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Optimal vehicle-to-grid strategy for a fleet of EVs
considering the batteries aging

Estrategia óptima de vehículo-a-red para vehículos eléctricos
considerando el envejecimiento de sus baterías

Semaria Ruiz1 and Jairo Espinosa2

ABSTRACT
The use of electric vehicles for public transportation is a practice that has spread widely in recent years, in response to the needs of
reducing global polluting gases emissions and decrease vehicle ownership. However, nowadays some issues need to be addressed to
provide this type of services with electric vehicles, such as the low-profit margins that can be achieved by the fleet operators. This
paper addresses this issue giving to the public EVs the feature of providing power to the electrical network. Hence, a control system
based on optimization is proposed to perform profitable management of the charge and discharge of the EVs that are used to provide
public transport services by an operator, which also have the possibility of delivering power to the electrical network. Furthermore,
this control system will also take into account the batteries wear cost.
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RESUMEN
El uso de vehıculos electricos para transporte publico es una practica que se ha extendido ampliamente en los ultimos años, en
respuesta a las necesidades de reducir las emisiones globales de gases contaminantes y disminuir los vehıculos de uso privado. Sin
embargo, hoy en dıa es necesario superar algunos retos para proporcionar este tipo de servicios con vehıculos electricos, como los
margenes de baja ganancia que pueden tener los operadores de la flota. Este documento aborda este desafıo, dando al EV publico
la funcion de proporcionar energıa a la red electrica. Por lo tanto, se propone un sistema de control basado en la optimizacion
para realizar una gestion economicamente rentable de la carga y descarga de los EV que se utilizan para proporcionar servicios de
transporte publico por parte de un operador, los cuales tambien tienen la posibilidad de entregar energıa a la red electrica. Ademas,
este sistema de control tambien tendra en cuenta el costo de desgaste de las baterıas.
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Introduction
Nowadays a change in the mobility paradigm is emerging
regarding the replacement of private usage of fossil-fueled
vehicles by more eco-friendly and energy-efficient mobility
services, such as the electro-mobility for public transport and
the electric car-sharing (Firnkorn and Müller, 2015; Seign,
Schüssler, and Bogenberger, 2015). Moreover, the adoption
of electric vehicles presents an opportunity to provide energy
storage-based ancillary services to the power grid, such
as supporting grid frequency stability, contributing to the
voltage regulation system, and smoothing intermittency due
to renewable energy sources (Kang, Duncan, and Mavris,
2013), which is called vehicle-to-grid operation mode (V2G).
However, this operation mode imposes additional challenges,
such as the management of bi-directional power flows, and
the design and implementation of more complex operation
strategies that must achieve the economic sustainability of the
service. Therefore, it is necessary to propose decision-making
tools that allow the operator to take the best economic and
operational decisions for the EVs, such as those presented
by previous authors (Alkhafaji, Luk, and Economou, 2017;
Rabiee, Sadeghi, Aghaeic, and Heidari, 2016; Wu, Yang, Bao,

and Yan, 2013). However, these previous works do not
consider the batteries wear due to the adoption of the V2G
strategy. The wear of the EVs batteries is a critical aspect,
as highlighted by Semanjski and Gautama (2016), to reach
the satisfactory commercial feasibility of a transport system
that involves electric vehicles. As a result, some studies have
focused on the inclusion of batteries wear cost when the
EVs are featuring the V2G operation mode. Various authors
have addressed this issue (Choi and Kim, 2016; Correa-
Florez, Gerossier, Michiorri, and Kariniotakis, 2018; Han,
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Han, and Aki, 2014; Xu, Shi, Kirschen, and Zhang, 2018)
using the Achievable Cycle Count function defined by the
battery manufacturer, as in Choi and Kim (2016) and Han et
al. (2014), or with the Rain-flow algorithm to cycle counting,
as in Xu et al. (2018). Authors as Bocca, Chen, Macii,
Macii, and Poncino (2018) proposed to use the Arrhenius
equation to evaluate the wear of EVs for residential usage and
established an optimal charging plan to reduce the charging
and wear costs. Nevertheless, all the previous cited studies
only calculate the wear of all the EVs aggregated in a set
and not individually. The study of Choi and Kim (2016) only
considers one EV. These calculations are an approximation,
as for a fleet of EVs, each vehicle will have a different wear
cost, depending on the routes assignment.

