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Evaluación de un nuevo algoritmo de optimización multimodal en
problemas de equilibrio de fases fluidas
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ABSTRACT
Multimodal optimization problems are commonly found in engineering problems, and their solution can be very challenging for
metaheuristic approaches. In this work, the use of a recently proposed multimodal metaheuristic method was analyzed - the
Multimodal Flower Pollination Algorithm - in two fluid phase equilibrium problems: (i) the calculation of double azeotropes and (ii)
parameter estimation in a thermodynamic model. Two different formulations were also considered in the double azeotropy problem.
In the azeotrope calculation, a statistical analysis was conducted in order to verify if the algorithm performance is affected by the the
problem formulation. The computational results indicate that the methodology provides robust results and that the objective function
employed affects the computational performance.
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RESUMEN
Los problemas de optimización multimodal se encuentran comúnmente en problemas de ingeniería y su solución puede ser muy
desafiante para los enfoques metaheurísticos. En este trabajo se analizó el uso de un método metaheurístico multimodal recientemente
propuesto - el Algoritmo Multimodal de Polinización de la Flor - en problemas de equilibrio de fase fluida en dos etapas: (i) el cálculo
de azeótropos dobles y (ii) la estimación de parámetros en un modelo termodinámico. También se consideran dos formulaciones
diferentes en el problema de doble azeotropía. En el cálculo de azeótropo, se realizó un análisis estadístico para verificar si el
desempeño del algoritmo se ve afectado por la formulación del problema. Los resultados computacionales indican que la metodología
proporciona resultados robustos y que la función objetivo empleada afecta el rendimiento computacional.
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Introduction
Multimodal optimization problems can be a challenging
test for stochastic optimization algorithms (Platt, 2016),
considering the task of locating all minimum/maximum
points of the problem at hand. This kind of problem
has been studied with crowding, sharing, niching and
speciation techniques, among others (Thomsen, 2004; Parrot
and Li, 2006; Cuevas and Reyna-Orta, 2014). In these
scenarios, versions of established algorithms were developed
for multimodal problems, such as the CrowdingDE (Crowding
Differential Evolution), the SharingDE (Sharing Differential
Evolution) (Thomsen, 2004) and the SPSO (species-based
Particle Swarm Optimization) (Parrot and Li, 2006). A revision
regarding these techniques was presented by Parrot and Li
(2006).

Recently, new approaches have been published to deal with
multimodal problems. Standing out among them — in
terms of simplicity of implementation — are the Multimodal
Cuckoo Search (MCS) (Cuevas and Reyna-Orta, 2014) and
the Multimodal Flower Pollination Algorithm (MFPA) (Gálvez,
Cuevas, and Avalos, 2017). These algorithms were tested in

typical benchmark functions, but lack tests and validation in
real engineering problems.

Stochastic optimization algorithms have been extensively
used in many fields of engineering in the last decades (Bermeo,
Caicedo, Clementi, and Vega, 2015; García Montoya and
Mendoza Toro, 2011; Nagarkar and Vikhe, 2016). In this
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scenario, the present work presents some applications of
the MFPA algorithm in two phase equilibrium problems: (i)
an application in refrigeration; the calculation of azeotropic
composition in the mixture HFC4310mee (commercially
known as Vertrel XF) + Tetrahydrofuran (THF), a refrigerant
fluid — refrigerant fluids are usually pure substances or
azeotropic mixtures; zeotropic mixtures are avoided in
refrigeration, since the composition variations arising from
vaporization and condensation processes can alter the
performance of the refrigerator — and (ii) the parameter
estimation in the binary system acetic acid + anisole, a
system with applications in the agrochemical industry. The
vapor-liquid equilibrium in the system acetic acid + anisole
was recently studied by Mali, Mali, Patil, and Joshi (2017). The
anisole exhibits insecticide properties and has been studied
in recent years (Quan, Liu, and Liu, 2018). Platt (2016)
discussed the performance of two stochastic algorithms in
the azeotrope calculations, yet employing a different approach
to the used in this work, mainly regarding the strategies used
to obtain multiple solutions.

