
IngenIería e InvestIgacIón vol. 37 n.° 3, december - 2017 (133-140)

133

Queries about the largest empty rectangle in large
2-dimensional datasets stored in secondary memory

Consultas sobre el rectángulo vacío de mayor área en grandes conjuntos
de datos de dos dimensiones, almacenados en memoria secundaria

Felipe Lara1, Gilberto Gutiérrez2, María Antonieta Soto3, and Antonio Corral4

ABSTRACT

-Let S be a set of points located in a rectangle R and q is a point that is not in S.- This article describes the design, implementation,
and experimentation of different algorithms to solve the following two problems: (i) Maximum Empty Rectangle (MER), which
consists in finding an empty rectangle with a maximum area contained in R and does not contain any point from S and (ii) Query
Maximum Empty Rectangle (QMER), which consists in finding the rectangle with the same restrictions given for the MER problem
but must also contain q. It is assumed that both problems have insufficient main memory to store all the objects in set S. According
to literature, both problems are very practical in fields such as data mining and Geographic Information Systems (GIS). Specifically,
the present study proposes two algorithms that assume that S is stored in secondary memory (mainly disk) and that it is impossible to
store it completely in main memory. The first algorithm solves the QMER problem and consists of decreasing the size of S by using
dominance areas and then processing the points that are not eliminated using an algorithm proposed by Orlowski (1990). The second
algorithm solves the MER problem and consists of dividing R into four subrectangles that generate four subsets of similar size; these
are processed using an algorithm proposed in Edmonds et al. (2003), and finally, the partial solutions are combined to obtain a global
solution. For the purpose of verifying algorithm efficiency, results are shown for a series of experiments that consider synthetic and
real data.

Keywords: Geometric algorithms, spatial databases, geometric problems.

RESUMEN

.Sea S un conjunto de puntos ubicado en un rectángulo R, y q un punto que no está en S.- Este artículo describe el diseño,
la implementación y experimentación de diferentes algoritmos para resolver los siguientes problemas: (i) MER, que consiste en
encontrar un rectángulo vacío de máxima área contenido en R y que no contiene un punto de S, y (ii) QMER, que consiste en
encontrar un rectángulo con las mismas restricciones dadas para el problema MER y que, además, debe contener a q. En ambos
problemas se asume que no existe suficiente memoria para almacenar todos los objetos del conjunto S. De acuerdo con la literatura,
ambos problemas son de mucha utilidad práctica, en ámbitos como la minería de datos, sistemas de información geográfica, por
nombrar algunos. Concretamente, en este trabajo se proponen dos algoritmos que asumen que S se encuentra almacenado en
memoria secundaria y que no es posible almacenarlo completamente en memoria. El primero resuelve el problema QMER y consiste
en disminuir el tamaño de mediante la utilización de zonas de dominancia y luego, mediante un algoritmo propuesto por Orlowski
(1990), se procesan los puntos no descartados. El segundo, a su vez, resuelve el problema MER y consiste en dividir R en cuatro
subrectángulos generando cuatro subconjuntos de similar tamaño los que se procesan mediante un algoritmo propuesto en Edmonds
et al. (2003), combinando finalmente las soluciones parciales para obtener la solución global. Con el objeto de verificar la eficiencia
de los algoritmos, se muestran los resultados de una serie de experimentos considerando datos sintéticos y reales.

Palabras clave: Algoritmos geométricos, bases de datos espaciales, problemas geométricos.

Received: September 28th 2016
Accepted: August 8th 2017

DOI: http://dx.doi.org/10.15446/ing.investig.v37n3.60339

1 Universidad del Bío-Bío, Chile. E-mail: fellara@alumnos.ubiobio.cl
2,3 Department of Computing and IT, Universidad del Bío-Bío, Chile.