This paper proposes a control strategy for the optimal
management of a fleet of EVs that are used to provide
public transport services and operate in V2G mode. The
proposed control strategy, based on optimization, makes
a trade-off between the charging costs of the EVs and the
revenues obtained by delivering power to the electric network,
considering the battery wear cost of each vehicle in the
fleet. The decision variables calculated are the charging and
discharging power and the route assignment for each EV. The
control strategy is applied to the study case proposed by Ruiz,
Arroyo, Acosta, Portilla, and Espinosa (2018).

The contributions of this paper cover two issues. The
first one is the individual calculation of batteries wear, i.e.
for each EV, which is performed simultaneously with the
assignment of routes to the EVs in the fleet, and the estimation
of charging/discharging profiles. The second issue is the
proposal of an explicit mathematical function for calculating
the peaks in the energy of the battery, which allows counting
the charging/discharging cycles using the Rain-flow algorithm.

This paper is divided as follows. The Methodology section
describes the theoretical framework and the optimization
approach. The section Study case contains the data of the
study cases used to compare the wear results and to apply
our proposed control strategy. At last, Results and analysis
contain the obtained results and their interpretation.

Methodology
In this study, we considered that all the electric vehicles are
parked at the same place and that they are connected to the
same charging station. Additionally, round-trip travels are
assumed. Hence, an EV can be charged or discharged at any
moment after finishing the travel.

Figure 1 depicts the structure of the proposed control
algorithm. The algorithm is composed of a stage of estimation
of the required travels and the calculation of the power
consumption in them. These procedures are performed by
software of traffic microsimulation, entering specific fluxes of
passengers at some places (stations of the EVs) in the traffic
network. Once the number of passengers that need to be
transported to a defined destination point is established, the
required departures of the vehicle are calculated. With the
calculated route and with a “typical” speed profile, the power

consumption of the vehicle is estimated. After the estimation
of both variables for a typical day, the estimated data are
entered as the input of the control algorithm block.

Figure 1. Control strategy scheme
Source: Authors

In the control algorithm block, an optimization is constructed.
The aim of this optimization is the reduction of the energy
and battery wear costs. The energy cost takes into account
the expenses for purchasing energy to charge the EVs and the
revenues generated by the delivering power from EVs to the
electric network. Furthermore, the constraints include the
operational limits of the EVs and guarantee the coverage of the
required routes assigning each travel to one of the vehicles in
the fleet. The outputs of the optimization are a binary matrix
that indicates the vehicle selected to perform each travel and
the magnitudes of the charging and discharging powers for
each EV and each time step. The mathematical approach used
by the constructor of the optimization is described below.

Mathematical approach of the optimization
Objective function and constraints:
First, the decision variables are defined. They are the real-
valued matrices Pc ∈ Rn× v that represent the charging power
for each EV in the set V = {1, . . . , v}, where v is the total
amount of vehicles in the fleet considering each time step
in the set N = {1, . . . ,n} and n is the number of steps in
the calculation period; and Pd ∈ Rn× sv that represents the
discharging power for each EV. Additionally, the optimization
has other two decision variables with binary values. The
first one is the matrix Av ∈ Rr× v whose elements (i, j) have
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unitary values if the j-th vehicle performs the i-th travel,
which belongs to the set of travels R = {1, . . . , r}. Hence, if
vehicle number 4 performs the first travel, then Av (1, 4) = 1.
The second one is the matrix Ac ∈ Rn× v that indicates if a
vehicle is charging and contains unitary values in the positions
corresponding to the time steps at which a vehicle is charging.

The objective function is the minimization of the EVs operative
costs, which include the expenses for purchasing energy to
charge the EVs and the batteries wear cost. Additionally,
the revenues generated by delivering power from EVs to
the electric network are included. This objective function is
indicated in Equation (1).

f = Ep ·
∑
i∈V

pc(i) − Ep ·
∑
i∈V

pd(i) +
∑
i∈V

w(SOC(i)) (1)

where pc(i) and pd(i) are the column vectors of the matrices Pc

and Pd, respectively; w is the wear cost function, Ep ∈ Rn is
the electricity price at each time step, and S(i) are the column
vectors of the state of charge matrix S ∈ R(n+1)× v, which is
also called SOC and is calculated using the Equation (2) for
the i-th vehicle at the j-th time step.