The aim of this work is not to present comparisons
between the different existing techniques to solve multimodal
problems. Such comparisons have been exhaustively
discussed in the literature (see Derrac, García, Molina and
Herrera, 2011; Platt, Yang and Silva Neto, 2019) and the
results are intrinsically dependent on the parameters used in
the algorithms, which renders these analyses arbitrary under
several aspects. Thus, the objective of this work is to verify the
applicability, in terms of robustness or efficiency (with respect
to the identification of the solutions of the problems) and
ease of implementation, of the MFPA in real engineering
problems. A recent analysis of algorithm comparisons
(bio-inspired metaheuristics and deterministic approaches)
was presented by Sergeyev, Kvasov, and Mukhametzhanov
(2018). These authors conclude that both metaheuristics
and determinist algorithms were capable to adequately solve
distinct problems, and that, obviously, the parameter tuning
of metaheuristics must be considered in such comparisons.

Description of the problems
Azeotrope Calculation
The term azeotrope refers to a thermodynamic condition
where a boiling liquid produces a vapor phase with the same
composition. The existence of azeotropes can occasionally
cause problems in the separation of the mixture by distillation
(see Shen, Benyounes, and Song, 2015).

The azeotrope calculation will be modeled with two distinct
approaches, in order to evaluate the effect of the objective
function (or fitness, to use a bio-inspired term). Obviously,
the solution for both formulations are the same.

Formulation 1: The first approach consists in the azeotropy
problem in its classical formulation, i.e., the isofugacity
equations and the equality of compositions between liquid
and vapor phases (azeotropy relation) (Walas, 1985):

5̂ !8 − 5̂ +8 = 0, 8 = 1, . . . , 2 (1)

H8 − G8 = 0, 8 = 1, . . . , 2 − 1 (2)

where 5̂ U
8

is the fugacity of component 8 (in the mixture) in
phase U, in a mixture with 2 components. The superscripts
! and + refer to the liquid and vapor phases, respectively.
The molar fractions of the component 8 in liquid and vapor
phases are G8 and H8 , respectively. Equations (1) impose the
coexistence of the phases, and Equations (2) represent the
equality of compositions between liquid and vapor phases
(representing pure components and azeotropes). As a
condition of coexistence, the azeotropy also implies the
equalities of temperatures and pressures for both phases.
Since we are using only one temperature () ) and one pressure
(%) for vapor and liquid phases, these conditions are implicitly
attended. The fugacity of a component 8 in the vapor phase
will be calculated considering an ideal vapor phase — which
is compatible with the low pressures in the studied problems
— which produces (Walas, 1985):

5̂ +8 = %H8 (3)

The nonideal liquid phase will be modeled by a modified
Raoult’s law (Walas, 1985):

5̂ !8 = %B0C8 G8W8 (4)

where %B0C
8

is the saturation pressure of the pure fluid 8 and W8
is the activity coefficient of component 8. In a binary system,
we obtain:

�1 = %H1 − %B0C1 G1W1 = 0
�2 = % (1 − H1) − %B0C2 (1 − G1) W2 = 0

�3 = H1 − G1 = 0
(5)

Substituting �3 in �1 and �2, a two-dimensional problem (to
be zeroed) can be obtained:

�8 = % − %B0C8 W8 = 0, 8 = 1, 2 (6)

The fitness function F can be produced by adding the squares
of the residues of each nonlinear equation, i.e.:

F =
2∑
8=1

�2
8 (7)

Null minima of F are the solutions (or roots, using the
widespread term employed in numerical analysis) of the
nonlinear system represented by Eqs. (6).

Formulation 2: Considering the approach of Bonilla-
Petriciolet, Iglesias-Silva, and Hall (2009) (referred here as
Formulation 2), the azeotrope calculation can be represented
as:

�1 = 6! − 6+ = 0

�8+1 =

(
m6!

mG8

)
) ,%,G: (:≠8)

−
(
m6+

mH8

)
) ,%,H: (:≠8)

= 0, 8 = 1, . . . , 2 − 1
(8)
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where 6 refers to the dimensionless molar Gibbs free energy
of mixing for the mixture (6 = Δ�<

')
), represented by

6! =

2∑
8=1

G8 ln (G8W8)

6+ =

2∑
8=1

G8 ln
(
%G8

%B0C
8

) (9)

for liquid and vapor phases, respectively. Again, if we consider
H8 = G8 , ∀8, the azeotropy problem is solved for liquid molar
fractions. The fitness function is, again, the sum of the
residues of each nonlinear equation, and it can be calculated
by using the same expression of Eq. (7), but now referring to
the residues represented by Eq. (8).

