
INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021 (e87761)

Research Article / Industrial Engineering https://doi.org/10.15446/ing.investig.v41n3.87761

Design of Comminution Plants in the Ceramic Industry
Using a Simulation-based Optimization Approach

Diseño de una planta de molienda para la industria de cerámica
mediante un enfoque de optimización basado en simulaciones

Ignacio Ortiz de Landazuri Suárez 1 and María-José Oliveros Colay 2

ABSTRACT
In many cases, the design process of a structural ceramic comminution plant typically consists of an ‘expert designer’ who makes
decisions using intuitive criteria to select commercial equipment. This paper proposes a simulation-based optimization approach
to help decision-making. The complexity of the problem lies in selecting the model and amount of equipment for each stage at
the lowest cost while simultaneously satisfying a previously fixed production and granulometry. The proposed approach is based
on a genetic algorithm to generate solutions and facilitate the optimization process, together with discrete simulation to evaluate
the performance of the comminution process according to its service level. To evaluate the algorithm, different problems, whose
parameters are based on the requirements of the ceramic industry, are solved and analyzed.
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RESUMEN
En muchos casos, el proceso de diseño de una planta estructural de molienda para la industria de la cerámica consiste en un
“diseñador experto” que utiliza criterios intuitivos para seleccionar equipos comerciales. Este artículo propone un enfoque de
optimización basado en simulación para ayudar en la toma de decisiones. La complejidad del problema radica en seleccionar el
modelo y número de equipos en cada etapa por el costo más bajo y, simultáneamente, satisfacer producción y granulometría fijadas
previamente. El enfoque propuesto se basa en un algoritmo genético para generar soluciones y facilitar el proceso de optimización,
junto con un modelo de simulación para evaluar el rendimiento del proceso de molienda de acuerdo con su nivel de servicio. Para
evaluar el algoritmo, se resuelve y analizan diferentes problemas cuyos parámetros se basan en los requerimientos de la industria
cerámica.
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Introduction
Comminution is commonly defined as the reduction in the
average particle size of solid materials. It is usually performed
via crushing, grinding, cutting, vibrating, among others (Mar-
tins, 2016). These processes are commonly used in the
mining, pharmaceutical, food, chemical, recycling (Kruszel-
nicka, 2020), and ceramic industries.

The structural ceramic industry is dedicated to the procure-
ment of bricks, tiles, and refractories (Cely-Illera, 2016). Most
companies operating in this sector obtain their raw materi-
als from quarries close to their installations, regardless of
whether these quarries belong to them or to third parties.
Untreated clay obtained from quarries is transported by truck
to the company site, where it is unloaded and stored for later
use (Regional Activity Centre for Cleaner Production, 2006).

During the grinding process, untreated clay acquired directly
from the quarry is milled to obtain raw material with the
necessary grain-size distribution and texture for subsequent
shaping. Two methods can be used to achieve this: the dry
method and the semi-wet method. This study focuses on the
dry method, since hard clays are best prepared in installations

by using it. This type of system ensures that a significant
proportion of fine particles is obtained, which can then be
moistened more easily and quickly, thus resulting in a highly
homogenous mass with high plasticity. As a result, a better
finish and a stronger product are obtained.

In the structural ceramic industry, crushers, box feeders,
hammer mills, and conveyor belts are common machines
used in the comminution process. Although it seems straight-
forward at first, the sheer number of combinations of all
the parameters to consider makes it extremely likely that
erroneous estimates will be made, as well as glossing over
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the best possibilities. There is a need to develop valuable
tools to aid decision-making in real-world problems that
are usually solved only by experience (Pradenas-Rojas and
Passicot-Guzmán, 2017). The aim of this study is to optimize
the selection of the necessary equipment in the comminu-
tion of structural ceramics, considering the desired level of
production at the lowest possible investment cost.

It is possible to find decision-making processes similar to
those presented in this paper in the field of maintenance
management applied to grinding processes (Barberá-Martinez,
Viveros-Gunckel, González-Prida-Díaz, and Mena, 2014), as
well as in the equipment selection process (Musingwini,
2016). However, in the mining industry, much of this type
of processes used to be carried out experimentally despite
the costs derived from decision-making (Burt and Caccetta,
2018). Moreover, in the structural ceramic industry, it is
difficult to find studies focused on the selection of equipment,
perhaps because this kind of product has a lower added value.

