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Queries about the largest empty rectangle in large 
2-dimensional datasets stored in secondary memory

Consultas sobre el rectángulo vacío de mayor área en grandes conjuntos 
de datos de dos dimensiones, almacenados en memoria secundaria

Felipe Lara1, Gilberto Gutiérrez2, María Antonieta Soto3, and Antonio Corral4 

ABSTRACT 

-Let S be a set of points located in a rectangle R and q is a point that is not in S.- This article describes the design, implementation, 
and experimentation of different algorithms to solve the following two problems: (i) Maximum Empty Rectangle (MER), which 
consists in finding an empty rectangle with a maximum area contained in R and does not contain any point from S and (ii) Query 
Maximum Empty Rectangle (QMER), which consists in finding the rectangle with the same restrictions given for the MER problem 
but must also contain q. It is assumed that both problems have insufficient main memory to store all the objects in set S. According 
to literature, both problems are very practical in fields such as data mining and Geographic Information Systems (GIS). Specifically, 
the present study proposes two algorithms that assume that S is stored in secondary memory (mainly disk) and that it is impossible to 
store it completely in main memory. The first algorithm solves the QMER problem and consists of decreasing the size of S by using 
dominance areas and then processing the points that are not eliminated using an algorithm proposed by Orlowski (1990). The second 
algorithm solves the MER problem and consists of dividing R into four subrectangles that generate four subsets of similar size; these 
are processed using an algorithm proposed in Edmonds et al. (2003), and finally, the partial solutions are combined to obtain a global 
solution. For the purpose of verifying algorithm efficiency, results are shown for a series of experiments that consider synthetic and 
real data. 

Keywords: Geometric algorithms, spatial databases, geometric problems.

RESUMEN

.Sea S un conjunto de puntos ubicado en un rectángulo R, y q un punto que no está en S.- Este artículo describe el diseño, 
la implementación y experimentación de diferentes algoritmos para resolver los siguientes problemas: (i) MER, que consiste en 
encontrar un rectángulo vacío de máxima área contenido en R y que no contiene un punto de S, y (ii) QMER, que consiste en 
encontrar un rectángulo con las mismas restricciones dadas para el problema MER y que, además, debe contener a q. En ambos 
problemas se asume que no existe suficiente memoria para almacenar todos los objetos del conjunto S. De acuerdo con la literatura, 
ambos problemas son de mucha utilidad práctica, en ámbitos como la minería de datos, sistemas de información geográfica, por 
nombrar algunos. Concretamente, en este trabajo se proponen dos algoritmos que asumen que S se encuentra almacenado en 
memoria secundaria y que no es posible almacenarlo completamente en memoria. El primero resuelve el problema QMER y consiste 
en disminuir el tamaño de  mediante la utilización de zonas de dominancia y luego, mediante un algoritmo propuesto por Orlowski 
(1990), se procesan los puntos no descartados. El segundo, a su vez, resuelve el problema MER y consiste en dividir R en cuatro 
subrectángulos generando cuatro subconjuntos de similar tamaño los que se procesan mediante un algoritmo propuesto en Edmonds 
et al. (2003), combinando finalmente las soluciones parciales para obtener la solución global. Con el objeto de verificar la eficiencia 
de los algoritmos, se muestran los resultados de una serie de experimentos considerando datos sintéticos y reales.

Palabras clave: Algoritmos geométricos, bases de datos espaciales, problemas geométricos.
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Introduction