In both cases, the molar excess Gibbs free energies (�� ) will
be modeled by a Redlich-Kister model (Segura, González,
and Wisniak, 2005):

��

')
= G1G2

[
�1 + �2 (G2 − G1) + �3 (G2 − G1)2

+ �4 (G2 − G1)3
]
,

(10)

where �: = �0
:
+ �

1
:

)
, : = 1, 4. In the last equation, ' is the

Universal gas constant and ) is the absolute temperature
(Kelvin). Values for the coefficients�0

:
and�1

:
and coefficients

for Antoine’s equation (for calculation of saturation pressures)
are reported by Segura et al. (2005).

The activity coefficients are partial molar properties of excess
Gibbs free energies, and can be calculated by (Walas, 1985):

ln (W8) =


m

(
=��

')

)
m=8

) ,%,= 9≠8

, (11)

where = is the total amount of substance.

Parameter Estimation
Parameter estimation is a very common task in many
engineering fields. In the context of chemical engineering,
the parameter estimation in thermodynamic models can
exhibit multiple solutions, as pointed by Gau, Brennecke, and
Stadtherr (2000). In these occasions, the use of deterministic
algorithms, such as the Nelder-Mead Simplex (Nelder and
Mead, 1965), is not advisable, since local optima can be
found depending on the initial guesses, which justifies the
use of stochastic approaches. Thus, parameter estimation is
a good scenario to test the performance of MFPA.

Mali et al. (2017) studied the vapor-liquid equilibrium in
the binary system acetic acid + anisole at 96,15 kPa. The
experimental data described by them indicated a minimum
boiling azeotrope in the system, close to the pure acetic acid
in the compositional domain. The fitness function employed
here is (Gau et al., 2000):

F =
?∑
8=1

2∑
9=1

©«
W

exp
8, 9
− Wcalc

8, 9

W
exp
8, 9

ª®¬
2

(12)

where ? is the number of experimental points and 2 is the
number of components in the mixture. The superscripts exp
and calc represent, respectively, experimental and calculated
data. It must be stressed that this objective function is
different to that employed by Mali et al. (2017). These
authors used an absolute deviation between calculated and
experimental saturation pressures. The experimental data
will be adjusted to the Wilson model (1964). In this problem,
since we are dealing specifically with the excess Gibbs free
energy model, a more detailed description of the expressions
is useful. The activity coefficients calculated by this model in
a binary mixture are:

ln
(
Wcalc

1

)
= − ln (G1 + Λ12G2)

+ G2

(
Λ12

G1 + Λ12G2
− Λ21

G2 + Λ21G1

)
ln

(
Wcalc

1

)
= − ln (G2 + Λ21G1)

− G1

(
Λ12

G1 + Λ12G2
− Λ21

G2 + Λ21G1

)
(13)

and the parameters Λ12 and Λ21 are calculated by:

Λ12 =
+2

+1
exp

(
−\1

')

)
Λ21 =

+1

+2
exp

(
−\2

')

) (14)

+1 and +2 are the molar volumes of components 1 and
2, respectively. The parameters (to be estimated in the
optimization procedure) are \1 and \2. The experimental
points are calculated by the modified Raoult’s Law (Walas,
1985). The experimental data employed in the parameter
estimation (as well as all the other quantities, such as
molar volumes and expressions for saturation pressures)
are presented in Mali et al. (2017) and, for the sake of
conciseness, are not reproduced here.

Methodology
In this section, we will present a brief description of the
Multimodal Flower Pollination Algorithm (MFPA), proposed
by Gálvez et al. (2017). The original Flower Pollination
Algorithm (FPA) was proposed by Yang (2012) and mimics
the process of flower pollination. In FPA, a population (a set)
of = flowers (vector of decision variables) is generated every
: iteration (a generation), where each flower corresponds to
a vector as a potential solution of the optimization problem.
The quality of each vector is evaluated through a fitness
function. At each iteration, either one of two operators is
carried out for each individual population member: (i) local
pollination operator, a small step, related to the exploitation
of the promising regions and the accuracy of the solutions;
or (ii) global pollination operator, a large step, using the Lévy
Flight, responsible for exploring the domain in an effective
way (Pavlyukevich, 2007). A switch probability function is
used in order to randomly define which operator is to be
used. Finally, a elitism strategy is applied in order to keep
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the best solution (with the minimum cost function value in a
minimization problem). The procedure is repeated until the
maximum number of iterations (or generations) is achieved.
At the end, the best solution found is a potential global
optimum.