To optimize a process, it is necessary to be able to simulate
and evaluate the behavior of the industrial plant in order to
ensure that there are no bottlenecks or unnecessary over-
sizing. These simulations are common in other fields (Lin and
Chen, 2015) and, although there are commercial programs
for the crushing process, they are usually focused on the
mining industry (such as JKSimMetTM, USIM PACTM, and
ModSimTM) and are steady-state simulators. Even though
they are adequate in several circumstances, they are unable to
simulate transient states and may lead to erroneous estimates
(Asbjörnsson, Hulthén, and Evertsson, 2013).

Discrete event simulators have been proven to measure
the efficiency of in-plant logistics (Seebacher, Winkler, and
Oberegger, 2015). Recently, a modular system has been
reported, developed using MATLAB/Simulink to simulate
the comminution circuits applied to the mining sector (Lé-
garé, Bouchard, and Poulin, 2016). Negahban and Smith
(2014) provide an excellent review of discrete event simula-
tion publications with a particular focus on applications in
manufacturing.

Later in this paper, it will be made evident that it is impossible
to evaluate all feasible solutions in a short period of time.
Therefore, it is necessary to look for optimization algorithms
that allow finding an optimal solution in a reasonable period of
time. Guerrero, Sotelo-Cortés, and Romero-Mota (2018) use
a multi-objective model based on mixed integer programming,
combining optimization and simulation techniques. We have
chosen a genetic algorithm (GA) approach in this work. GAs
are based on the mechanisms of natural evolution which were
originally proposed by John Holland (Holland, 1975). A GA
is a strategy that employs random choices to guide a highly
exploitative search, striking a balance between exploration of
the feasible domain and exploitation of good solutions. An
example of the combination of GA and simulation applied for
facility layout problems can be seen in the work by Wang,
Yan, Zhang, Shangguan, and Xiao (2008), where the objective
function is the material handling cost.

Note that a previous study applied GAs to optimization
problems involving comminution processes and is closely

related to the problem that affects the subject of this work
(Farzanegan and Mirzaei, 2015). Another study applied it in a
crushing plant using commercial machines from the Sandvik
Company (Derpich, Munoz, and Espinoza, 2019).

This study improves upon existing methods in the literature by
optimizing the entire design of a comminution process, rather
than just the parameters that control a previously defined
process. This design includes the selection of the equipment
at each stage, as well as the values of its main parameters to
facilitate optimal operation. Therefore, we have programmed
a GA that designs the process and a simulator that evaluates
the design proposed by the algorithm.

The aim of this work is to facilitate decision-making in the
process of selecting equipment for the ceramic industry,
looking for the optimal combination of machinery that meets
the desired production and granulometry at minimum cost.

Description of the problem
Process description
Figure 1 shows the 5 stages of a basic dry grinding process.
This type of process is used in the structural ceramic industry
when the clay moisture is less than 10-12%. Comminution
in a dry grinding process is typically performed in two stages,
using a crusher and a hammer mill consecutively to achieve
the optimum granulometry needed in the extruder. The
extruder needs a continuous flow of material, while the
crusher receives a batch flow. The raw material extracted
from the quarry is dosed into the crusher via a dumper truck
or wheel loader every time the hopper reaches a previously
stipulated level.

There are feeders with hoppers between these machines in
order to avoid bottlenecks and homogenize material flow.

Figure 1. Comminution basic stages of a dry grinding process.
Source: Authors

Each stage has a number of identical equipment (nk), and each
equipment consists of one machine (Mk) and one hopper
(Tk). A particular machine model can be fitted with different
types of hoppers. Storage capacity increases with height, but
the total height (machine plus hopper height) is limited by
the inside height of the factory. PSk is the stage production
(t/h) and Pk (t/h) is the equipment production in stage k; thus
PSk = nkPk.

Every machine has a short conveyor that feeds the main
conveyor, which brings the material to the next stage. If there
is more than one machine at this stage, another reversible
conveyor is needed to feed the hoppers one by one. The
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main conveyor belt moves material between the stages. Their
speed and inclination are design parameters and depend on
the chosen model. The length is determined by the height
of the equipment that receives material, and the width is
calculated to ensure that the capacity is enough to carry the
maximum output that the stage can produce. The value of
material waste during transport between stages is typically
5% or less of the material moved at each stage.