Computational geometry is an area of mathematics that 
studies and proposes algorithmic solutions to geometric 
problems. It is a relatively new area and the first results date 
back to the 80s. Let S1 and S2 be two point sets located in 
regions R1 ⊆ Rd  (typically d = 2) and R2 ⊆ Rd , respectively. 
Some of the problems studied with computational geometry 
are (i) finding the convex hull of S1, (ii) given a point q not 
belonging to S1 and a parameter k > 0, finding the k-points 
of S1 nearest to q, (iii) given a parameter k > 0, finding the 
k pairs of points (one from S1 and the other from S2) whose 
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distances (Euclidean distance) are the shortest among all 
possible pairs that can be formed, and  (iv) given a point q not 
belonging to S1, fi nding the empty rectangle with the largest 
area included in R1. The usefulness of algorithmic solutions 
for these problems is well established in the literature. 
The solutions to geometric problems from the perspective 
of computational geometry suppose that it is possible to 
store all the objects in the main memory of a computer. 
However, with the incidence of large spatial datasets, it 
has become necessary to extend or create solutions that 
assume data are found in multidimensional data structures 
residing in secondary memory (mainly disk). In this context, 
the operations that predominate or determine the effi ciency 
of an algorithm are related to input/output operations or 
access to disk blocks, whose runtime is very expensive. 
Currently, solutions exist for some of the above-mentioned 
problems. Böhm and Kriegel (2001) propose an algorithm 
that solves problem (i); Roussopoulos, Kelley and Vincent 
(1995) describe an algorithm for p roblem (ii); Corral, 
M anolopoulos, Theodoridis, and Vassilakopoulos (2004, 
2006) propose several algorithms to solve problem (iii), and 
Gutiérrez and Paramá (2012) provide solutions for a variant 
of problem (iv). This article proposes two algorithms to 
solve problem (iv), which will be referred to as QMER and 
an algorithm to solve a variant of problem (iv) proposed by 
Edmonds et al. (2003), which will be referred to as MER.

(GIS); for example, you want to build a park in a region 
and have the georeferenced landmarks (buildings, houses, 
streetlights, etc.). It can be interesting to solve effi ciently the 
queries as to (1) identifying the largest area of the empty 
area in which to build the park or (2) fi nding the largest free 
space (rectangular-shaped) around a point where you wish 
to build the park. It should be noted that problem (1) can 
be modeled as a MER problem and problem (2) as QMER. 

The rest of this article is organized as follows: Section 2 
includes a literature review (related work) describing the 
principal algorithms available for both problems from the 
computational geometry point of view, as well as from the 
spatial databases (large volumes of data). Sections 3 and 
4 show the detailed design and implementation of the 
qMER and MER algorithms, respectively, along with their 
complexity analyses and experimental results. Finally, the 
conclusions and future work are described in Section 5.

Related work

This section reviews the main algorithms proposed in 
the literature for MER and QMER problems. Firstly, we 
analyze the proposed solutions for each problem from the 
standpoint of computational geometry; that is, we assume 
that the point set can be fi tted in main memory. We then 
discuss proposals where points are stored in secondary 
memory and do not fi t in main memory.

The MER problem was initially established from 
computational geometry by supposing that all points fi t in 
the main memory. Under this scenario, the MER problem 
has been extensively studied. The fi rst known study was 
by Naamad, Lee, and Hsu (1984), who described two 
algorithms that consider points as being randomly located 
within space. The fi rst algorithm needs points to be ordered 
and compared one with the other. It run in O(n2) time and it 
needs O(n) storage. The second one has an expected-time 
complexity O ( n ( log2 n ) ) and O (n) storage; it reads the 
unordered points and stores them in a semi-dynamic heap. 
(From this point on, logn is considered as log2

 n). Chazelle, 
Drysdale, and Lee (1986) propose a divide and conquer 
style algorithm with time O (nlog3 n) using O (nlog n) 
storage. Aggarwal and Suri (1987), who used O (nlog3 n) 
time and O (n) storage, discussed an algorithm with similar 
complexity. Orlowski (1990) demonstrates an algorithm 
that uses time O(slog n) where s is the number of maximum 
empty rectangles. His algorithm creates rectangles using two 
points as vertices and extends them toward the sides until 
an MER is formed. The time complexity of this algorithm is 
O (nlog  n + s). In a more recent study, De and Nandy (2011) 
propose an algorithm with O(n log2 n + s) time and O (log n) 
storage using a priority search tree. Other studies also focus 
on solving the MER problem in three dimensions. In this 
case, the algorithm computes maximum empty cubes; 
Nandy and Bhattacharya (1998) and De and Nandy (2011) 
proposed algorithms to solve this problem.