Gálvez et al. (2017) proposed a multimodal flower pollination
algorithm (MFPA) enhancing the original algorithm with
multimodal capabilities, in which they added the process
of finding the global optimum and multiple local optima. In
the MFPA, three new elements are included. The first element
involves a memory mechanism, which allows an efficient
registering of potential optima. The memory is a set of vectors
considered as the potential global or local optima. The second
element is a new selection strategy approach, in order to
decide whether the solution is to be registered as potential
or not, thus updating the memory. The decision to keep the
solution is influenced not only by the current best solution as
in the original algorithm, but also by vector solutions that are
contained in the memory. The third element consists of a
depuration procedure executed in order to eliminate similar
solutions that may represent the same optima, resulting in a
cleaner memory (with less elements). Thus, the algorithm
is summarized as follows: after the generation of the new
population (by local or global pollination-FPA algorithm) and
the initialization of the memory with the best solution from
the first population, the new selection approach is executed
and the memory is updated. Afterwards, the depuration
procedure is executed and the memory is updated again. At
the end, all memory solutions are supposed to be optimal
(globally and locally).

The selection approach uses some rules based on the cost
function of the solution to capture memory elements. The
fitness value of the current vector is compared to the worst
memory element. The distance to the nearest element in the
memory is used to decide whether the solution represents a
new optimum or is similar to an existing memory element.
After the memory mechanism procedure, the depuration
procedure is applied, in which the memory elements in the
vicinity, within a ratio that depends on the distance between
the elements, are cut off. Therefore, some elements that
represent the same solution are excluded and, as a result, the
memory contains a smaller number of solutions. Finally, the
memory elements are expected to be the local and global
optimum. In this work, the switch probability (between
global and local pollination) was 0,25, the population size
was fixed in 50 individuals and the number of iterations
(stopping criterion) was 500. These are the same parameters
proposed by Gálvez et al. (2017). In fact, we are using the
same set of parameters presented in the original algorithm,
since a desirable property of any metaheuristic is the ability
to deal with different problems without costly and difficult
parametrization procedures.

Results and Discussions
Azeotrope Calculation
The azeotropic coordinates for the system HFC4130mee (1) +
THF (2) at 35 kPa are (G1, )) = (0, 0924, 309, 45) (Azeotrope
1) and (G2, )) = (0, 255, 309, 57) (with T in Kelvin), as
reported by Guedes, Moura Neto, and Platt (2015). As
previously described as detailed by several authors (Segura
et al., 2005; Guedes et al., 2015), two azeotropes appear at
this pressure. We observed that the values for the azeotropic
temperatures are extremely close, which can be a challenge
for the algorithm.

The contour curves of the fitness functions for Formulation
1 and Formulation 2 are presented in Figures 1 and 2,
respectively. Clearly, one can note visible differences
between the shapes of the contour curves related to the
different formulations (even considering that the solutions
are the same). We investigated the effect of these differences
in the robustness of the methodology used to determine the
azeotropic coordinates.
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Figure 1. Contour curves for the azeotropy problem (Formulation 1).
Source: Authors
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Figure 2. Contour curves for the azeotropy problem (Formulation 2).
Source: Authors
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The algorithm was run 100 times for both formulations,
in order to evaluate the performance of the computational
framework, i.e., the capability to obtain, in a robust way,
the exact number of solutions for each problem. A “run”
is a typical execution of the MFPA, using random initial
guesses. We noted that Formulation 1 found a larger number
of roots when compared with Formulation 2. Since the
problem exhibits only two solutions (roots), this behavior
must be investigated. Figure 3 contains a graphical vision
of a matrix containing the roots identified in each run,
for both formulations. We observed that the algorithm
identified (using Formulation 1, marked as blue points), in
some occasions, more than two roots (up to five, in fact;
an undesirable characteristic of the algorithm, related to
the memory of the framework). On the other hand, using
Formulation 2 (again in Figure 3, but now using black points)
the algorithm found more than two solutions only in one
run. But, in some runs, only one solution was identified, as
indicated by the line corresponding to the second solution in
Figure 3. This means that the algorithm “fails” to obtain all
the solutions. The high fitness values for solutions (or roots)
3, 4 and 5 (typically non-physical solutions of the problem)
indicate some kind of ‘trash’ in the memory of the algorithm
(even using the memory depuration procedure), since we
must obtain fitness values close to zero in the azeotropy
problem.
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Figure 3. Matrix of roots found after 100 runs – azeotropy problem.
Source: Authors