The extruder or stage k = 0 is the process client. It kneads
the clay with water to obtain the desired shape through
extrusion and vacuum. This equipment needs a continuous
and uninterrupted material flow with a fixed granulometry.
The client determines both parameters: PSk=0 = PS0 (t/h)
and Φk=0 = Φ0 (mm).

Primary feeders or PFs (M1) dose the exact production re-
quired in the extruder. Each feeder draws a variable produc-
tion Pk=1 (t/h) from its hopper. The total stage production
must be equal to PS0, but the production of each feeder may
vary within a range according to material availability.

Hammer mills, or HMs, (M2) break the material to decrease
its granulometry. The diameters of screen holes are fixed to
match the granulometry needed in the extruder (Φ2 = Φ0).
HM model production is fixed, and the overall production sent
to PFs is the result of multiplying the number of active HMs
(the ones with material in their hoppers) by their nominal
productions. They stop once PF hoppers are full and run
again when some of their levels are below a reserve level,
which is usually 40% of their capacity, and all available HMs
send material to the corresponding PF hopper.

Secondary feeders or SFs (M3) feed HMs in a similar manner
as PFs do, although they do not necessarily feed the exact
amount of material that HMs produce. Once all the HM
hoppers are full, the feeders stop and resume when a hopper
reaches the reserve level. Material flow must be equal to
or higher than the amount needed by the HMs in order to
receive sufficient material in a timely manner every time
they are set in motion. This parameter, called ‘production
multiplier’ must be considered in the design process.

Crushers (M4) decrease the grain size of the raw material
stored in their hoppers T4. The diameter of the raw material,
Φ5, is an initial condition of the problem. Otherwise, the
diameter from the material that goes out of the crusher, Φ4,
varies between a set of values. This is important because the
selected size influences the work done by the HM.

Stage 5 models the way in which trucks or wheel loaders
directly transport the raw material from the quarry. Batch
process size, number, and tempo depend on hopper capacity,
T4. In this work, we have decided that the simulator should
use the wheel loader when the capacity of the hopper is
small, and dumper trucks in the rest of the cases. The
average charge cycle time has been considered to be 5 and
20 minutes, respectively.

Process parameters
The main parameters that control the process are demanded
by the client: extruder continuous production, PS0 (t/h), and
extruder granulometry, Φ0 (mm). Other parameters affecting
the performance of the plant are raw materials granulometry
at the quarry, Φ5 (mm), and available height inside the factory,
H (m).

Bulk density ρ is a significant factor because clay is a granular
material, and its density depends on particle size. Equation
1 defines a linear relationship between Φ80 (the diameter
below which 80% of material passes) and density based on a
company experimental dataset. Therefore, density grows as
grain size decreases, and the material becomes more compact.
This indicates that the flow demanded by the extruder (m3/h)
is lower than the flow of clay at the entrance.

ρ
[ t
m3

]
= 1,60144 − 0,00114 ∅80 [mm] (1)

Considering these parameters and available commercial mod-
els, the designer defines a set of machines and hoppers for
each stage and chooses a specific one from these sets. Let
Mk = {1 . . . qk} be the set of feasible machines in stage k
(k = 1 . . . 4) with qk as the maximum number of selectable
machines. Tik,k is the set of feasible hoppers for each ma-
chine in stage k, with ik ∈ Mk. Therefore, the problem is to
select the machine and hopper model in each stage k, as well
as their respective numbers. The decision variables are as
follows:

1. xk
i the machine model that equals 1 if the model that

occupies position i in {Mk} is selected;

2. yk
i, j, the hopper model that equals 1 if the model that

occupies position j in {Tik ,k} is selected;

3. and nk, the number of equipment (machines plus
hopper) in each stage.

As comminution is generally done in two stages, it is nec-
essary to define the output diameter at the crusher, Φk = 4.
As the possibilities are many, a set {B} of bmax dimensions is
defined with the most common values. The second variable
is the production multiplier for the secondary feeder, which
is limited to a set {A} of amax dimensions with values between
1 and 2. The production value given by these feeders is
the theoretically necessary production at the extruder stage
multiplied by factor a.