E-mail: {ggutierr, msoto} @ubiobio.cl
4 Universidad de Almería, Spain. E-mail: acorral@ualmeria.es

How to cite: Lara, F., Gutiérrez, G., Soto, M.A., Corral, A. (2017). Queries
about the largest empty rectangle in large 2-dimensional datasets stored in
secondary memory. Ingeniería e Investigación, 37(3), 133-140.
DOI: 10.15446/ing.investig.v37n3.60339

Attribution 4.0 International (CC BY 4.0) Share - Adapt

Introduction

Computational geometry is an area of mathematics that
studies and proposes algorithmic solutions to geometric
problems. It is a relatively new area and the first results date
back to the 80s. Let S1 and S2 be two point sets located in
regions R1 ⊆ Rd (typically d = 2) and R2 ⊆ Rd , respectively.
Some of the problems studied with computational geometry
are (i) finding the convex hull of S1, (ii) given a point q not
belonging to S1 and a parameter k > 0, finding the k-points
of S1 nearest to q, (iii) given a parameter k > 0, finding the
k pairs of points (one from S1 and the other from S2) whose

QUERIES ABOUT THE LARGEST EMPTY RECTANGLE IN LARGE 2-DIMENSIONAL DATASETS STORED IN SECONDARY MEMORY

INGENIERÍA E INVESTIGACIÓN VOL. 37 N.° 3, DECEMBER - 2017 (133-140)134

distances (Euclidean distance) are the shortest among all
possible pairs that can be formed, and (iv) given a point q not
belonging to S1, fi nding the empty rectangle with the largest
area included in R1. The usefulness of algorithmic solutions
for these problems is well established in the literature.
The solutions to geometric problems from the perspective
of computational geometry suppose that it is possible to
store all the objects in the main memory of a computer.
However, with the incidence of large spatial datasets, it
has become necessary to extend or create solutions that
assume data are found in multidimensional data structures
residing in secondary memory (mainly disk). In this context,
the operations that predominate or determine the effi ciency
of an algorithm are related to input/output operations or
access to disk blocks, whose runtime is very expensive.
Currently, solutions exist for some of the above-mentioned
problems. Böhm and Kriegel (2001) propose an algorithm
that solves problem (i); Roussopoulos, Kelley and Vincent
(1995) describe an algorithm for p roblem (ii); Corral,
M anolopoulos, Theodoridis, and Vassilakopoulos (2004,
2006) propose several algorithms to solve problem (iii), and
Gutiérrez and Paramá (2012) provide solutions for a variant
of problem (iv). This article proposes two algorithms to
solve problem (iv), which will be referred to as QMER and
an algorithm to solve a variant of problem (iv) proposed by
Edmonds et al. (2003), which will be referred to as MER.

(GIS); for example, you want to build a park in a region
and have the georeferenced landmarks (buildings, houses,
streetlights, etc.). It can be interesting to solve effi ciently the
queries as to (1) identifying the largest area of the empty
area in which to build the park or (2) fi nding the largest free
space (rectangular-shaped) around a point where you wish
to build the park. It should be noted that problem (1) can
be modeled as a MER problem and problem (2) as QMER.

The rest of this article is organized as follows: Section 2
includes a literature review (related work) describing the
principal algorithms available for both problems from the
computational geometry point of view, as well as from the
spatial databases (large volumes of data). Sections 3 and
4 show the detailed design and implementation of the
qMER and MER algorithms, respectively, along with their
complexity analyses and experimental results. Finally, the
conclusions and future work are described in Section 5.

Related work

This section reviews the main algorithms proposed in
the literature for MER and QMER problems. Firstly, we
analyze the proposed solutions for each problem from the
standpoint of computational geometry; that is, we assume
that the point set can be fi tted in main memory. We then
discuss proposals where points are stored in secondary
memory and do not fi t in main memory.