S( j+1, i) = S( j, i) ·(1−σ)+
(Pc( j, i) − Pd( j, i) − Pr( j, i))∆t

EM
(2)

Pr ∈ Rn× v is the matrix that contains the power consumption
for the travels performed by each EV at each time step, after
each travel is assigned one of the EVs. σ is the self-discharging
factor of the batteries and EM, the maximum energy that can
be stored in them.

The matrix Pr depends on the travels assignment. Equation
(3) indicates how to calculate this variable.

Pr = Ct · Av (3)

Ct ∈ Rn× r is the matrix that contains the power consumption
in each travel, which is the output of the urban traffic
microsimulation,

Furthermore, the optimization constraints, are shown in
Equations (4)-(12):

Pr, Pc, and Pd must be positive real-valued matrices:

Pc( j, i) ≥ 0, Pd( j, i) ≥ 0, Pr( j, i) ≥ 0 ∀i ∈ V (4)

The state of charge of the batteries must be kept between the
minimum allowed energy content Sm, and 1.

Sm ≤ S( j, i) ≤ 1 (5)

The total power consumption in the travels at each time step,
must be equal to the total power that the EVs spend during
their assigned travels each time step:

r∑
i=1

Ct( j, i) −
v∑

i=1

Pr( j, i) ≤ 0 ∀ j ∈ N (6)

Travels must be assigned only to one vehicle:
v∑

i=1

Av( j, i) = 1 ∀ j ∈ R (7)

The charging power of the EVs must be kept between 0 and
its rated value defined by the manufacturer Pc,m, at the time
steps when EVs are charged (indicated by ones in the Ac
matrix).

Pc( j, i) ≤ Pc,mAc( j, i) ∀ j ∈ N ∀i ∈ V (8)

The discharging power of the EVs must be kept between
0 and its rated value defined by the manufacturer Pc,m, at
time steps when EVs are discharged, i.e. when they are not
performing a travel or charging

Pd( j, i) ≤ Pc,M(1 − Ac( j, i) −U( j, i)) ∀ j ∈ N ∀i ∈ V (9)

where U ∈ Rn× v is a binary matrix calculated with Equation
(10). The rows of U correspond to the time steps and its
columns to the ID number for each EV in the fleet. This matrix
has ones in the time steps when a vehicle is performing a
travel, and 0 otherwise.

U = AvAT
t

(10)

Being At ∈ Rn× r a binary matrix that contains ones at time
steps where travel is required, it has as many columns as
required travels. This matrix is obtained from the output data
of the urban traffic microsimulator and entered as the input
of the optimization. Furthermore, the sum of the elements of
the binary matrix that indicate the charging status and those
that show the running status for a vehicle performing travel
must be less than 1, as indicated in Equation (11)

U( j, i) + Ac( j, i) ≤ 1 ∀ j ∈ N ∀i ∈ V (11)

Finally, the power charged or discharged from the EVs in the
fleet must be lower than the power capacity of the feeder (Pl)
to which the charging station is connected:

v∑
i=1

Pc( j, i) ≤ Pl,
v∑

i=1

Pd( j, i) ≤ Pl ∀ j ∈ N (12)

Batteries wear modeling:
The function w in Equation (1) is calculated in two ways:

a) The wear is calculated with the methodology presented by
Xu et al (2018) using the Rain-flow algorithm.

