.1595430

Bailey, D. G. (2011). Design for Embedded Image Pro-
cessing on FPGAs (1st ed.). Solaris South Tower, Sin-
gapore: John Wiley & Sons (Asia) Pte Ltd. http://doi.
org/10.1002/9780470828519

Barranco, F., Díaz, J., Gibaldi, A., Sabatini, S. P., & Ros, E.
(2012). Vector disparity sensor with vergence control for
active vision systems. Sensors, 12, 1771–1799. http://doi.
org/10.3390/s120201771

Blair, C., Robertson, N. M., & Hume, D. (2013). Characteri-
zing a Heterogeneous System for Person Detection in Vi-
deo Using Histograms of Oriented Gradients: Power Versus
Speed Versus Accuracy. IEEE Journal on Emerging and Se-
lected Topics in Circuits and Systems, 3(2), 236–247.

Cho, J. U., Jin, S. H., Pham, X. D., Kim, D., & Jeon, J. W. (2007).
FPGA-Based Real-Time Visual Tracking System Using Adap-
tive Color Histograms. In IEEE International Conference on
Robotics and Biomimetics (pp. 172–177). Sanya, China:
IEEE. http://doi.org/10.1109/ROBIO.2007.4522155

Garcés-Socarrás, L. M., Cabrera Sarmiento, A. J., Sánchez-So-
lano, S., Brox Jiménez, P., Ieno, E., & Pimenta, T. C. (2016).
Modificación automática de arquitecturas de módulos
hardware de procesado de imágenes. Revista de Inge-
niería Electrónica, Automática Y Comunicaciones, XXX-
VII(3/2016), 21–33. Retrieved from http://rielac.cujae.edu.
cu/index.php/rieac/article/view/406

Garcés-Socarrás, L. M., Sánchez-Solano, S., Brox Jiménez, P.,
& Cabrera Sarmiento, A. J. (2013). Library for model-based
design of image processing algorithms on FPGAs. Revista
de La Facultad de Ingeniería Universidad Antioquia, 1(68),
36–47.

González, R. C., & Woods, R. E. (2007). Digital Image Proces-
sing. (M. J. Horton, M. McDonald, A. Dworkin, W. Opa-
luch, S. Disanno, & R. Kernan, Eds.) (3rd ed.). Upper Sadd-
le River, New Jersey, USA: Prentice Hall.

Gorgon, M., & Tadeusiewicz, R. (2000). Hardware-based ima-
ge processing library for Virtex FPGA. Reconfigurable Tech-
nology: FPGAs for Computing and Applications II, 4212,
1–10. http://doi.org/10.1117/12.402510

Gu, Q., Noman, A. Al, Aoyama, T., Takaki, T., & Ishii, I. (2013).
A Fast Color Tracking System with Automatic Exposure
Control. In 7th International Conference on Information
and Automation or Sustainability (pp. 1–6). Yinchuan, Chi-
na: IEEE.

Hanumantharaju, M. C., Ravishankar, M., Rameshbabu, D. R.,
& Ramachandran, S. (2011). A novel FPGA implementa-
tion of adaptive color image enhancement based on HSV
color space. In 3rd International Conference on Electronics
Computer Technology (ICECT 2011), Kanyakumari (Vol. 2,
pp. 160–163). Kanyakumari: IEEE. http://doi.org/10.1109/
ICECTECH.2011.5941676

IngenIería e InvestIgacIón vol. 37 n.° 2, august - 2017 (74-81) 81

GARCÉS-SOCARRÁS, ROMERO, CABRERA, SÁNCHEZ-SOLANO, AND BROX

Jamro, E., Wielgosz, M., & Wiatr, K. (2007). FPGA Imple-
mentaton of Strongly Parallel Histogram Equalization. In
IEEE Design and Diagnostics of Electronic Circuits and
Systems (pp. 1–6). Krakow: IEEE. http://doi.org/10.1109/
DDECS.2007.4295260

Kelly, C., Siddiqui, F. M., Bardak, B., & Woods, R. (2014).
Histogram of Oriented Gradients front end processing: an
FPGA Based Processor Approach. In IEEE Workshop on
Signal Processing Systems (pp. 1–6). Belfast: IEEE. http://
doi.org/10.1109/SiPS.2014.6986093

Kokufuta, K., & Maruyama, T. (2010). Real-time processing of
contrast limited adaptive histogram equalization on FPGA.
In 20th International Conference on Field Programmable
Logic and Applications (pp. 155–158). Milano, Italy: IEEE
Computer Society. http://doi.org/10.1109/FPL.2010.37

Ma, X., Najjar, W. A., & Roy-Chowdhury, A. K. (2014). Evalua-
tion and Acceleration of High-Throughput Fixed-Point Ob-
ject Detection on FPGAs. IEEE Transactions on Circuits and
Systems for Video Technology, 25(6), 1051–1062. http://
doi.org/10.1109/TCSVT.2014.2360030

Maggiani, L., Salvadori, C., Petracca, M., Pagano, P., & Sa-
letti, R. (2014). Reconfigurable architecture for computing
histograms in real-time tailored to FPGA-based Smart Ca-
mera. In IEEE 23rd International Symposium on Industrial
Electronics (pp. 1042–1046). Istanbul: IEEE. http://doi.
org/10.1109/ISIE.2014.6864756

Muller, S. (1995). A New Programmable VLSI Architecture for
Histogram and Statistics Computation in Different Win-
dows. In International Conference on Image Processing,
Washington, DC (pp. 73–76). Washington, DC: IEEE. http://
doi.org/10.1109/ICIP.1995.529042

Popinchalk, S. (2008a). Advanced Masking Concepts. Retrie-
ved November 18, 2014, from http://blogs.mathworks.
com/seth/2008/08/05/advanced-masking-concepts/

Popinchalk, S. (2008b). Dynamic Mask Dialogs. Retrieved
November 18, 2014, from http://blogs.mathworks.com/
seth/2008/08/13/dynamic-mask-dialogs/

Popinchalk, S. (2008c). Mask Initialization and Self-Modi-
fying Blocks. Retrieved November 18, 2014, from http://
blogs.mathworks.com/seth/2008/08/21/mask-initializa-
tion-and-self-modifying-blocks/

Pulli, K., Baksheev, A., Kornyakov, K., & Eruhimov, V.
(2012). Real-time computer vision with OpenCV. Com-
munications of the ACM, 55(6), 61–69. http://doi.
org/10.1145/2184319.2184337

Qasim, S. M., Abbasi, S. A., & Almashary, B. A. (2009). An
overview of advanced FPGA architectures for optimized
hardware realization of computation intensive algorithms.
In International Multimedia, Signal Processing and Com-
munication Technologies (pp. 300–303). Aligarh: IEEE.
http://doi.org/10.1109/MSPCT.2009.5164235

Sangiovanni-Vincentelli, A. (2005). The tides of EDA. De-
sign & Test of Computers, IEEE, 20(6), 59–75. Retrieved
from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnum-
ber=1246165

Shahbahrami, A., Hur, J. Y., Juurlink, B., & Wong, S. (2008).
FPGA implementation of parallel histogram computation.
In 2nd HiPEAC Workshop on Reconfigurable Computing
(pp. 63–72). Göteborg, Sweden.

Xilinx. (2010). Spartan-6 FPGA Block RAM. Datasheet: User
Guide. Datasheet, Xilinx Inc.