The MER problem was initially established from
computational geometry by supposing that all points fi t in
the main memory. Under this scenario, the MER problem
has been extensively studied. The fi rst known study was
by Naamad, Lee, and Hsu (1984), who described two
algorithms that consider points as being randomly located
within space. The fi rst algorithm needs points to be ordered
and compared one with the other. It run in O(n2) time and it
needs O(n) storage. The second one has an expected-time
complexity O (n (log2 n)) and O (n) storage; it reads the
unordered points and stores them in a semi-dynamic heap.
(From this point on, logn is considered as log2

 n). Chazelle,
Drysdale, and Lee (1986) propose a divide and conquer
style algorithm with time O (nlog3 n) using O (nlog n)
storage. Aggarwal and Suri (1987), who used O (nlog3 n)
time and O (n) storage, discussed an algorithm with similar
complexity. Orlowski (1990) demonstrates an algorithm
that uses time O(slog n) where s is the number of maximum
empty rectangles. His algorithm creates rectangles using two
points as vertices and extends them toward the sides until
an MER is formed. The time complexity of this algorithm is
O (nlog n + s). In a more recent study, De and Nandy (2011)
propose an algorithm with O(n log2 n + s) time and O (log n)
storage using a priority search tree. Other studies also focus
on solving the MER problem in three dimensions. In this
case, the algorithm computes maximum empty cubes;
Nandy and Bhattacharya (1998) and De and Nandy (2011)
proposed algorithms to solve this problem.

Figure 1. MER and QMER problems.
Source: Gutiérrez et al. (2014)

The MER and QMER problems are formally defi ned below.
Let S be a fi nite point set of size n located in a rectangle
R ⊆ Rd (typically d = 2) whose sides are parallel to the
plane axes, and let q be a point such that q ∉S According
to Naamad, Lee, and Hsu (1984), a rectangle M is said to
be a restricted rectangle if it satisfi es the following three
conditions. (1) M is completely contained in R, (2) M does
not contain points from S in its interior, and (3) each arc
of M contains a point S or coincides with the arc of R. The
MER problem (Figure 1a) consists of fi nding the rectangle
M with the largest area. On the other hand, rectangle M
must also contain point q in the QMER problem (Figure 1b).
Thus, the QMER problem consists of fi nding the rectangle
M with the largest area and contains q.

Applications: The MER problem could be applied as follows.
Let us suppose that a steel sheet with small regions has
imperfections or fl aws and we are interested in obtaining
fl awless regions on the sheet. Other applications can be
found in the context of geographic information systems

INGENIERÍA E INVESTIGACIÓN VOL. 37 N.° 3, DECEMBER - 2017 (133-140) 135

LARA, GUTIÉRREZ, SOTO, AND CORRAL

Augustine et al. (2010a, 2010b) suggest an algorithm to
solve the qMER problem. This algorithm pre-processes
the points where space is divided into a set of cells so that
all the points falling into the same cell produce the same
maximum empty rectangle that contains query point q.
These cells are stored in main memory and organized in a
two-dimensional data structure called range tree. The pre-
processing stage uses O (n log2 n) storage and O (n2) time.
Additional O (log n) time is needed to extract the response.
Kaplan, Mozes, Nussbaum, and Sharir (2012) suggest
another approach that signifi cantly improves the pre-
processing time as compared to Augustine (2010a, 2010b).
More specifi cally, O(nα (n) log3n) storage space is required
by this algorithm to maintain the data structure being used
(segment tree) and O(nα (n) log4n) time to construct it,
where a is the inverse of Ackermann’s function.

All the previously discussed algorithms consider that the
objects can be stored in main memory. More recently,
Gutiérrez et al. (2012) and Gutiérrez et al. (2014) propose
algorithms to solve the QMER problem; these consider the
limitations of main memory and assume that the objects
reside in secondary memory in a multidimensional R-tree
data structure. These algorithms increase R-tree abilities.
It is clear that they are inadequate when objects are not
stored in an R-tree because the construction process of
this structure is time-consuming. However, under many
scenarios the considered objects do not fi t in main memory
and are stored in a raw fi le. Edmonds et al. (2003) propose
an algorithm to obtain maximum empty rectangles (MER
problem) in an area made up of large datasets; this algorithm
requires O (|X| × |Y|) time and O (|X|) storage with |X| being
the number of different values in the X-axis and |Y| all the
different values found in the Y-axis.

qMER algorithm

Our fi rst algorithm, called qMER, solves the QMER problem.
The qMER algorithm takes the advantage of the dominance
relationship of the points in S compared to the query point
q (see Figure 2).

by point p1 and the extreme upper right point of R. The
dominance areas for the other quadrants are defi ned in a
similar manner.