This algorithm identifies the peak points of the
charging/discharging profile. Then, from, these peak data,
the half and complete equivalent cycles from the profile are
calculated, using the algorithm detailed by Blumenthal (1935),
and entered as inputs of the wear function that is described
in Equation (13)

w =
∑
i∈V

∑
j∈Ci

Cbk1λ( j, i)(1 − S( j, i))k2 (13)

where the constant Cb takes into account the equivalent
present value of the replacement costs for a defined Capital
Recovery Factor, and the constants k1, k2 are defined by the
battery manufacturer. The variable λ takes a value of 1 for
complete cycles, and a value of 0,5 for half cycles.
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This study proposes a novel approach to calculate the peak
data from the charging/discharging profile in order to compute
the Rain-flow algorithm and calculate the sub-gradient of this
function for solving the optimization problem with nonlinear
methods based on the gradient. The peak data from the
charging/discharging profile for the i-th EV and the j-th time
step can be extracted using Equation (14)

yi = j ∈ N/ tanh(S( j + 1, i) − 0.5) − tanh(S( j, i) − 0.5) = 0

Ci = RF(yi)
(14)

The logic of the Rain-flow (RF) can be implemented using
conditional operators, to identify the half and complete cycles
from the peak data. The objective function is not differentiable
at some points, the cycle junction points. Therefore, the sub-
gradient function is defined in Equation (15) based on the
approach presented by Xu et al. (2018).

∂ f (i, j)
∂Pc

= Ep( j)

+
∑
i∈V

∑
j∈N

k1k2 · λ( j, i) min
{
(1 − S( j1, i), (1 − S( j2, i))

}k2−1

∂ f (i, j)
∂Pd

= −Ep( j)

+
∑
i∈V

∑
j∈N

k1k2 · λ( j, i) min
{
(1 − S( j1, i), (1 − S( j2, i))

}k2−1

(15)

where the points j1 and j2 are the cycle junction points
between the point j.

However, considering a fleet of more than 1 EV, the
nonlinear optimization problem described in Equations (1)-
(15) becomes a mixed-integer nonlinear problem. Hence,
in order to achieve results with a lower complexity and
computation time, the wear calculation is reformulated.

b) The wear is calculated with the Achievable Cycle Count
(ACC), based on the approaches presented by Choi and Kim
(2016) and Han et al. (2014).

The wear can also be calculated using the cycle life curves
of the battery, given by the manufacturer. This cycle life is
determined by how deeply the battery is used, i.e. by the
depth of the discharge (D = 1 − S). Hence, a relationship
between D and the life cycle must be established. In
the literature, this relationship is commonly modeled by
a polynomial function as in the studies of Choi and Kim
(2016) and Han et al. (2014), where the cycle life Ncycle is
determined with the polynomial function of Equation (16).

Ncycle =
a

Db
(16)

where constants a and b are estimated from the manufacturer
data. The wear cost is calculated as Choi and Kim (2016):

w =
∑
i∈V

∑
j∈N

∣∣∣∣∣∣
∫ S( j+1,i)

S( j,i)
wd(s)ds

∣∣∣∣∣∣ (17)

wd(s) is the wear-out density function, which is calculated as
Equation (18) shows:

wd(s) = Cb
b · (1 − s)b−1

a
(18)

In Equation (18), the constant Cb takes into account the
equivalent present value of the replacement costs for a defined
Capital Recovery Factor. Hence, the complete expression for
the battery wear is given in Equation (19).

w =
∑
i∈V

∑
j∈N

∣∣∣∣∣∣Cb
(1 − S( j, i))b

− (1 − S( j + 1, i))b

a

∣∣∣∣∣∣ (19)

A linear approximation for polynomial expressions is proposed
on the integral calculated in the Equation (19). Thus, the
approximated wear is:

w =
∑
i∈V

∑
j∈N

∣∣∣∣∣Cb
p1(S( j + 1, i) − S( j, i))

a

∣∣∣∣∣ (20)

where p1 is the slope of the linear function approximating the
polynomial expression of Equation (19).

Once the wear function of Equation (20) is considered,
the optimization problem becomes a mixed-integer convex
problem, whose solution is presented in the Results and
analysis section.

Study case
Two study cases are considered. The first one, which is
more reduced than second, is used to compare the wear
obtained using both proposed approaches. The second study
case, which contains the data demand described in Ruiz et al.
(2018), is used to apply the proposed control algorithm for a
fleet of EVs.

