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A study of the stress field generated by the contact between
a sphere and a flat plate for a simplified model of

deep-groove ball bearing
Un estudio del campo de tensión generado por el contacto entre una

esfera y una placa plana para un modelo simplificado de rodamientos
rígidos de bolas

A. O. Köhn 1 and F. de A. Silva2

ABSTRACT
Bearings are mechanical elements capable of transferring motion between two or more parts in a machine. When an external load is
applied, the rolling elements and their rings tend to initiate a cyclical movement between themselves. Hence, they are linked by a
variable type of contact, thus creating high surface stresses. As these elements are subjected to millions of cycles within their lifespan,
these cyclical stresses may create cracks and cause failure by rolling contact fatigue (RCF). Due to the importance of this subject, it
is vital to study the stress field caused by contact between the rolling parts in a bearing. This paper offers two approaches on the
cyclical stresses in a deep-groove ball bearing: an analytical approach, using Hertz’s theory for contact stresses; and a numerical
simulation, using the Finite Element Method (FEM) with the software Inventor and Nastran In-CAD. The results of both approaches
were compared, and stress behavior was analyzed as the depth of the inner ring was increased. It was concluded that the surface
stresses are greatly superior than the strength of the materials used in the bearings, and that the area influenced by these stresses are
small when compared to the dimensions of the whole.
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RESUMEN
Los rodamientos son elementos mecánicos capaces de transferir movimiento entre dos o más partes en una máquina. Cuando se
aplica una carga externa, los elementos rodantes y sus anillos tienden a iniciar un movimiento cíclico entre ellos. Por lo tanto, están
vinculados por un tipo variable de contacto, creando altas tensiones superficiales. Como estos elementos están sujetos a millones
de ciclos en su vida útil, estas tensiones cíclicas pueden crear grietas y causar fallas debido a la fatiga por contacto. Debido a la
importancia de este tema, es vital estudiar el campo de tensión causado por el contacto entre las partes rodantes en un rodamiento.
Este documento ofrece dos enfoques sobre las tensiones cíclicas en un rodamiento rígido de bolas: un enfoque analítico, utilizando la
teoría de Hertz para las tensiones de contacto; y una simulación numérica, utilizando el Método de Elementos Finitos con el software
Inventor y Nastran In-CAD. Los resultados de ambos enfoques se compararon y se analizó el comportamiento de las tensiones
a medida que aumentaba la profundidad del anillo interior. Se llegó a la conclusión de que las tensiones superficiales son muy
superiores a la resistencia de los materiales utilizados en los rodamientos, y que el área influenciada por estas tensiones es pequeña
en comparación con las dimensiones del conjunto.

Palabras clave: estrés por contacto de Hertz, modelo FEM, rodamiento rígido de bolas, contacto superficial
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Introduction
Bearings are mechanical elements used in the naval,
aeronautical, automotive and various others branches of
the industry. These are crucial elements in the transmission
of motion between two parts – for example, a bearing and a
shaft. A good bearing performance requires a combination of
different parameters acting simultaneously on the element,
such as rotation speed, applied loads, lubrication, and
geometry of the parts involved in the contact.

Bearings are defined by the type of their rolling elements (balls,
needles, rollers, etc), number of rows (single, double, triple),
and the type of applied load (radial and/or axial) (Norton,
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2013). The bearing type is chosen based on the conditions
and requirements of its application. These machine elements
are usually formed by steel rolling elements between two
rings (inner and outer), which are retained within a cage.

When an external load initiates rotation, surface contact
stresses may cause a subsurface crack, which can grow until
it reaches the surface. This endangers the bearing, risking
failures such as pitting and spalling, which can compromise
the whole machine and cause great financial and human loss.

