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A continuous time model for a short-term  
multiproduct batch process scheduling

Modelo de programación de la producción por lotes  
de múltiples productos con tiempo continuo

Jenny Díaz-Ramírez1, José Ignacio Huertas2

ABSTRACT 

In the chemical industry, it is common to find production systems characterized by having a single stage or a previously identified 
bottleneck stage, with multiple non-identical parallel stations and with setup costs that depend on the production sequence. This 
paper proposes a mixed integer production-scheduling model that identifies lot size and product sequence that maximize profit. It 
considers multiple typical industry conditions, such as penalties for noncompliance or out of service periods of the productive units 
(or stations) for preventive maintenance activities. The model was validated with real data from an oil chemical company.  Aiming to 
analyze its performance, we applied the model to 155 instances of production, which were obtained using Monte Carlo technique 
on the historical production data of the same company.  We obtained an average 12 % reduction in the total cost of production and 
a 19 % increase in the estimated profit.

Keywords: MIP modeling, goal programming, batch process scheduling, short-term scheduling, mathematical formulation, Monte 
Carlo simulation.

RESUMEN

En la industria química es común encontrar sistemas de producción caracterizados por tener una sola etapa o una etapa cuello de 
botella,  con múltiples estaciones paralelas, no idénticas, y con costos de preparación o alistamiento dependientes de la secuencia 
de producción.  Este artículo propone un modelo lineal mixto de programación de la producción que busca identificar el tamaño 
de lote y la secuenciación de productos con el objetivo de maximizar el beneficio. Considera múltiples condiciones típicas de 
la industria, tales como la penalización por incumplimientos, la programación de mantenimientos preventivos de las estaciones 
y la disponibilidad temporal de las estaciones. El modelo se validó con datos reales de una empresa de la industria del petróleo. 
Buscando analizar el desempeño del modelo, se analizaron los resultados de aplicar el modelo a 155 instancias generadas aplicando 
simulación Montecarlo, a los datos históricos de producción de la misma compañía.  Se obtuvo una reducción del 12 % en la 
reducción total del costo de producción y un incremento del 19 % en la utilidad estimada. 

Palabras clave: programación entera mixta, programación de la producción por lotes, industria química, modelación matemática, 
simulación Monte Carlo.
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Introduction

The chemical industry is characterized by having repetitive 
production operations in which chemical reactions occur 
either in batches or in continuous flow of liquid or gaseous 
material, rather than in discrete units. This aspect, together 
with the limitations of several processes, makes the 
planning of the production process, of a greater complexity 
than those of the manufacturing industry. 

Figure 1 presents an outline of the process. A basic feature 
of this production process is that it involves multiple 
stages but there is a main bottleneck stage that uses the 
most expensive operating resources of the plant. Those 
resources are the chemical reactors, hereinafter referred 
to as processing units or just units. This fact forces the 
other stages of the process to subordinate to these units, 
and allows the simplification of the scheduling process 
to the single bottleneck stage as in (Marchetti & Cerdá, 
2009). It also requires the most efficient use of these 
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units by using them at their maximum load and by 
minimizing setup times. Setup times are often associated 
with cleaning operations, tool changes and machine 
shapes. Non-identical units imply different capacities 
and different processing times for a given product. It also 
implies that there is a subset of units that can process a 
particular product. The planning problem also includes 
the scheduling of maintenance operations.
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Figure 1. Illustration of the chemical flow process.
Source: Authors

The production planning process usually includes a stage 
prior to the planning horizon, in which the various orders 
of a product are grouped and, after checking the inventory 
status, a “total production demand” is determined for 
each product. Products may have intermediate due 
dates, i.e. some partial or total demand for a particular 
product may have more than one specific due date within 
the planning horizon for either the same or different 
customers.  A model should then consider an objective 
function with penalization by violations in demand goals 
and other policies, and subject to operations constraints 
(i.e. sequence, product-unit compatibility and sequence 
dependent preparation times).