First study case:
The first study case considers one electric vehicle, a Renault
Twizy. The travels performed by the EV in the evaluation
period are predicted from the behavior of co-housing users
described by Semanjski and Gautama (2016). The operating
hours of this vehicle are between 5:00 and 16:00. The energy
consumption in each travel is calculated with the daily travels,
which are generated randomly. The random generation of
daily travels uses a normal distribution for the distance of each
travel and the number of travels per day, taking into account
the next parameters: a daily average traveled distance of 8,4
km, and a daily average of travels performed of 3. Three days
were simulated. The parameters considered for the wear
function were taken from the study of Correa-Florez et al.
(2018) and are presented in Table 1.

Hence, with the energy consumption data already calculated,
this study case only requires the execution of the steps
indicated in the Control Algorithm block in Figure 1. The
optimization, including the wear cost, was solved using
Matlab 2015b. Three optimization cases were taken into
account: the first case without considering the wear cost,
the second case using the Rain-flow algorithm to calculate
the wear cost, and the third case that includes the wear cost
and uses the ACC function to calculate it. The solutions of
the first and third optimization problems were found with
the CVX optimization tool and the Gurobi solver, as both
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are convex problems. Gurobi uses the Branch and Cut
algorithm. The solution of the second case was found using
the fmincon function of the MATLAB Optimization Toolbox
with the Active-Set optimization algorithm.

Table 1. Features of the electric vehicles

PARAMETER k a b p0 p1

VALUE 540 USD 5 136 1,76 1,02 -0,87

Source: (Correa-Florez et al., 2018)

Second study case:
The study case used to apply the algorithm of Figure 1
includes the traffic network, and the passengers demand
described by Ruiz et al. (2018), which presents a study case
applicable for the city of Medellı́n, Colombia. The urban traffic
microsimulation to calculate the required travels and power
consumption in them was performed using the software
SUMO. The electric vehicles considered are BRTs Type 1,
as described in Ruiz et al. (2018), whose energy capacity
is 324 kWh. The data of the required travels and power
consumption in them were taken from Ruiz et al. (2018),
taking into account only the travels performed by BRTs Type
1. The electricity price time series and the power limit for
the feeder of the charging station were also taken from the
aforementioned study.

The parameters considered for the evaluation of the batteries
aging are presented in Table 1 with a replacement cost of
batteries of USD 5 400. This wear calculation was done only
with the ACC approach, using Equation (20). Time steps
of 10 minutes were considered, a simulation period of 24
hours, a fleet size of 5 BRTs, and 21 travels required to cover
the passenger demand. The software used to compute the
optimization was Matlab 2015b with the Gurobi solver.

Results and analysis
Results for the first study case:
Figure 2 illustrates the SOC of the battery without considering
the wear, considering the wear and calculating it with the
Rain-flow algorithm (RF) and with the Achievable Cycle Count
ACC.

The value of the wear is USD 0,04 calculated with the integral
of the ACC, and USD 0,07 with the Rain-flow algorithm.

Figure 2 shows the SOC for the wear calculated with the Rain-
flow algorithm. The result is more conservative compared
with the other cases, because the Rain-flow algorithm
performs two approximations. The first approximation
evaluates the wear function for the difference of SOC between
two points, instead of calculating the difference of the wear
function evaluated at two different points, as in the wear
density function presented in Equation (19). The second
approximation is the cycle account, in which the non-peak
data from the SOC profile is neglected, and half cycles are
added. In addition, to extend the Rain-flow algorithm for a

fleet of EVs, the use of Mixed-Integer Nonlinear optimization
methods is required, which have a higher computational
complexity than methods based on Mixed-Integer Linear
Programming.

Figure 2. Comparison of the SOC for the different presented
approaches for the wear calculation.
Source: Authors

The computing time was 379 seconds for the wear calculated
with the Rain-flow algorithm, and 6 seconds using the linear
approximation for the integral of the wear density function.
Hence, for the second study case, the wear density function
is used.

Results for the second study case:
The SOC for the fleet of EVs is illustrated in Figure 3. This
Figure shows that the SOC of all the EVs in the fleet increases
around the time intervals 2:00 - 5:00, and 16:00 - 18:00.
Those intervals correspond to the lowest electricity price
hours for non-operating hours, i.e. the vehicles are charged
at hours when the electricity is cheaper.