Optimization approach
Genetic algorithm
Design experts, depending on their subjective experiences,
typically judge a huge combination of feasible solutions to
select an optimal solution. But not all solutions are really
feasible. Thus, some solutions tend to be over-dimensioned
if the designer is focused on reliability, while some solutions
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lead to a lack of production if the designer is focused on cost.
Hence, each solution needs to be simulated to evaluate its
performance, but this is time-intensive and not feasible.

A GA has been developed to solve this problem. The goal is
to find an optimal equipment set that minimizes installation
costs while ensuring a feasible solution (extruder continuous
production and granulometry, as well as maximum installation
height). Each solution is codified as an integer 14-dimensional
vector, and gene value indicates the positions of selected
elements in the set. Thus, the chromosome structure is {nk=1,
ik=1, jk=1, nk=2, ik=2, jk=2, a, nk=3, ik=3, jk=3, nk=4, ik=4, jk=4, b},
where nk is the number of equipment (machine and hopper)
corresponding to block k; ik is the position of machine model
in set {Mk}; jk is the position of the hopper model in set {Tik,k};
a is the position of the production multiplier parameter in
{A}; and b is the position of the selected diameter k = 4 in
{B}. All values range between 1 and 5.

The goal is to minimize all equipment costs, Cequip, expressed
by Equation 2. The cost of machines and hoppers at every
stage k, is defined by Cmi

k and Ch j
ik, where nk is the number

of machines, Cck+1,k is the cost of the conveyor, and nck+1,k
is the number of conveyors.

Cequip =

4∑
k=1

nk

(
Cmi

k + Ch j
ik

)
+

4∑
k=0

nck+1,kCck+1,k (2)

The flowchart of the genetic algorithm schema is shown in
Figure 2. The GA starts with a randomly generated population,
the Basic-Population (BP), of feasible Npop-solutions whose
fitness is evaluated (Equation 3). Then, a new population is
formed by selecting individuals from this BP to create the
offspring of a subsequent generation. Every basic solution
has a predetermined probability pc (pc = 0,8) to belong to
a parent population. Subsequently, a best-worst crossover
operator is applied to establish parent-chromosome pairs
and generate two offspring from each couple. Each offspring
gene is randomly selected from one of the parents. After
the crossover, the mutation operation is carried out. A
chromosome of the offspring population is selected for the
mutation operation with probability pm (pm = 0,3), and the
values of 3 genes change randomly. Each of these solutions is
evaluated in a computer model specially designed to simulate
its behavior. A solution is rejected if it is unfeasible.

The algorithm selects the best solutions (parents, offspring
and muted) to survive, and it updates the BP. Additionally,
a heuristic technique is applied to improve the quality of
BP solutions. The method consists of randomly choosing a
block or stage (k = 1 . . . 4) and changing all parameters of the
selected block. Finally, the last iteration step is to choose
the best solution and finish the improvement method for
this iteration. The best feasible solution is selected when the
maximum number of iterations is reached.

Model simulation
Apparently, the problem and the solution proposed by the
algorithm seem simple, given the fact that there are no
components of variability in the system (it is assumed that,

Figure 2. Genetic algorithm schema.
Source: Authors

at the entrance, the clay has the same particle size, times
are fixed, etc.). However, when the behavior of the different
equipment is simulated and the evolution of hopper levels
over time is evaluated, this behavior becomes dynamic and
seemingly chaotic.

The operation of each stage is conditioned by both the anterior
and subsequent stages, and the flows take time to stabilize.
It is therefore difficult to predict where and when bottlenecks
can be found, and the existence or not of oversized elements.
Figure 3 illustrates the evolution of the capacity (m3) of a
hopper of feeder. Initially, the hopper is full and begins to
empty in a linear manner, but soon the behavior becomes
chaotic when the material demand and filling cycle have
different and chaotic periods. Some examples of this type of
behavior can be found in the works by Légaré et al., (2016) and
Li, Evertsson, Lindqvist, Hulthén, and Asbjörnsson (2018).