Although important research efforts have been made in 
this area  (Harjunkoski, et al., 2014; Mendez, Cerdá, 
Grossmann, Harjunkoski, & Fahl , 2006), some challenges 
have been identified related to the ability of academic 
proposals to represent a) the actual features of industrial 
problems (Novara, Novas, & Henning, 2016), and b) the 
size of problems that can realistically be solved with these 
methods.

This article addresses the first challenge by solving a short-
term batch scheduling for a chemical company context. 
The operational issues considered in this work have not 
all been addressed before: (a) the product compatibility 
expressed by sequence dependent preparation times, 
which is given by the number of washing procedures of the 
unit required between two consecutive products, and by 
sequence dependent costs; that is, costs that depend on the 
number of washing operations; (b) The flexibility of partially 
or totally rejecting the processing of a specific product over 
a given horizon is also handled considering the demands; 
(c) Non identical parallel units; (d) inventory reorder points, 
and inventory (minimum and maximum) limits of each 
product; (d) Overproduction, which is a major problem due 
to storage limitations, is controlled with upper bounds; (e) 
Product priorities are also considered based on marketing 
conditions; (f) The option of having multiple batches per 
order; and (g) A monolithic approach, in the sense that not 
only consists on the definition of the number and size of 
batches of the same product but of the same order, and 
their sequence. This approach has shown to yield better 

solutions than those obtained by two-stage methods (Castro 
& Novais, 2009).

Moreover, the computational complexity of these types of 
problems (i.e. NP hard) has proved to be very sensitive to 
several parameters and their inter-dependencies (Koçlar, 
2005; Transchel, Minner, Kallrath, Löhndorf, & Eberhard, 
2011). Despite this, the performance of several of the 
approaches has been evaluated numerically well with few 
examples, sometimes small, or with real data given by very 
specific conditions (Harjunkoski, et al., 2014; Novara, 
Novas, & Henning, 2016). Thus, to address the second 
challenge, the robustness of this proposal was validated 
using a set of data generated using the Monte Carlo 
technique from real data, which is an uncommon approach 
for testing these type of models.

Literature review

Optimum planning of batch production has received great 
attention in recent years because of its positive impact on 
production efficiency and economic benefit (Xue & Sun, 
2010). The latest revisions of batch scheduling problems 
can be found in Allahverdi, Ng, Cheng, & Kovalyov 
(2008), Harjunkoski, et al. (2014); Jans & Degraeve 
(2008), Karimi, Ghomi, & Wilson (2003), Mendez, 
Cerdá, Grossmann, Harjunkoski, & Fahl (2006) and in 
Zeballos, Novas, & Henning (2011). The last four focused 
on industrial models. Scheduling problems considering 
maintenance can be found in (Chang & Manikas, 2009; 
Tsai & Wang, 2017). An extensive part of the literature 
deals with the problem of the size and the programming 
of batches with discrete time intervals (Harjunkoski, et 
al., 2014; Merchan, Lee, & Maravelias, 2016; Velez, 
Dong, & Maravelias, 2017).  Though this is perhaps 
the most general approach (Harjunkoski, et al., 2014), 
its major drawback is related to data accuracy, and as 
Jans and Degraeve (2008) say: “The main limitation of 
this approach is the unnecessary increase in the overall 
problem size due to the introduction of additional binary 
variables associated with each discrete time interval”. 
These drawbacks have attracted the development of 
continuous time scale models.

Additionally, multi-product and multi-stage continuous 
programming time MILP models have been proposed. 
They consider sequence-dependent preparation times, 
unit-dependent preparation times and due dates (Afzalirad 
& Rezaeian, 2016; Atan & Akturk, 2008; Castro & Novais, 
2009; Karimi & Liu, 2005; Mendez, Henning, & Cerda, 
2000; Xue & Sun, 2010).  Novara, Novas, & Henning 
(2016) performed a review on scheduling problems of 
resource-constrained multiproduct multistage batch 
plants. They divided the methods in two groups: those 
that assume a single batch per order and after 2008, 
approaches that manage orders comprising multiple 
batches. Table 1 shows a summary of some continuous 
short-term multiproduct scheduling problems found in the 



A continuous time model for A short-term multiproduct bAtch process scheduling

IngenIería e InvestIgacIón vol. 38 n.° 1, aprIl - 2018 (96-104)98

literature. However, none of them is fully adaptable to the 
conditions previously discussed.