Furthermore, from the results shown, it can be concluded
that allowing the V2G mode, the fleet operating costs are
reduced by 50 %. The obtained average SOC for the EVs in
the fleet is illustrated in Figure 4, without considering the
batteries wear cost and considering it.

The average SOC presents a peak reduction considering
the wear cost. This smoothing in the SOC impacts on the
revenues that can be obtained by delivering power to the
electric network, since the charging/discharging power cycles
are more constrained and generate an overrun cost of USD
0,59 per day. This overrun cost is compensated with the
savings in the batteries wear, which represents 26,03 % of
the operating costs. The obtained error compared with the
non-approximated wear cost presented in Equation (19) was
20,7 %, which is equivalent to USD 0,01 per day.
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Figure 3. SOC for each EV in the fleet.
Source: Authors

Figure 4. Comparison of the average batteries SOC with and without
the inclusion of the wear cost.
Source: Authors

Conclusions
This paper presents a control strategy to manage the charging
and discharging power of a fleet of EVs that participate actively
with the power network in V2G mode. This control strategy
includes the wear of batteries in the operative costs, which
are minimized. Two approaches were used for the wear
calculation: the Rain-flow algorithm and the integral of the
wear density function. Also, the control strategy, considering
the integral of the wear density function, was applied to a fleet
of EVs for the individual calculation of batteries wear, which
is performed simultaneously with the assignment of routes to
the EVs in the fleet and the calculation of charging/discharging
profiles. Results showed that with the inclusion of the wear
cost, the V2G mode is still profitable, but the revenues of
the fleet operator are reduced to half approximately. The
Rain-flow method delivers more conservative results for the
wear estimation since it counts half cycles, but the ACC
method allows the linearization of the optimization problem.

Hence, a lower computational complexity is required to solve
the optimization problem.

Additionally, the proposed control strategy depends on the
parameters of the wear function given for the battery. This
function must be approximated applying operative tests.
Hence, to extend the proposed strategy the validity of the
wear parameters must be verified for the batteries of the
considered fleet.
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energético Colombiano en el horizonte de 2030” of the call
778 of Colciencias. Contract FP44842-210-2018.

References
Alkhafaji, M., Luk, P., and Economou, J. (2017). Optimal Design

and Planning of Electric Vehicles Within Microgrid. In:
Li K., Xue Y., Cui S., Niu Q., Yang Z., Luk P. (eds)
Advanced Computational Methods in Energy, Power, Electric
Vehicles, and Their Integration. Singapore: Springer. DOI:
10.1007/978-981-10-6364-0_68

Blumenthal, B. A. (1935). A new definition of the rainflow cycle
counting method, International Journal of Fatigue, 2(2),
571-586

Bocca, A., Chen, Y., Macii, A., Macii, E., and Poncino, M.
(2018). Aging and cost optimal residential charging for
plugin EVs. IEEE Design and Test, 35(6), 16-24. DOI:
10.1109/MDAT.2017.2753701

Choi, Y., and Kim, H. (2016). Optimal scheduling of energy
storage system for self-sustainable base station operation
considering battery wear-out cost. Paper presented
at the International Conference on Ubiquitous and
Future Networks, ICUFN. Vienna, IEEE. DOI: 10.1109/
ICUFN.2016.7537010

Correa-Florez, C. A., Gerossier, A., Michiorri, A., and
Kariniotakis, G. (2018). Stochastic operation of home
energy management systems including battery cycling.
Applied Energy, 225 1205-1218. DOI: 10.1016/j.apenergy.
2018.04.130

Firnkorn, J., and Müller, M. (2015). Free-floating electric
carsharing-fleets in smart cities: The dawning of a post-
private car era in urban environments? Environmental
Science and Policy, 45, 30-40. DOI: 10.1016/j.envsci.
2014.09.005

Han, S., Han, S., and Aki, H. (2014). A practical battery wear
model for electric vehicle charging applications. Applied
Energy, 113, 1100-1108. DOI: 10.1016/j.apenergy.2013.
08.062

Kang, J., Duncan, S. J., and Mavris, D. N. (2013). Real-
time scheduling techniques for electric vehicle charging
in support of frequency regulation. Procedia Computer
Science, 16, 767-775. DOI: 10.1016/j.procs.2013.01.080
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