Considering this complex situation — one formulation finds
more than two solutions, while the another one identifies
less than two solutions — we used a tailor-made inefficiency
index (ineff), defined as follows: ineff = (number of roots
found) - (number of feasible roots found). For instance, if the
algorithm found four roots and only one root corresponds
to a physical one, the inefficiency is ineff = 4 − 1 = 3. On
the other hand, if the program identifies 2 solutions and both
are physical solutions, the index is ineff = 2 − 2 = 0. Figure 4
compares the inefficiency indexes for Formulations 1 and 2.
An analysis of the figure appears to indicate that Formulation
2 is more efficient when compared to Formulation 1, but
some statistical analysis is necessary.
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Figure 4. Inefficiency index for the azeotropy problem.
Source: Authors

Statistical Analysis
Formulations 1 and 2 were statistically compared with respect
to the inefficiency at obtaining both solutions. A normality test
was used to evaluate the distribution. A qualitative overview
of the data can be performed by evaluating the categorized
histogram (Figure 5). As observed, the data seems to be
very far from normal distribution. This is supported by the
Shapiro-Wilk parametric hypothesis test (Platt et al., 2019),
where the p-Values obtained for samples of Formulation 1
and Formulation 2 were both below the alpha risk of 5%
(< 1 × 10−5).

Figure 5. Categorized histogram of the inefficiency index.
Source: Authors

As the normality hypothesis does not apply, and the objective
is to compare independent results, a nonparametric test for
unpaired data is applicable. The Mann-Whitney U test was
used to verify if is there a shift or significant differences
between the two samples (Platt et al., 2019). The p-Value
found for Formulation 1 versus Formulation 2 is 1, 36×10−14.
Thus, significant differences were found between the two
populations.
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In order to verify how different they are, the confidence
interval was evaluated. As presented in the box plot in Figure
6, Formulation 2 presents a lower inefficiency index value
and more confined variability, meaning that Formulation 2
presents a better performance than Formulation 1.

Figure 6. Boxplot of the inefficiency index by formulation.
Source: Authors

Parameter Estimation
The search is conducted in the interval [−1000, 1000] for
both parameters (in fact, the search for binary interaction
parameters for activity coefficient models is considered
an unconstrained problem). The global minimum for this
problem is \1 = 426, 24 and \2 = 128, 52 (obviously, this
solution is different to that presented by Mali et al., 2017,
since they used different objective functions). Only one
minimum is found in this problem. In spite of this, we tested
the multimodal algorithm, since in many real-world problems
we do not previously know the number of minima/roots for
each problem. Using the same procedure described above,
the algorithm was executed 100 times, in order to evaluate
the capability to obtain the expected solution in a robust
manner.

Figure 7 contains the matrix of identified roots in 100 runs.
Again, we confirm that the memory is contaminated in some
runs with repeated solutions and/or not converged points.
An outlier was found in the 27th run, with 17 roots stored
in the memory (this kind of anomalous situation is common
in stochastic algorithms). On the other hand, the solution of
the problem was accurately identified in all runs, indicating
that the computational framework was capable to obtain the
minimum of the problem satisfactorily.

Finally, Figure 8 depicts the vapor-liquid equilibrium diagram
at 96.15 kPa for the system acetic acid (1) + anisole (2). It
is noted that the bubble and dew point curves produced
with the estimated parameters show a good agreement
with the experimental data published by Mali et al. (2017).
Furthermore, a minimum boiling azeotrope close to the pure
acetic acid can be predicted.
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Figure 7. Matrix of roots found in 100 runs – Parameter estimation
problem.
Source: Authors
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Figure 8. Phase equilibrium diagram for the system acetic acid (1) +
anisole (2) at 96,15 kPa. Experimental points published by Mali et al.
(2017) are represented by “◦” (liquid phase) and “×” (vapor phase)
Source: Authors

Conclusions
In this work, we tested a recently proposed strategy for
multimodal problems — the Multimodal Flower Pollination
Algorithm (MFPA) — in two chemical engineering problems:
the calculation of a double azeotrope and the parameter
estimation of a thermodynamic model.

Furthermore, we formulated the azeotropy calculation
problem using two approaches. The MFPA algorithm was
executed 100 times for each problem formulation. The
results indicated a statistical difference between the two
formulations employed in the double azeotropy problem,
favoring the strategy proposed by Bonilla-Petriciolet et al.
(2009). In the parameter estimation problem, the algorithm
identified repeated solutions, but was capable to find the
minimum in all runs.

Finally, the computational results indicated that MFPA is a
useful tool in real engineering optimization problems with
multiple solutions.
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