Figure 2. Dominance areas.
Source: Authors

Figure 2 shows that point q divides rectangle R into four
quadrants: Upper Left (UL), Upper Right (UR), Bottom Left
(BL), and Bottom Right (BR). The dominance area of a given
point p compared to a given point q is defi ned as the area
formed by the rectangle defi ned by p and the point in the
corner of R opposite p within the quadrant. For example,
viewing the UR quadrant in Figure 2, the dominance
area of p1 (hatched area) is given by the rectangle defi ned

Algorithm 1: qMER algorithm to solve the QMER problem
Source: Authors

Our algorithm uses these dominance areas as elimination
areas to obtain set S´⊆ S whose size is smaller than S (we
assume that S´ is suffi ciently small to be located in the main
memory), and solve the qMER problem by a computational
geometry algorithm with set S´ as input. The idea behind
our algorithm (see Algorithm 1) is to obtain dominance
areas in stage 1, which cover an area as near as possible
to area R to reduce the size of S in stage 2. To accomplish
this, the k-neighbors nearest to q in accordance with the
Euclidean distance (Algorithm 1, line 5) are obtained for
each quadrant; these nearest points defi ne the dominance
areas for each quadrant (line 6) (see Figure 3). Each point
is verifi ed to see if it intersects some dominance area of
its corresponding quadrant. If such is the case, the point is
eliminated; otherwise, it is added to set S´. Finally (stage
3), in line 14 of Algorithm 1, set S´ is processed using an
adaptation of Orlowski’s algorithm (Orlowski, 1990), which
is, according to the literature, one of the most effi cient
algorithms to solve the MER problem.

The main contribution of qMER consists in reducing the
size of S, (stages 1 and 2). The size can be infl uenced by
adjusting the value of k. In spite of this, and according to
the distribution of S, it could occur that qMER does not
discard points, for example, if all points are dominant. In
such scenarios, the QMER problem can be solved using an
algorithm for secondary memory, such as qAREMAV, which
is an adaptation of the algorithm proposed by Edmonds et
al. (2003).

Time complexity: It was previously demonstrated that
the qMER algorithm can be separated into three phases:
(i) fi nding the k points nearest to q for each quadrant, (ii)
examining the points once again and eliminating all points
dominated by the nearest k-neighbors in each quadrant, and
(iii) solving the qMER problem with Orlowski’s algorithm
with an input set consisting of all the points that have not been
dominated. The complexity of phase (i) is O (nlog k) = O (n)
because k is a constant, phase (ii) is O (nk) = O (n), and phase

QUERIES ABOUT THE LARGEST EMPTY RECTANGLE IN LARGE 2-DIMENSIONAL DATASETS STORED IN SECONDARY MEMORY

INGENIERÍA E INVESTIGACIÓN VOL. 37 N.° 3, DECEMBER - 2017 (133-140)136

(iii) is O (nlog n + s), where sis the number of maximum
empty rectangles. Therefore, the complexity of qMER is
O (n) + O (n) + O (nlog n + s) = O (nlog n + s).

Having already defi ned an adequate k for qMER, it can
be compared with the qAREMAV algorithm. Results are
displayed in Figure 4, where it can be seen that qMER
outperforms qAREMAV by several orders the magnitude.
This favorable difference for qMER is achieved by reducing
the size of the original set in stages 1 and 2, which can be
performed in O (n) by allowing an important reduction in
the value of n and therefore in the value of s in the global
time complexity O (nlong n + s) of the qMER algorithm.

MER algorithm
In this section, we explain our second algorithm, called
MER, which solves the MER problem. Our algorithm is
based on the AREMAV algorithm presented by Edmonds et
al. (2003). The latter algorithm showed low performance
when point set S has low density.

Edmonds et al. (2003) defi ne density as D = T
X ∗ y

 where

|T| is the number of points, |X| and |Y| are the number of
values that differ from the X and Y coordinates of the point
set, respectively.