Figure 1. MER and QMER problems.
Source: Gutiérrez et al. (2014)

The MER and QMER problems are formally defi ned below. 
Let S be a fi nite point set of size n located in a rectangle
R ⊆ Rd (typically d = 2) whose sides are parallel to the 
plane axes, and let q be a point such that q ∉S  According 
to Naamad, Lee, and Hsu (1984), a rectangle M is said to 
be a restricted rectangle if it satisfi es the following three 
conditions. (1) M is completely contained in R, (2) M does 
not contain points from S in its interior, and (3) each arc 
of M contains a point S or coincides with the arc of R. The 
MER problem (Figure 1a) consists of fi nding the rectangle 
M with the largest area. On the other hand, rectangle M 
must also contain point q in the QMER problem (Figure 1b). 
Thus, the QMER problem consists of fi nding the rectangle 
M with the largest area and contains q.

Applications: The MER problem could be applied as follows. 
Let us suppose that a steel sheet with small regions has 
imperfections or fl aws and we are interested in obtaining 
fl awless regions on the sheet. Other applications can be 
found in the context of geographic information systems 
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Augustine et al. (2010a, 2010b) suggest an algorithm to 
solve the qMER problem. This algorithm pre-processes 
the points where space is divided into a set of cells so that 
all the points falling into the same cell produce the same 
maximum empty rectangle that contains query point q. 
These cells are stored in main memory and organized in a 
two-dimensional data structure called range tree. The pre-
processing stage uses O (n log2 n) storage and O (n2) time. 
Additional O (log n) time is needed to extract the response. 
Kaplan, Mozes, Nussbaum, and Sharir (2012) suggest 
another approach that signifi cantly improves the pre-
processing time as compared to Augustine (2010a, 2010b). 
More specifi cally, O(nα (n) log3n) storage space is required 
by this algorithm to maintain the data structure being used 
(segment tree) and O(nα (n) log4n) time to construct it, 
where a is the inverse of Ackermann’s function. 

All the previously discussed algorithms consider that the 
objects can be stored in main memory. More recently, 
Gutiérrez et al. (2012) and Gutiérrez et al. (2014) propose 
algorithms to solve the QMER problem; these consider the 
limitations of main memory and assume that the objects 
reside in secondary memory in a multidimensional R-tree 
data structure. These algorithms increase R-tree abilities. 
It is clear that they are inadequate when objects are not 
stored in an R-tree because the construction process of 
this structure is time-consuming. However, under many 
scenarios the considered objects do not fi t in main memory 
and are stored in a raw fi le. Edmonds et al. (2003) propose 
an algorithm to obtain maximum empty rectangles (MER 
problem) in an area made up of large datasets; this algorithm 
requires O (|X| × |Y|) time and O (|X|) storage with |X| being 
the number of different values in the X-axis and |Y| all the 
different values found in the Y-axis. 

qMER algorithm 

Our fi rst algorithm, called qMER, solves the QMER problem. 
The qMER algorithm takes the advantage of the dominance 
relationship of the points in S compared to the query point 
q (see Figure 2). 

by point p1 and the extreme upper right point of R. The 
dominance areas for the other quadrants are defi ned in a 
similar manner.

Figure 2. Dominance areas.
Source: Authors

Figure 2 shows that point q divides rectangle R into four 
quadrants: Upper Left (UL), Upper Right (UR), Bottom Left 
(BL), and Bottom Right (BR). The dominance area of a given 
point p compared to a given point q is defi ned as the area 
formed by the rectangle defi ned by p and the point in the 
corner of R opposite p within the quadrant. For example, 
viewing the UR quadrant in Figure 2, the dominance 
area of p1 (hatched area) is given by the rectangle defi ned 

Algorithm 1: qMER algorithm to solve the QMER problem 
Source: Authors

Our algorithm uses these dominance areas as elimination 
areas to obtain set S´⊆ S  whose size is smaller than S (we 
assume that S´  is suffi ciently small to be located in the main 
memory), and solve the qMER problem by a computational 
geometry algorithm with set S´  as input. The idea behind 
our algorithm (see Algorithm 1) is to obtain dominance 
areas in stage 1, which cover an area as near as possible 
to area R to reduce the size of S in stage 2. To accomplish 
this, the k-neighbors nearest  to q in accordance with the 
Euclidean distance  (Algorithm 1, line 5) are obtained for 
each quadrant; these nearest points defi ne the dominance 
areas for each quadrant (line 6) (see Figure 3). Each point 
is verifi ed to see if it intersects some dominance area of 
its corresponding quadrant. If such is the case, the point is 
eliminated; otherwise, it is added to set  S´. Finally (stage 
3), in line 14 of Algorithm 1, set S´  is processed using an 
adaptation of Orlowski’s algorithm (Orlowski, 1990), which 
is, according to the literature, one of the most effi cient 
algorithms to solve the MER problem. 