Due the importance of this matter, many papers seek to
understand the mechanism of this problem. However,
the study of contact between bearing parts is known to
be a complex issue, since the contact area is subjected
to stresses as high as 2∼5 GPa (Norton, 2013; Rycerz,
Olver, and Kadiric, 2017; Morales-Espejel and Gabelli, 2015;
Bhattacharyya, Londhe, Arakere, and Subhash, 2017; Li,
Hu, Meng, Zhan, and Shen, 2017 Arakere, 2016), as well
as several other parameters that have an impact on the
situation, such as lubrication, vibration, roughness (Yusof
and Ripin, 2014), bearing dimensions (Chen and Wen, 2015),
rotation speed, applied loads (Guo, Cao, He, and Yang, 2015),
and the curvature of the inner and outer rings (Deng, Hua,
Han, and Huang, 2013; Chen and Wen, 2015). Therefore,
each parameter must be examined thoroughly, seeking to
determine the influence of its behavior on RCF.

Contact between the rolling element and the race creates a
triaxial compressive stress field, along with shear stresses
in all directions (Bhattacharyya et al., 2017; Arakere, 2016).
Many studies showed that shear stresses are responsible for
the appearance of cracks (Bhattacharyya et al., 2017; Juvinall
and Matshek, 2008; Deng, Hua, Han and Huang, 2014).
Studies like Deng, Hua, Han, Wei and Huang (2015) and
Deng, Hua, Han and Huang (2013) showed that there will
be a peak of stresses around a subsurface material defect,
initiating a crack that will spread until it reaches the surface,
causing failure of the element.

RCF has a different behavior in each type of bearing, due
to the difference in their contact geometry. Morales-Espejel
(2014) and Deng et al. (2014) discussed the phenomenon
in roller bearings, whereas Li et al. (2017) examined the
performance of tapered roller bearings, and Lostado, Martinez,
and Donald (2015) studied self-aligning roller bearings.
This paper proposes a simplified model for a deep-groove
ball bearing.

Neglecting the lubrication effects, the analytical approach
for this problem is based on the Hertz equations for contact
surfaces (Chen and Wen, 2015). To validate the results, it is
crucial to apply the numerical method and a FEM software
to obtain the stress field (Lostado et al., 2015). Comparing
both approaches, it is possible to achieve a number close
to reality.

The contact seen in a deep-groove ball bearing can be
simplified using a sphere and flat plane (Norton, 2013). In
this paper, the stress field caused by this type of contact
was calculated and analyzed. The analysis was performed by
using the Hertz equations for contact stress, and these results

were compared to the data obtained from the numerical
method, using FEM software Nastran in-CAD and Inventor.

Theoretical analysis
In a deep-groove ball bearing, the rolling elements are in
contact with the inner and outer races. When an external
load is applied, these balls tend to roll over the race, allowing
the transmission of motion between them. This movement
consists of 99% rolling and 1% sliding (Norton, 2013).

The contact area is directly related to the geometry and
mechanical properties of the materials in contact. Ideally,
the contact between a sphere and a flat plate would be
represented with a single point with no dimension, generating
an infinite stress. However, the applied load causes a small
deformation, creating a small contact area with radius 𝑎,
minimal when compared to the radius of the sphere, causing
high compressive stresses. Hence, a high stress field is
generated, which may lead to RCF failure of the element.
These stresses are much higher than the strength of the
materials used in bearings, reaching 2∼5 GPa. Figure 1
illustrates the contact area between a sphere and a flat plate
in a simplified manner.

Each part of the ball will have touched the race after a rotation
is completed. Therefore, this movement creates cyclical
stresses described as Hertz stresses (Norton, 2013), thus
inducing the formation of pits and spalls and, consequently,
complete failure by RCF.

Figure 1. Circular contact zone between a sphere and a flat plate.
Source: Authors

Hertz’s stress theory takes into consideration some
parameters like surface geometry of the bodies in contact,
mechanical properties (Young’s Modulus and Poisson ration),
and applied loads. Therefore, it is possible to calculate shear
and normal stress.

When considering two spheres, Norton (2013) and Juvinall
and Matshek (2008) state that the stress between them is
dependent on the material and geometrical constants of each
sphere. The first is shown in Equation (1), where 𝑛 is the
index that defines each element; and the second is referred
to in Equation (2) and involves the curvature of both spheres
(𝑅1 e 𝑅2).