For example, if we take into account the 17 points in Figure

5, we obtainD = 17
17∗17

≈ 5,9% assuming that no points

exist that share a coordinate. A property of this metric is
that to the extent that the value of D decreases, the number
of points sharing a coordinate also decreases.

The MER algorithm attempts to complement the AREMAV
algorithm by improving runtime in lower density point sets,
which are more frequent in a wide range of real-world
applications. The decision as to which algorithm to use can
be established based on point set density, which can be
obtained in linear time because the set is ordered. The idea
behind the MER algorithm is to divide the original point set
into point subsets of approximately the same size. Each one
of these subsets is then solved with AREMAV and solutions
are combined to obtain the fi nal result.

The MER algorithm (Algorithm 2) is characterized by
dividing the original R space into four subsets (UL, UR, BL,
and BR as previously observed in the qMER algorithm) (see
Figure 5) (Algorithm 2, line 2). This separation is undertaken
to decrease the number of points to be analyzed. There is
also an attempt to include a similar number of points in
each subset because this will make the algorithm faster.

The point set division was performed with a data structure
suggested by Blott and Weber (1997), called VA-fi le (Vector
approximation fi le). The idea behind the VA-fi le is to divide
the space (usually d-dimensional, 2-dimensional for this
algorithm) into 2b cells. Given that four subsets are being
used, b = 2 (Figure 5).

When obtaining the R divisions, it will be necessary to read
all the points in the original set and determine which division

Figure 3. “k-neighbors” algorithm with k = 2.
Source: Authors

Experiments: We evaluate the performance of qMER
through a series of experiments and compare it with a base
algorithm called qAREMAV, which is a direct adaptation of
the algorithm proposed by Edmonds et al. (2003) to solve
the QMER problem. The qAREMAV and qMER algorithms
were implemented with the Java programming language.
Synthetic point sets between 10,000 and 50,000,000
points with uniform spatial distribution [0, 1] × [0, 1] were
considered. Different values for parameter k (1, 5, 10, 15,
20, 50, and 100) were studied. Algorithm runtime (elapsed
time) in the experiments was measured and, in the case
of qMER, the fi ltering percentage, which is related to the
percentage of points that were not eliminated, was also
measured. The experiments were conducted in a machine
with a 4-core processor with 3.092 MHz and 8GB RAM.

In the fi rst experiment, we studied the effect of k on the
size of set S´ and the fi ltering time in qMER. Different
values for k were studied by examining 10 million points.
Results showed that as k increases, runtime tends to
remain relatively stable, and this occurs from k = 10 at
approximately 22 seconds. This k value was used for the
rest of the experiments. When the qMER performance ratio
(stages 1 and 2), in terms of k, increases, the time spent
calculating the k-neighbors is an inconvenient compared
to the benefi t obtained, that is, by reducing the size of S´ .
Letting k be constant always helps to achieve a signifi cant
reduction of the original set without increasing runtime.

Figure 4. Runtime comparison of algorithms.
Source: Authors

INGENIERÍA E INVESTIGACIÓN VOL. 37 N.° 3, DECEMBER - 2017 (133-140) 137

LARA, GUTIÉRREZ, SOTO, AND CORRAL

they intersect (Algorithm 2, line 3). The four point subsets
will thus be created (Figure 5). Once the points belonging
to each subset are defi ned, the AREMAV algorithm is used
for each subset (Algorithm 2, lines 5 and 6). The rectangles
generated by AREMAV (Figure 6a) can be of different types
grouped as follows: rectangles that are generated within the
subset: Rectangles that cannot continue growing (Figure
6a, MER1), rectangles that are generated on the bottom
edge: Rectangles that could continue growing downward
(see Figure 6a, MER2), and rectangles that are generated on
the right edge: Rectangles that could grow toward the right
(see Figure 6a, MER3).

t is useful to know which type of rectangle is generated when
analyzing the neighbor subset. For example, in the case of
analyzing the UL subset, rectangles that have an edge on the
right side will be brought to subset UR and the rectangles that
have their bottom edge in subset UL will be brought to subset
BL (Algorithm 2, line 9). If subset UR is being analyzed, only
the rectangles that are generated on the bottom edge of the
UR subset will be taken and brought to subset BR (Algorithm
2, line 13). In the case of subset BL, only the rectangles that
are generated on the right edge will be taken and be brought
to subset BR (Algorithm 2, line 16).