The main contribution of qMER consists in reducing the 
size of S, (stages 1 and 2). The size can be infl uenced by 
adjusting the value of k. In spite of this, and according to 
the distribution of S, it could occur that qMER does not 
discard points, for example, if all points are dominant. In 
such scenarios, the QMER problem can be solved using an 
algorithm for secondary memory, such as qAREMAV, which 
is an adaptation of the algorithm proposed by Edmonds et 
al. (2003).

Time complexity: It was previously demonstrated that 
the qMER algorithm can be separated into three phases: 
(i) fi nding the k points nearest to q for each quadrant, (ii) 
examining the points once again and eliminating all points 
dominated by the nearest k-neighbors in each quadrant, and 
(iii) solving the qMER problem with Orlowski’s algorithm 
with an input set consisting of all the points that have not been 
dominated. The complexity of phase (i) is O (nlog k) = O (n) 
because k is a constant, phase (ii) is O (nk) = O (n), and phase 
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(iii) is O (nlog n + s), where sis the number of maximum 
empty rectangles. Therefore, the complexity of qMER is 
O (n) + O (n) + O (nlog n + s) = O (nlog n + s).

Having already defi ned an adequate k for qMER, it can 
be compared with the qAREMAV algorithm. Results are 
displayed in Figure 4, where it can be seen that qMER 
outperforms qAREMAV by several orders the magnitude. 
This favorable difference for qMER is achieved by reducing 
the size of the original set in stages 1 and 2, which can be 
performed in O (n) by allowing an important reduction in 
the value of n and therefore in the value of s in the global 
time complexity O (nlong n + s) of the qMER algorithm.

MER algorithm 
In this section, we explain our second algorithm, called 
MER, which solves the MER problem. Our algorithm is 
based on the AREMAV algorithm presented by Edmonds et 
al. (2003). The latter algorithm showed low performance 
when point set S has low density.

Edmonds et al. (2003) defi ne density as D = T
X ∗ y

 where 

|T| is the number of points, |X| and |Y| are the number of 
values that differ from the X and Y coordinates of the point 
set, respectively.

For example, if we take into account the 17 points in Figure 

5, we obtainD = 17
17∗17

≈ 5,9%  assuming that no points 

exist that share a coordinate. A property of this metric is 
that to the extent that the value of D decreases, the number 
of points sharing a coordinate also decreases.

The MER algorithm attempts to complement the AREMAV 
algorithm by improving runtime in lower density point sets, 
which are more frequent in a wide range of real-world 
applications. The decision as to which algorithm to use can 
be established based on point set density, which can be 
obtained in linear time because the set is ordered. The idea 
behind the MER algorithm is to divide the original point set 
into point subsets of approximately the same size. Each one 
of these subsets is then solved with AREMAV and solutions 
are combined to obtain the fi nal result.

The MER algorithm (Algorithm 2) is characterized by 
dividing the original R space into four subsets (UL, UR, BL, 
and BR as previously observed in the qMER algorithm) (see 
Figure 5) (Algorithm 2, line 2). This separation is undertaken 
to decrease the number of points to be analyzed. There is 
also an attempt to include a similar number of points in 
each subset because this will make the algorithm faster. 

The point set division was performed with a data structure 
suggested by Blott and Weber (1997), called VA-fi le (Vector 
approximation fi le). The idea behind the VA-fi le is to divide 
the space (usually d-dimensional, 2-dimensional for this 
algorithm) into 2b cells. Given that four subsets are being 
used, b = 2 (Figure 5).

When obtaining the R divisions, it will be necessary to read 
all the points in the original set and determine which division 

Figure 3. “k-neighbors” algorithm with k = 2.
Source: Authors

Experiments: We evaluate the performance of qMER 
through a series of experiments and compare it with a base 
algorithm called qAREMAV, which is a direct adaptation of 
the algorithm proposed by Edmonds et al. (2003) to solve 
the QMER problem. The qAREMAV and qMER algorithms 
were implemented with the Java programming language. 
Synthetic point sets between 10,000 and 50,000,000 
points with uniform spatial distribution [0, 1] × [0, 1] were 
considered. Different values for parameter k (1, 5, 10, 15, 
20, 50, and 100) were studied. Algorithm runtime (elapsed 
time) in the experiments was measured and, in the case 
of qMER, the fi ltering percentage, which is related to the 
percentage of points that were not eliminated, was also 
measured. The experiments were conducted in a machine 
with a 4-core processor with 3.092 MHz and 8GB RAM.