Among the latest proposals, Novara, Novas, & Henning 
(2016) and Afzalirad & Rezaeian (2016) address several 
features of industrial environments (e.g. forbidden product-
equipment assignments, sequence-dependent changeover 
tasks, dissimilar parallel units at each stage, etc.). The 
first ones proposed a constraint programming model for 
multiproduct multi-stage batch scheduling problems. They 
handled multiple-batch orders by defining a campaign 
operating mode, which is common in practice but can 
produce suboptimal solutions, since a campaign mode 
consists of scheduling a predefined number (or range) 
of batches of the same product. Afzalirad & Rezaeian 
(2016) formulated a discrete model, proposed two meta-
heuristic algorithms to solve it, and validated them with 14 
randomly generated examples. Recently, Hinder & Mason 
(2017) exploited known order-based properties of optimal 
solutions for simpler single stage, family setup times and 
a single machine scheduling problem. In this case, large 
scale instances are generated and solved up to 1 080 jobs 
and 270 families.

Table 1. Some related continuous MILP literature for multiproduct 
short-term batch scheduling problems

Authors Stage Setup PUnits Objective(s) & Comments

 (Hinder  
& Mason, 2017)

S F- - • Min lateness
• Branch & Bound and theory for tight 

bounds.
• 75 instances generated for each 

combination of # jobs and # families 
(up to 120, 10).

(Afzalirad  
& Rezaeian, 

2016)

M SD 
UD

Rm • Min makespan
• One example: 6 jobs, 2 units
• 14 randomly generated instances to 

evaluate 2 meta-heuristics (up to 6 
jobs, 3 units)

 (Novara, Novas, 
& Henning, 

2016)

M SD Rm • Min makespan, total tardiness & # 
tardy batches.

• Campaign-based operation
• 5 examples – up to 22 orders

(Nekoiemehr  
& Moslehi, 

2011)

S SD S • Max earliness, min tardiness
• Polynomial time algorithm.
• 1 Example: 5 jobs 
• 3840 instances of 8-25 jobs

(Jin, Gupta, 
Song, & Wu, 

2010)

S SD Rm • Min max lateness
• Real data and randomly generated 

data. Tabu search.

(Xue & Sun, 
2010)

M SD Im • Max weighted completion times. 
Penalties for tardy orders. 

• Validation with examples. 

(Subbiah,  
Tometzki, 

Panek, & Engell, 
2009)

M SD Rm • Min tardiness
• Intermediate due dates
• Time automated model
• Reachability analysis. 2 cases.
• Up to 29 orders, 6-8 operations

(Atan & Akturk, 
2008)

S I S • Max profit. Tardiness for lateness. 
• Order acceptance/rejection. 

Controllable processing times.

(He & Hui, 
2008)

S SD
UD

Rm • Min makespan and total tardiness 
(multi-objective)

• Penalty for violating due dates
• 8 examples. Large scale: 50 orders.

(Osorio G.,  
Castrillón M., 

Toro C., & Ore-
juela C, 2008)

S SD Im • Min makespan
• With interruptions
• Job shop recirculation
• Example: 13 operations

(Omar & Teo, 
2006)

M SD Im • Min sum earliness/tardiness
• Hierarchical method. Validation with 

real data.

(Liu & Karimi, 
2005)

M I Rm • Min makespan
• Validation with examples

(Hassin & Shani, 
2005)

S I Im • Earliness /tardiness. Penalties for 
non-execution.

• Polynomial algorithms. Distinct 
due dates. 

This work

S SD 
UD

Rm • Max profit. Penalties for partial 
execution and tardiness.

• Priorities, maintenance and inventory 
levels considered.

• Multiple batches for intermediate 
due dates.

• Real data and randomly generated 
instances: 155: up to 28 products.