𝑚𝑛 =
1 − 𝜐𝑛

2

𝐸𝑛

(1)

𝑏 =

(
1
2

) (
1
𝑅1

+ 1
𝑅2

)
(2)
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According to Norton (2013) and Juvinall and Matshek (2008),
the maximum pressure is seen at the center of the contact
region, and 𝑃mean is the mean pressure obtained through the
division between the applied load 𝐹 and the contact area of
radius 𝑎, which is obtained through Equation (5).

𝑃max =
3
2

𝐹

𝜋𝑎2 (3)

𝑃mean =
𝐹

𝜋𝑎2 (4)

𝑎 = 0, 375 3

√︂
𝑚1 + 𝑚2

𝐵
𝐹 (5)

The applied load 𝐹 will create a triaxial stress field, in which
𝜎𝑥 , 𝜎𝑦 e 𝜎𝑧 are all compressive and whose maximum is found
at the surface. They decrease progressively as the depth is
increased (Norton, 2013). The maximum stresses are, at the
same time, the main stresses (Juvinall and Matshek 2008).

According to Norton (2013), it is possible to describe the
behavior of the shear and the three main normal stresses
with Equations (6-8). Plane 𝑥𝑦 is the one that contains the
region of contact between the two surfaces, and 𝑧, which
represents depth, is the perpendicular axis of this plane.

𝜎𝑥 = 𝜎𝑦 =
𝑃max

2

[
− (1 + 2𝜐) + 2 (1 + 𝜐)

(
𝑧√︁

(𝑎2 + 𝑧2)

)
+ · · · −

(
𝑧√︁

(𝑎2 + 𝑧2)

)3] (6)

𝑎 = 0, 375 3

√︂
𝑚1 + 𝑚2

𝐵
𝐹𝜎𝑧 = 𝑃max

 −1 + 𝑧3(
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Materials and methods
Analytical approach
The calculation was based on a deep-groove ball bearing,
from the manufacturer FAG, series 6207. Table 1 shows the
dimensions used in Equations (1-9) and Figure 2 illustrates
the sectional drawing of a bearing.

The applied load was calculated based on the guidelines
for an electric rotor project. The total load applied on the
bearing was 𝐹 = 1 010,6 N. The used model has nine balls, as

Table 1. Bearing dimensions

Dimensions Measure

𝑑 35,0 mm

𝐷 72,0 mm

𝐵 17,0 mm

𝑑1 47,2 mm

𝐷1 60,7 mm

𝐷sphere 11,0 mm

Source: Authors

Figure 2. Sectional drawing of bearing.
Source: Authors

illustrated in Figure 3. Therefore, it is necessary to divide the
total load by the number of rolling elements, thus obtaining
112,3 N. This value was applied to Equations (3-8) to obtain
the stress field from the contact surface.

Figure 3. Deep-groove ball bearing FAG 6 207.
Source: Authors

As it was mentioned above, the contact region of the ball
and race is complex, since it has 4 different curvatures (one
radial and one axial for each element). In order to simplify
the calculations, it was assumed that one of the bodies is a
flat plate. In this case, 𝑅2 tends to infinity, making the Hertz
equations easier to calculate. Despite this simplification, the
results are still valid and realistic (Norton, 2013).

It was defined that the bearing is made of AISI 52100, the
most common steel alloy for this type of operation (Chen and
Wen, 2015). Table 2 shows all values used in the calculations.
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Using the values from Table 2, the results for 𝐵, 𝑃max, 𝑃mean,
as well as stresses 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 , 𝜏𝑥𝑧 and 𝜏𝑦𝑧 were obtained
from Equations (3-8). As the maximum normal stresses are
observed at the contact plane of the two bodies, 𝑧 must be
zero, or in other words, the depth must equal zero.