Analyzing subset BR will generate the maximum empty
rectangles typical of the subset together with the last
maximum empty rectangles that could not be “closed”
in the previous subsets; all the rectangles obtained are
therefore compared with the largest previous maximum
empty rectangle. The rectangle with the largest area will be
the solution. For the set in Figure 5, the solution is obtained
from the BL subset (Figure 6b).

Figure 5. Division of original set of four subsets using VA-fi les with
d =2 and b =2.
Source: Authors

Figure 6. a) Possible MER of SI subset. b) MER of initial set.
Source: Authors

Time complexity: The execution of the MER algorithm
includes four different steps, (i) taking a sample of size
k ≤ n of S, (ii) dividing R in four subregions, (iii) dividing S
into four subsets with a similar number of points and (iv)
using AREMAV in all the subsets to obtain the solution. The
time complexity of phase (i) is O (n), phase (ii) is O (klog k),

phase (iii) is O (n), and phase (iv) is O = 1xn x ynn

4∑() .

Therefore, the time complexity of MER is

O (n) + O (klog k) + O (n) + O = 1xn x ynn

4∑() =O X x Y()

Experiments :This section displays a series of experiments
that compare the MER and AREMAV algorithms. Algorithm
runtime (elapsed time) in the experiments was measured. The
machine used for these experiments was the same one as for
the qMER algorithm experiments. The MER and AREMAV
algorithms are sensitive to point set density. Experiments
were conducted with real and synthetic point sets. Within
the synthetic point sets, the following distributions were
used: Uniform Distribution: set size ranges from 500,000
to 10,000,000 points and density varies between 10%
and 20%. These point sets were constructed according to
Edmonds et al. (2003) where point sets are |X| = 1000; Zipf
Distribution: sets have 125,000 and 250,000 tuples and 5%
density; and Cluster Distribution: sets have 125,000 and
250,000 tuples and 1 % density.

The real data correspond to points in North America3. The
density of these sets is approximately zero.

The experiments measure how different types of distributions
and densities infl uence runtime of the AREMAV and MER
algorithms.

Algorithm 2: MER algorithm
Source: Authors

a. b.

3 Avalaible in: http://spatialhadoop.cs.umn.edu/datasets.html

QUERIES ABOUT THE LARGEST EMPTY RECTANGLE IN LARGE 2-DIMENSIONAL DATASETS STORED IN SECONDARY MEMORY

INGENIERÍA E INVESTIGACIÓN VOL. 37 N.° 3, DECEMBER - 2017 (133-140)138

Density in different algorithms. This fi rst experiment
was conducted to show the effect of density in the two
algorithms using a set of 200,000 points with uniform
distribution and density of ≈ 0 %, 1 %, 5 %, 10 %, 15 %, and
20 %. It can therefore be experimentally demonstrated that
it is better to use the MER algorithm for low-density sets and
the AREMAV algorithm for higher-density sets. Results are
displayed in Figure 7.

Figure 7. Runtime of MER and AREMAV algorithms with different
densities and uniform distribution.
Source: Authors

Figure 7 indicates that the MER algorithm is more effi cient
than the AREMAV algorithm for runtime when density is
less than 3%.

Real point set. This experiment shows the behavior of both
algorithms for real point sets. Results are illustrated in
Figure 8. For real data, this experiment shows that the MER
algorithm is more effi cient than the AREMAV algorithm
for runtime. The MER algorithm outperforms AREMAV
algorithm because on average it requires 28% of the time
needed by AREMAV (Figure 8). This higher performance is
because the MER algorithm signifi cantly reduces the size of
|X| and |Y| when separating the point sets in subsets.

Cluster distribution. The cluster distribution with 5 %
density was used for this experiment because for this type
of distribution the points are grouped in different clusters
in the plane where there is higher density in the center of
the clusters and lower density as they move away from the
center. Results are illustrated in Figure 9. It can be observed
that the MER algorithm has better runtime than the
AREMAV algorithm. On the other hand, the performance of
the AREMAV algorithm has improved quite a bit compared
to the previous case.