S: Single, M: multiple, SD: sequence dependent, UD: unit dependent, 
I: Independent, F: family, PUnits: Parallel units, Im: identical machines, 
Rm: unrelated machines, max: maximize, min: minimize.
Source: Authors

Problem description

The problem can be classified according to Mendez et al. 
(2006) as shown in Table 2, and according to Allahverdi et 
al. (2008), as an R | STsd,b | TSC, where R refers to unrelated 
machines, STsd,b refers to preparation times dependent on 
the batch sequence or family of products, and TSC refers 
to the performance focused on minimizing preparation or 
change time. Although in this case, it is measured with a 
composite objective function including delays, due dates, 
and inventory policies.

Table 2. Problem Classification

Process topology Single stage, parallel units

Assignment of equipment Fixed

Connectivity of the equipment Complete

Inventory Storage Policy Finite final storage

Material transfer Instantaneous

Lot size Variable

Batch processing time Variable

Demand patterns
Due dates: single or multiple. Horizon: 

variable

Exchanges Sequence-dependent

Resource constraints None

Time Restrictions Maintenance

Costs Equipment, material, exchanges

Degree of certainty Deterministic

Source: Authors
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The conditions and assumptions considered in this 
problem are: (a) Demand, capacity, processing times, units 
suitable for each product, inventory limits (minimum and 
maximum), and due dates for the time horizon are known 
and fixed; (b) raw material, units and other resources are 
always available; (c) There are no interruptions, unplanned 
unit breakdowns or reprocessing; (d) the parallel units are 
not identical, work at full load and can process at most 
one batch at a time; (e) setup times and costs depend 
on the degree of compatibility between two consecutive 
products; (f) a product can be processed in more than one 
unit, but at most once in each unit during the time horizon; 
(g) an order can be split in multiple batches according to 
the intermediate due dates; (h) the time horizon for each 
unit is independent and is a subset of the general planning 
horizon; and since the units constitute a very restricted 
resource, even the time horizon could be violated (and 
thus penalized); (i) given the short-term horizon, the 
programming of the first product in each unit considers its 
compatibility with the last product programmed in that unit 
during the previous horizon; (j) preventive maintenance 
operations are translated into maintenance demands and 
then they are considered as products with their own times 
and preparation goals. 

The main assumption considered is that the problem can 
be simplified to a single stage process, focusing on the 
bottleneck process scheduling, in which transfer times are 
not relevant, and neither storage transfer policies are.

The basic decisions to be taken are the sequence of 
products in each unit, the lot size, which is the number of 
consecutive batches of a product in the same unit, and the 
follow-up of the start (continuous) time of each lot. Other 
decision variables control violations of various operational 
considerations.

Mathematical model

The proposed model uses a continuous time representation 
with network flow equations (for products and units), 
where both the lot size and the schedule are defined 
simultaneously. An event occurs at a global time point, 
considering immediate precedence, with an objective 
function of maximizing profits with penalties related to 
non-fulfillment of demands, due dates, inventories, and 
costs. The model is based on the longest path problem, 
with many side constraints, through a multilevel network, 
in which each route represents the schedule of one unit. 
Each path has a specific starting node, but all paths 
terminate at the same sink node. A node at any level 
represents the processing event of a product, which keeps 
track of sequence information with a binary variable, batch 
size with an integer variable, and initial processing time 
with a continuous variable. Finally, sequence, demand 
constraints and time-related constraints are formulated. 
The tracking of the last product processed in a unit during 
the previous planning horizon allows taking it as input data 

for the following period, to determine the compatibility of 
the first product.

By default, the due date for each product is set at the end of 
the scheduling horizon. When a product has more than one 
due date (i.e. partial deliveries with distinct due dates), then 
that product is divided into R + 1 products –the original 
plus R pseudo-products– each with its specific due date 
and demand, which is called “partial demand”. Thus, the 
sum of the production of these R + 1 products is the total 
demand of the original product.

Sets

IP Set of products plus required maintenance proce-
dures, source nodes for each unit and a single end 
node l IP ={1, ..., N}.

I Set of products with demand greater than the mini-
mum threshold i, j∈ I , I ⊆ IP

IM IP subset that includes only maintenance procedu-
res IM ⊆ IP .