Table 2. Values of the parameters used

Sphere Radius 𝑅1 5,5 mm
Plate Radius 𝑅2 ∞
Young’s Modulus (sphere) 𝐸1 210,0 GPa
Young’s Modulus (plate) 𝐸2 210,0 GPa
Poisson’s Ratio (sphere) 𝜐1 0,3
Poisson’s Ratio (plate) 𝜐2 0,3
Applied load in each sphere F 112,3 N

Source: Authors

Numerical approach
According to Bhattacharyya et al. (2017) and Satyanarayana
and Melkote (2004), the contact between a sphere and a
flat plate can be simplified to 1/4 of the model due to the
contact symmetry, thus maintaining the same characteristics
of whole model. Therefore, a computational 1/4 model of the
sphere and the flat plate (which represents the inner ring of
the bearing) was constructed by means of the FEM software
Inventor and Nastran in-CAD, as seen in Figure 4.

Figure 4. 1/4 model of the sphere and flat plate.
Source: Authors

Constraints

The lower side of the flat plate was fixed with constraints in
all directions.

In order to simulate the symmetry of the complete model,
symmetry constraints in relation to the axes 𝑥 and 𝑦 for the
internal faces of the sphere and plate were applied. Therefore,
the simplified model behaves exactly as its complete version.

Loads

A compressive load of 112,3 N was applied on the upper side
of the sphere. This value represents the load that each sphere
receives when a total external load of 1 010,6 N is applied.

Mesh

The mesh was automatically generated by the software.
However, it was necessary to refine it at the contact vertex

between the sphere and the plate, in order to obtain more
precise results.

The final mesh was made with parabolic elements, sized
0,626441 mm, with a tolerance of 1,25288e-05, and it has 6
903 nodes and 4 299 elements.

Surface contacts

The external surface of the sphere is in contact with the upper
side of the flat plate. To model according to reality, the option
Sliding/ No Separation was used for this contact. Hence, it is
defined that the parts will not be allowed to separate and will
keep attached during the whole operation.

Results and discussion
As it was mentioned before, the contact between the sphere
and the race can be simplified to a sphere and flat plate model,
and when an external load is applied, a triaxial stress field
is created. The shear stresses can cause the appearance of
subsurface cracks which may reach the surface, thus causing
the failure of the bearing.

With the values mentioned in section 3, it was possible to
begin with the analytical and numerical approaches. The
results are displayed in Table 3, where a percentage deviation
between the results is also presented, in order to show the
percentage difference from the stresses obtained by both
approaches. All results in Table 3 are located at 𝑧 = 0 and
correspond to the maximum values found in the model.

Table 3. Analytical and numerical results

Analytical (MPa) Numerical (MPa) Percentage deviation

𝜎𝑥 -1 698,14 -1 667,04 MPa 2%

𝜎𝑦 -1 698.14 -1 645,38 MPa 3%

𝜎𝑧 -2 122,68 -3 617,99 MPa 70%

𝜏𝑦𝑧 706,66 682,80 MPa 3%

𝜏𝑥𝑧 706,66 696,62 MPa 1%

Source: Authors

Analytical results
Applying the parameters previously mentioned in the
Equations (3-8), the results for the five maximum stresses
were obtained, as indicated in Table 3. The radius of the
contact circumference is 0,159 mm, and the contact area
between the bodies is 0,0793 mm2.

As expected, all normal stresses are compressive. The stresses
in directions 𝑥 and 𝑦 have the same behavior, and they
are both in the contact plane of the bodies. The stress in
the direction 𝑧 has maximum values. The shear stresses
from planes 𝑦𝑧 and 𝑥𝑧 have the same values, and they are
both perpendicular to the contact plane of the sphere and
the plane. All maximum normal stresses are found in the
contact region, that is, where 𝑧 = 0 and the depth is null, as
expected. As the depth increases, the stress decreases until it
reaches zero.
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In order to analyze how these stresses behave as the depth
increases, the chart in Figure 5 was created with Equations
(6-8). The horizontal axis represents the depth 𝑧 divided
by the constant value of the radius 𝑎, and the vertical axis
represents the stresses divided by the constant value of 𝑃max.