In the fi rst experiment, we studied the effect of k on the 
size of set S´  and the fi ltering time in qMER. Different 
values for k were studied by examining 10 million points. 
Results showed that as k increases, runtime tends to 
remain relatively stable, and this occurs from  k = 10 at 
approximately 22 seconds. This k value was used for the 
rest of the experiments. When the qMER performance ratio 
(stages 1 and 2), in terms of k, increases, the time spent 
calculating the k-neighbors is an inconvenient compared 
to the benefi t obtained, that is, by reducing the size of S´ . 
Letting k be constant always helps to achieve a signifi cant 
reduction of the original set without increasing runtime.

Figure 4. Runtime comparison of algorithms.
Source: Authors
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they intersect (Algorithm 2, line 3). The four point subsets 
will thus be created (Figure 5). Once the points belonging 
to each subset are defi ned, the AREMAV algorithm is used 
for each subset (Algorithm 2, lines 5 and 6). The rectangles 
generated by AREMAV (Figure 6a) can be of different types 
grouped as follows: rectangles that are generated within the 
subset: Rectangles that cannot continue growing (Figure 
6a, MER1), rectangles that are generated on the bottom 
edge: Rectangles that could continue growing downward 
(see Figure 6a, MER2), and rectangles that are generated on 
the right edge: Rectangles that could grow toward the right 
(see Figure 6a, MER3).

t is useful to know which type of rectangle is generated when 
analyzing the neighbor subset. For example, in the case of 
analyzing the UL subset, rectangles that have an edge on the 
right side will be brought to subset UR and the rectangles that 
have their bottom edge in subset UL will be brought to subset 
BL (Algorithm 2, line 9). If subset UR is being analyzed, only 
the rectangles that are generated on the bottom edge of the 
UR subset will be taken and brought to subset BR (Algorithm 
2, line 13). In the case of subset BL, only the rectangles that 
are generated on the right edge will be taken and be brought 
to subset BR (Algorithm 2, line 16). 

Analyzing subset BR will generate the maximum empty 
rectangles typical of the subset together with the last 
maximum empty rectangles that could not be “closed” 
in the previous subsets; all the rectangles obtained are 
therefore compared with the largest previous maximum 
empty rectangle. The rectangle with the largest area will be 
the solution. For the set in Figure 5, the solution is obtained 
from the BL subset (Figure 6b).

Figure 5. Division of original set of four subsets using VA-fi les with 
d =2 and b =2.
Source: Authors

Figure 6. a) Possible MER of SI subset. b) MER of initial set. 
Source: Authors

Time complexity: The execution of the MER algorithm 
includes four different steps, (i) taking a sample of size 
k ≤ n  of S, (ii) dividing R in four subregions, (iii) dividing S 
into four subsets with a similar number of points  and (iv) 
using AREMAV in all the subsets to obtain the solution. The 
time complexity of phase (i) is O (n), phase (ii) is O (klog k), 

phase (iii) is O (n), and phase (iv) is O = 1xn x ynn

4∑( ) . 

Therefore, the time complexity of MER is

O (n) + O (klog k) + O (n) + O = 1xn x ynn

4∑( ) =O X x Y( )

Experiments :This section displays a series of experiments 
that compare the MER and AREMAV algorithms. Algorithm 
runtime (elapsed time) in the experiments was measured. The 
machine used for these experiments was the same one as for 
the qMER algorithm experiments.  The MER and AREMAV 
algorithms are sensitive to point set density. Experiments 
were conducted with real and synthetic point sets. Within 
the synthetic point sets, the following distributions were 
used:  Uniform Distribution: set size ranges from 500,000 
to 10,000,000 points and density varies between 10% 
and 20%. These point sets were constructed according to 
Edmonds et al. (2003) where point sets are |X| = 1000; Zipf 
Distribution: sets have 125,000 and 250,000 tuples and 5% 
density; and Cluster Distribution: sets have 125,000 and 
250,000 tuples and 1 % density.