IQ Subset of IP products including products with demand 
and maintenance procedures IQ⊆ IP= I ∪ IM .

IR Subset of pseudo-products with specific due dates 
IR⊆ I . If a product i∈ IQ  has delivery dates prior 
to the planning horizon, the product is decompo-
sed into pseudo-products each with its own demand 
and delivery date. The demand for pseudo-products 
is less than or equal to the demand for the product 
from which it is decomposed. 

K Set of units k ∈ K

Decision variables

Xijk =
I if product  j is scheduled immediately 

after i in unit k  0 otherwise

⎧
⎨
⎪⎪
⎩⎪⎪

Yik Product i batch size scheduled in unit k.

tik Processing start time of product i in unit k 

bdi Uncovered demand of product i∈ IQ  (to reach re-
order point) 

bpari Uncovered demand of pseudo-product i∈ IR

bmi Uncovered demand of product i∈ IQ  (to reach mi-
nimum inventory level)

sdi  Production excess of product i∈ IQ  (i.e. with res-
pect to the reorder point).
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smxi Production excess of product i∈ IQ  (i.e. with res-
pect to the maximum inventory level).

latei Tardiness of product i∈ IQ  (i.e. with respect to the 
due date)

zu Objective function value.

Parameters 

di Production demand of product i∈ IQ  (to reach re-
order point) 

dmi Production demand of product i∈ IQ  (to reach mi-
nimum inventory level) 

dmxi Production demand of product i∈ IQ  (to reach 
maximum inventory levels) 

pi,k Processing time of product i in unit k.

wi,j Number of washing procedures required in a se-
quence i – j.

DDi due date for product i∈ IR  

spri Sale price of product i

pri Product priority i.

QRij QRi,j = 1 if pseudo-product i∈ IR  has the same due 
date as the product i∈ IQ  from which it was de-
composed; QRi,j = 0 otherwise.

RRi,j RRi,j = 1 if due date of seudo- product i∈ IR  is ear-
lier than that of product j∈ IR . Both i, j are pseu-
do-products from the same product i∈ IQ . RRi,j = 0 
otherwise. 

Mk Scheduling horizon for the unit k. 

Ck Capacity of unit k.

t0k Scheduling start time on unit k. 0 ≤ t0k < Mk

WTk Duration of washing procedure in unit k

ri,k Ri,j = 1 if product i can be processed in unit k, Ri,j = 0 
otherwise.

vci,k Processing variable unit cost of product i in unit k.

fck Fixed processing cost per hour in unit k. 

pd Unit penalty for non-compliance with demand

pm, pmx Penalty for violation of minimum and maximum 
limits of production

ppar  Penalty for non-compliance with partial demand 
(i.e. pseudo-products demand)

pw  Penalty or costs of washing procedures

plate Penalty for violation of due dates.

mtk Multiplicative factor of the planning horizon (to  
obtain a very large number)

mks Maximum allowed violation of the programming 
horizon.

MIP Model

 

max zu =

spriCkYik
i∈IP
k:r ( i ,k )=1

∑ − sprisdi
i∈IQ
∑

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟
−

vcikCk + fck pik( )Yik
i∈I
k:r ( i ,k )=1

∑
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜
+ fckWTk

i , j∈I
∑ wij X ijk

k
∑

⎞

⎠
⎟⎟⎟⎟⎟

−penalty

 (1)

 

penalty= pw fckWTkwij X ijkl
i , j∈I
k∈K
l∈L

∑ + plate prilatei
i∈I
∑

+pm pribmini
i∈IQ
∑ + pmx prisurmax i

i∈IQ
∑

+ppar pribpari
i∈IR
∑ + pd pri(bdi+ surdi )

i∈IQ
∑

 (2)

 t jk ≥ tik +WTkwij + pikYik +mtk  Mk Xijk −1( ) ∀i, j,k  (3)

 X ijk
j∈I
∑ − X jik

j∈I
∑ = 0 ∀i,k : rik =1  (4)

 Yik ≤
dmxi
Ck
+1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

Xijk
j:rjk=1
∑ ∀i,k  (5)