Zipf distribution. Density decreased in this experiment and
the type of distribution was Zipf with 5 % density where
points are grouped close to the origin and dispersed as
they move away. Figure 10 shows that the MER algorithm is
somewhat better than the AREMAV algorithm, but the latter
reaches runtimes very similar to those of the MER algorithm
because of high density.

Figure 8. Runtime (seconds) of MER and AREMAV algorithms on real
datasets.
Source: Authors

Figure 9. Runtime of MER and AREMAV algorithms on sets with
cluster distribution and 5 % density.
Source: Authors

Uniform distribution. The last experiment compares
both algorithms under the scenario where the AREMAV
algorithm is at an advantage as explained by Edmonds
et al. (2003) and demonstrated by Lara (2014) because
performance is better when density is higher between
points. Data are plotted in Figure 11. Both algorithms
have similar behaviors, but the MER algorithm is not
more effi cient than the AREMAV algorithm for runtime.
Although the MER algorithm uses the AREMAV algorithm
to obtain the maximum empty rectangles, it also uses
many disk accesses, thus increasing runtime. Therefore,
in accordance with the experimental results obtained
under the different scenarios, it can be stated that the
MER algorithm is a complement to the AREMAV algorithm
because it allows solving problems under very unfavorable
scenarios for the AREMAV algorithm (low-density sets). As
a general conclusion is that the use of a heuristic based on
set density can therefore be designed to decide which one
of the two algorithms to be used.

INGENIERÍA E INVESTIGACIÓN VOL. 37 N.° 3, DECEMBER - 2017 (133-140) 139

LARA, GUTIÉRREZ, SOTO, AND CORRAL

behaviors demonstrate that the MER and AREMAV algorithms
are complementary. There are currently many applications
requiring real low-density point sets; using the MER algorithm
is therefore a better alternative under this scenario.

Future work will be focused on optimizing the manner
in which the MER algorithm fi nds the maximum empty
rectangle. This could be done by recursively creating more
quadrants until the contained points can be stored in main
memory and, in this way, use an algorithm in these subsets
that works in main memory and later join the solutions.
In addition, we plan to design algorithms that solve the
QMER and MER problems by considering rectangles with
arbitrary orientation and taking into account main memory
limitations.

Acknowledgements: This study was partly fi nanced by the
Universidad del Bío-Bío research groups: “Bases de Datos”
and “Algoritmos y Bases de Datos”. In addition, we received
support from the Universidad del Bío-Bío research projects
DIUBB 142719 3/R and DIUBB 171319 4/R. We are also
grateful to the Asociación Universitaria Iberoamericana
de Postgrado (AUIP), who sponsored the transportation
scholarship to Spain.

References

Aggarwal, A., & Suri, S. (1987, October). Fast algorithms for
computing the largest empty rectangle. In Proceedings of
the third annual symposium on Computational geometry
(pp. 278-290). ACM.

Augustine, J., Das, S., Maheshwari, A., Nandy, S. C., Roy, S., &
Sarvattomananda, S. (2010). Recognizing the largest empty
circle and axis-parallel rectangle in a desired location. arXiv
preprint arXiv:1004.0558.

Augustine, J., Das, S., Maheshwari, A., Nandy, S., Roy, S.,
& Sarvattomananda, S. (2010). Querying for the largest
empty geometric object in a desired location. arXiv preprint
arXiv:1004.0558.

Blott S, Weber R (1997) A simple vector-approximation fi le
for similarity search in high-dimensional vector spaces.
Technical report, Institute of Information Systems, ETH
Zentrum, Zurich, Switzerland

Böhm, C., & Kriegel, H. P. (2001, September). Determining
the convex hull in large multidimensional databases.
In International Conference on Data Warehousing
and Knowledge Discovery (294-306). Springer Berlin
Heidelberg.

Chazelle, B., Drysdale, R. L., & Lee, D. T. (1986). Computing
the largest empty rectangle. SIAM Journal on Computing,
15(1), 300-315.