The real data correspond to points in North America3. The 
density of these sets is approximately zero.

The experiments measure how different types of distributions 
and densities infl uence runtime of the AREMAV and MER 
algorithms.

Algorithm 2: MER algorithm
Source: Authors

a. b.

3  Avalaible in: http://spatialhadoop.cs.umn.edu/datasets.html
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Density in different algorithms. This fi rst experiment 
was conducted to show the effect of density in the two 
algorithms using a set of 200,000 points with uniform 
distribution and density of ≈ 0 %, 1 %, 5 %, 10 %, 15 %, and 
20 %. It can therefore be experimentally demonstrated that 
it is better to use the MER algorithm for low-density sets and 
the AREMAV algorithm for higher-density sets. Results are 
displayed in Figure 7.

Figure 7. Runtime of MER and AREMAV algorithms with different 
densities and uniform distribution. 
Source: Authors

Figure 7 indicates that the MER algorithm is more effi cient 
than the AREMAV algorithm for runtime when density is 
less than 3%.

Real point set. This experiment shows the behavior of both 
algorithms for real point sets. Results are illustrated in 
Figure 8. For real data, this experiment shows that the MER 
algorithm is more effi cient than the AREMAV algorithm 
for runtime. The MER algorithm outperforms AREMAV 
algorithm because on average it requires 28% of the time 
needed by AREMAV (Figure 8). This higher performance is 
because the MER algorithm signifi cantly reduces the size of 
|X| and |Y| when separating the point sets in subsets. 

Cluster distribution. The cluster distribution with 5 % 
density was used for this experiment because for this type 
of distribution the points are grouped in different clusters 
in the plane where there is higher density in the center of 
the clusters and lower density as they move away from the 
center. Results are illustrated in Figure 9. It can be observed 
that the MER algorithm has better runtime than the 
AREMAV algorithm. On the other hand, the performance of 
the AREMAV algorithm has improved quite a bit compared 
to the previous case.

Zipf distribution. Density decreased in this experiment and 
the type of distribution was Zipf with 5 % density where 
points are grouped close to the origin and dispersed as 
they move away. Figure 10 shows that the MER algorithm is 
somewhat better than the AREMAV algorithm, but the latter 
reaches runtimes very similar to those of the MER algorithm 
because of high density. 

Figure 8. Runtime (seconds) of MER and AREMAV algorithms on real 
datasets. 
Source: Authors

Figure 9. Runtime of MER and AREMAV algorithms on sets with 
cluster distribution and 5 % density.
Source: Authors

Uniform distribution. The last experiment compares 
both algorithms under the scenario where the AREMAV 
algorithm is at an advantage as explained by Edmonds 
et al. (2003) and demonstrated by Lara (2014) because 
performance is better when density is higher between 
points.  Data are plotted in Figure 11. Both algorithms 
have similar behaviors, but the MER algorithm is not 
more effi cient than the AREMAV algorithm for runtime. 
Although the MER algorithm uses the AREMAV algorithm 
to obtain the maximum empty rectangles, it also uses 
many disk accesses, thus increasing runtime. Therefore, 
in accordance with the experimental results obtained 
under the different scenarios, it can be stated that the 
MER algorithm is a complement to the AREMAV algorithm 
because it allows solving problems under very unfavorable 
scenarios for the AREMAV algorithm (low-density sets). As 
a general conclusion is that the use of a heuristic based on 
set density can therefore be designed to decide which one 
of the two algorithms to be used. 
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behaviors demonstrate that the MER and AREMAV algorithms 
are complementary. There are currently many applications 
requiring real low-density point sets; using the MER algorithm 
is therefore a better alternative under this scenario.

Future work will be focused on optimizing the manner 
in which the MER algorithm fi nds the maximum empty 
rectangle. This could be done by recursively creating more 
quadrants until the contained points can be stored in main 
memory and, in this way, use an algorithm in these subsets 
that works in main memory and later join the solutions. 
In addition, we plan to design algorithms that solve the 
QMER and MER problems by considering rectangles with 
arbitrary orientation and taking into account main memory 
limitations.
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