 Xijk
j
∑ ≤Yik ∀i,k : rik =1  (6)

 X " first _ k ", jk
j:rjk=1
∑ =1 ∀k  (7)

 Xi ," last ",k
i:rik=1
∑ =1 ∀k  (8)

  
CkYik

k:rik=1
∑ + CkYjk

j ,k:rjk=1
QRij=1

∑ = di−bdi+ sdi  ∀i∈ IQ,∀j∈ IR  (9)
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CkYik

k:rik=1
∑ + CkYjk

j ,k:rjk=1
RRij=1

∑ ≥ di−bpari ∀i∈ IR
 (10)

 bdi−bmi ≤ di−dmi ∀i∈ IQ  (11)

 sdi− smxi ≤ dmxi−di ∀i∈ IQ  (12)

 yik
k:rik=1
∑ ≤1 ∀i∈ IM  (13)

 tik + pik *Yik ≤ DDi+ latei ∀i,k  (14)

 
tik

i:rik=1
∑ ≥ t0k * Xijk

i:rik=1
j:rjk=1

∑ ∀k
 (15)

 tik ≤ Mk +mks ∀i,k : rik =1 (16)

 tik ≤ ti´k     ∀i, í : RRi ,i´ =1 (17)

 tik ≥0; Yik ≥0, integer ∀i,k  (18)

 Xijk ∈ {0,1} ∀i, j,k  (19)

 latei ,sdi ,bdi ,bmi ,smxi ,bpari ≥0 ∀i  (20)

The objective function in Equation (1) is a profit 
maximization penalized by the violation of some of the 
operating restrictions. The first term on the right-hand 
side calculates the income generated by the total quantity 
produced minus the surplus with respect to the demand. The 
second term calculates the cost of production, including 
the costs of preparation, and finally, the third term is given 
by Equation (2). This equation penalizes (a) the inclusion 
of washing procedures, (b) late production, (c) production 
outside inventory limits, (d) partial deliveries not satisfied, 
and (e) differences from reorder points.

Equations (3) to (8) are related to sequencing. Equation (3) 
prevents overlapping and identifies the sequence. Balance 
equations are equations (4). Equations (5) and (6) compute 
the lot size Yik. Equations (9) and (10) restrict the initial and 
final nodes of each unit’s sequence.

Equations (9) to (13) deal with the demand. Equation 
(9) computes the amount of production scheduled and 
the differences from the demand to the reorder point. 
Equation (10) computes deviations from partial deliveries, 
and Equations (11) and (12) deviations from minimum 
and maximum inventory levels. Equation (13) limits the 
maintenance batch size to 1.

Related to time, Equation (14) computes violation on due 
dates, equations (15) and (16) ensure that the schedule of 
a given unit k begins at its own horizon time, and equation 

(17) ensures the time ordering between pseudo-products. 
Finally, Equations (18) to (20) give the variables’ domain.

Numerical Experimentation

The proposed model was verified and validated with a 
set of instances generated from real historical information 
from a chemical company in Mexico. Figure 2 shows the 
experimentation process. 

Figure 2. Experimentation process scheme.
Source: Authors

Through an interface in Excel®, the user feeds the model 
and calls the solver. Then, the output is translated again 
through the interface into an Excel output file. The model 
was coded in GAMS® software with the CPLEX® solver 
version 22.6 and run on a computer with 1.99 GB of RAM, 
with an Intel Xeon (R) CPU 5150 at a speed of 2.66 GHz, 
working under the windows operating system XP. 

Pre-processing

The following trivial situations were identified so that 
variable levels were fixed before running the model, 
reducing the problem size: 

a) All Xiik = 0 ; 

b) Xijk = 0  if products i and j are incompatible; 

c) Xijk = 0  if j is the first product in the sequence of k; 

d) X 'last' jk = 0 ; 

e) Xijk = 0  if rij = 0  or rjk = 0 .

Model validation

To validate the model, input parameters from a Mexican 
chemical company were used, corresponding to a typical 
production month, in which 30 products were produced, 
with 6 units enabled for production and no programmed 
partial deliveries. The horizon used was one month. 
Overall results are summarized in Table 3. Costs and profits 
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are compared to the baseline (actual values of real case) in 
a scale of 100.