Figure 5. Behavior of the stresses as a function of depth.
Source: Authors

Figure 5 shows that 𝜎𝑥 and 𝜎𝑦 have the same behavior. The
maximum stresses are located at 𝑧 = 0 and have values
around 0,8 𝑃max. These stresses fall quickly as the depth
increases. When the depth reaches approximately 1,5𝑥 the
value of 𝑎, 𝜎𝑥 and 𝜎𝑦 become null.

The maximum stress 𝜎𝑧 has the same value as 𝑃max, and its
curve declines softer than the stresses in the direction of 𝑥
and 𝑦. Its value tends to zero just when the depth reaches
around 5𝑥 the value of the radius 𝑎.

The maximum shear stress is found under the surface, at
approximately 𝑧 = 0,63𝑎, and its value is around 0,33 𝑃max.

Consequently, it is possible to conclude that the stresses vary
significantly in a small region. For a depth 5𝑥 bigger than the
circumference radius from the contact area, all stresses are
reduced to less than 10% of their maximum value. Thus, it is
concluded that the measurement and study of these stresses
is a complex subject, since stresses vary drastically within
a millimeter region and, moreover, they have considerably
high values. The normal stress peak is located at the contact
of the bodies, and its values can reach 2 GPa.

Numerical results
Resolving the numerical simulation proposed in the item 3.2,
the values of 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 , 𝜏𝑦𝑧 e 𝜏𝑥𝑧 are obtained, as indicated
in Table 3.

All maximum normal stresses are located at the vertex of
the sphere and plate. Figure 6 shows that the critical point
of this simulation for normal stresses is found at the vertex,
and, as the depth is increased, this value decreases until it
reaches zero. It is also seen that the region affected by the
contact stresses is resumed to a small vicinity around the
contact vertex.

By comparing the results from the numerical simulation
and the analytical data, it can be seen that the results
for 𝜎𝑥, 𝜎𝑦, 𝜏𝑦𝑧 e 𝜏𝑥𝑧 are significantly close between the
two approaches, and its percentage deviation is around 2%.

Figure 6. Numerical Result.
Source: Authors

However, the numerical value obtained for 𝜎𝑧 is relatively
far from the analytical value.

Four out of five stresses calculated with the FEM software
were validated by the analytical calculation. The discrepancy
between the values obtained for 𝜎𝑧 can be justified by the
inaccuracy from the Hertz equations regarding the thickness
of the bodies, that is, the Equations (3-8) do not consider the
thickness of the plate. Therefore, the FEM simulation can
produce imprecise results compared to the analytical values.

Despite the discrepancy seen in one of the stresses, the
theory says that shear stresses are the critical regarding the
appearance of cracks that will cause the failure by RCF in
the mechanical element. As the percentage deviation seen
for this type of stress is around 2%, the FEM model can be
validated for this simulation.

Conclusions
The study of the stresses caused by the cyclical contact
between a sphere and the race of a deep-groove ball
bearing are of high importance, especially regarding the
RCF phenomenon. The cyclical contact between the bodies
creates a complex high stress field (2∼5 GPa), and this process
can lead to total failure of the mechanical element.

In this paper, an analytical approach was proposed to study
the contact between a sphere and a flat plate, using the Hertz
theory for contact surfaces. A numerical method through a
FEM model, using the software Inventor and Nastran in-CAD,
was also proposed. The normal stresses obtained by both
approaches were always compressive, and their maximum
was located at the surface of the bodies. When the depth was
increased, these stresses decreased quickly until they reached
zero. Therefore, it can be concluded that the region affected
by contact stresses is limited to a small vicinity around the
contact vertex.

The results of both approaches were satisfactory. In spite of
the divergence between the results for the normal stress
perpendicular to the contact plane, the shear stresses
obtained were similar for both methods, and these types
of stresses are the most critical in the appearance of cracks.
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