Corral, A., Manolopoulos, Y., Theodoridis, Y., & Vassilakopoulos,
M. (2004). Algorithms for processing K-closest-pair queries
in spatial databases. Data & Knowledge Engineering, 49(1),
67-104.

Corral, A., Manolopoulos, Y., Theodoridis, Y., &
Vassilakopoulos, M. (2006). Cost models for distance joins
queries using R-trees. Data & Knowledge Engineering,
57(1), 1-36.

Figure 10. Runtime of MER and AREMAV algorithms on sets with Zipf
distribution and 1 % density.
Source: Authors

Figure 11. Runtime (seconds) of MER and AREMAV algorithms on sets
with uniform distribution and 20 % density.
Source: Authors

Conclusions

Two algorithms are presented in this article, one to solve
the QMER (qMER) problem and another for the MER (MER)
problem.

In accordance with experimental results, qMER outperforms
qAREMAV algorithm in several orders of magnitude. This
difference is explained by reducing the size of the original
set, which is achieved in stages 1 and 2, it was reduced on
average by 0.02 %. When comparing our algorithm with
the qAREMAV algorithm, it can be concluded that qMER
is highly advantageous for both memory requirements and
runtime. This allows qMER to solve problems that consider
large point sets that are impossible to store in main memory.

As for MER, the experimental results show the infl uence of
different point set densities. It can be observed that when
the set density is low (less than 3 %), our algorithm requires
approximately, on average, 43 % runtime of the AREMAV
algorithm. On the contrary, it can be observed that when
density is higher, the AREMAV algorithm is approximately,
on average, 50 % faster than the MER algorithm. These

Queries about the largest empty rectangle in large 2-dimensional datasets stored in secondary memory

IngenIería e InvestIgacIón vol. 37 n.° 3, december - 2017 (133-140)140

De, M., & Nandy, S. C. (2011). Inplace algorithm for priority
search tree and its use in computing largest empty axis-
parallel rectangle. arXiv preprint arXiv:1104.3076.

De, M., & Nandy, S. C. (2011). Space-efficient Algorithms for
Empty Space Recognition among a Point Set in 2D and 3D.
In CCCG.

Edmonds, J., Gryz, J., Liang, D., & Miller, R. J. (2003). Mining
for empty spaces in large data sets. Theoretical Computer
Science, 296(3), 435-452.

Gutiérrez, G., & Paramá, J. R. (2012, June). Finding the largest
empty rectangle containing only a query point in large
multidimensional databases. In International Conference
on Scientific and Statistical Database Management
(pp. 316-333). Springer Berlin Heidelberg.

Gutiérrez, G., Paramá, J. R., Brisaboa, N., & Corral, A. (2014).
The largest empty rectangle containing only a query object
in Spatial Databases. GeoInformatica, 18(2), 193-228.

Guttman, A. (1984). R-trees: a dynamic index structure for
spatial searching, 14(2), 47-57. ACM.

Kaplan, H., Mozes, S., Nussbaum, Y., & Sharir, M. (2012,
January). Submatrix maximum queries in Monge matrices
and Monge partial matrices, and their applications.
In Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms (pp. 338-355). SIAM.

Lara, F. (2014) Implementación en Java de algoritmos
geométricos sobre grandes conjuntos de datos. In: Memoria
de Titulo, Ingeniería Civil en Informática, Universidad del
Bío-Bío.

Naamad, A., Lee, D. T., & Hsu, W. L. (1984). On the maximum
empty rectangle problem. Discrete Applied Mathematics,
8(3), 267-277.

Nandy, S. C., & Bhattacharya, B. B. (1998). Maximal
empty cuboids among points and blocks. Computers &
Mathematics with Applications, 36(3), 11-20.

Orlowski, M. (1990). A new algorithm for the largest empty
rectangle problem. Algorithmica, 5(1-4), 65-73.

Roussopoulos, N., Kelley, S., & Vincent, F. (1995, June).
Nearest neighbor queries. In ACM sigmod record, 24(2),
71-79. ACM.