Table 3. Results of the model vs baseline 

Baseline Model

Production total time (h) 2 695 2 645

Production total cost (base 100) 100 88

Total profit (base 100) 100 119

CPU time (sec) 22

Source: Authors

Random generated Instances

Goodness of fit tests were applied to historical 9-month 
data to describe product demand. In particular, the 
probability of a product being demanded in a month (i.e. 
the programming horizon used) and the mean and standard 
deviation of demand for each product were identified. 
Using the Monte Carlo technique, 155 instances were 
generated with a set of products no greater than 30, as 
shown in Table 4; some of them with a maximum of two 
partial deliveries (with distinct due dates) and with 4 units 
enabled. 

Table 4. Generated instances description

Month Instance p n m AvPn (ton)

1 1-20 28 2 650 - 3 360 1 796  - 2 262 2 596

2 21 – 40 28 3 707 - 4 369 2 416 - 2 873 2 584

3 41 – 60 14 2 453 - 2 903 1 698 - 2 014 1 453

4 61 – 80 17 2 308 - 2 776 1 579 - 1 907 2 384

5 80 – 95 14 2 167 - 2 237 1 370 - 1 604 1 694

6 96 – 110 23 2 053 - 2 123 1 290 - 1 532 1 602

7 111 - 125 28 1 940 - 2 010 1 188 - 1 449 1 811

8 126 - 140 17 2 651 - 2 723 1 636 - 1 893 2 750

9 141 - 155 19 1 804 - 1 876 1 146 - 1 373 1 701

p: number of products, n: number of variables, m: number of equa-
tions, AvPn: Average production.
Source: Authors

Results and discussion

The model was run with a three-objective function: a) 
only the time component of equation (1); b) only the 
cost component of Equation (1), –in these case, to be 
minimized–, and c) the complete Equation (1). The results 
obtained from the 155 generated instances are presented 
in Table 5. Additionally, the option of relaxing constraints 
(11) and (12) related to the minimum and maximum 
production levels was considered (i.e. “without bounds” 
in Table 5). 

Table 5. Numerical experimentation results

# washing 
procedures

Unmet  demand (%) 
with respect to:

% instances according 
CPU time 

# products Volume ≤ 1 min 1-5 min ≤ 30 min

Without bounds

• ¨Min time
• ¨Min cost
• ¨Max profit

175
124
155

39 %
45 %
40 %

14 %
16 %
22 %

80
100
100

20
0
0

0
0
0

With bounds

• ¨Min time
• ¨Min cost
• ¨Max profit

250
215
203

25 %
18 %
27 %

2 %
-1 %
6 %

80
100
100

0
0
0

0
0
0

Source: Authors

From Table 5, it can be seen that the vast majority of instances 
were resolved in less than one minute; however in the case 
of minimizing time with quotas, 20 % of instances could 
not be resolved in half an hour. A much better performance 
in terms of demand compliance is also observed when 
considering the bounds constraints; but a better performance 
in terms of number of washing procedures is shown when 
these are not included. The negative unmet demand value 
refers to an average production of 1 % above the reorder 
point. Finally, no objective function is dominant in terms 
of performance.

Conclusions 

The problem of a single machine production system with 
sequence dependent setup times and several real world 
operational constraints was studied. 

A comparative performance study between the 
mathematical model and real data from a chemical 
company was carried out, obtaining the following results 
with the proposed model: a reduction of 2 % in the 
processing time of the product, a 12 % reduction in the total 
cost of production and an increase of 19 % in the estimated 
profit. The optimization model allows the integration of the 
decision about the order of the products to be processed in 
the different production machines, the number of batches 
to produce each item, the time each product will start to 
be processed and other decisions that seek to quantify 
non-compliance with respect to demand and due dates. 
Finally, through Monte Carlo simulation, instances were 
generated to validate the model, obtaining solutions in 
short computational times in a desk computer (i.e. half an 
hour) for sizes similar to those of the industry. 
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