Therefore, we have designed a simulation model to evaluate
the operation of the installation over a sufficiently long period
of time, in order to ensure that the model reaches all states.
The process starts with all the hoppers full at maximum
capacity, and the extruder starts by requesting material from
previous stages. The model continuously evaluates the flow of
material that reaches the extruder, PRT (t/h), and compares it
to PS0 (t/h), the design parameter. The relationship between
PRT and PS0 is the Service Level (SLR).

The simulation model has been programmed in Matlab©
and, in addition, another parametric model was built using
WitnessPwF© to validate the results. The results of the
two approaches are very similar, and the differences are not
significant. Finally, the Matlab-based model was included
because the computational time to evaluate each solution
was lower.

Early results show that a cheaper installation cost can be
achieved if constraints are relaxed by allowing production
(PRT) to be below what is initially required (PS0) at certain
times. Therefore, it has been decided to widen the search
space with those solutions that were close to the desired
level of service, SLT. We do not rule out solutions that fall
short of it, but we penalize (PE) them proportionally to how
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Figure 3. Capacity (m3) vs. time (h) in a feeder hopper.
Source: Authors

close they are (Equation 3). This way, SL, far from being
a restriction, became part of the fitness. Then, the fitness
function became as the one defined in Equation (4).

PE =

1, SLR ≥ SLT,

1 + 100 log
(

SLT
SLR

)
, SLR < SLT

(3)

C = CequipPE (4)

For example, Figure 4 illustrates the evolution of the SL (%)
of a facility when PS0 = 100 t/h. Initially, the installation was
perfectly balanced, but there were actually small imbalances
caused by the excessive production of the crusher.

Figure 4. Service Level (%) for PS0 = 100 t/h.
Source: Authors

After several rounds of testing, the simulation time will be at
least 50 hours for all states to appear; the necessary warm-up
period is 5 hours. Thus, the computing time to simulate each
GA proposal is 40 seconds.

Results and discussion
Computational results
The algorithm was implemented in the industry to validate
its performance. Usually, the ceramic industry production
values range between 50 and 150 t/h, so machines are sized
to meet these requirements. However, there are cases where
much larger productions are needed, where success business
stories to compare are much more limited. Thus, 8 levels of

extruder production (25-50-100-150-200-250-300-400 t/h)
and 2 levels of particle size reduction (125,5/1 and 81,2/10)
have been identified, and the number of experiments is 16.

Taking these requirements into account, available commer-
cial models were selected. The models and parameters used
in this study were based on the real-world equipment of
a company located in Zaragoza Spain, dedicated to the de-
sign and manufacturing of machinery for the treatment and
preparation of clay in the ceramic industry. Table 1 shows
various parameters such as the range of flow rate, capacity,
and cost of feasible equipment at every stage. To facilitate
the comparison of results, the set of machines and hoppers
for each stage was the same for all experiments. Note that
the selectable models at feeder stages are identical. On the
other hand, crusher machines have higher flow rates than
hammer mill models because of the presence of waste mate-
rial between stages, and because the material is compacted
as the process progresses.

Table 1. Data to design ceramic industry

Stage 2: Hammer Mills

No. models: 25 (5 HMs and 5 hoppers)

Q [m3/h]: 22 - 63

Capacity [m3]: 1,4 - 4,67

Cost [AC]: 76 105 - 15 0674

Stage 4: Crusher

No. models: 25 (5 crushers and 5 hoppers)

Q [m3/h]: 25 - 114

Capacity [m3]: 0,41 - 28,73

Cost [AC]: 42 460 - 122 420

Output diameter at the crusher [mm]: 24 - 60

Stages 1 and 3: Feeder

No. models: 25 (5 Feeders and 5 Hoppers)

Q [m3/h]: 10/40 - 90/120

Capacity [m3]: 1,34 - 67,08

Cost [AC]: 32 000 - 61 139

Production multiplier of secondary feeder, PM: 1 - 2

Belt conveyor

Cost = fixed term proportional to number of conveyors between stages plus
variable term depending on the length and width

Source: Tezasa (www.tezasa.com).

Otherwise, the caudal output at the crusher, QCRUSHER, is
subjected on k = 4, and it increases with the diameter (the
Qk = 4 interval in Table 1 is for the minimum diameter, k = 4
= 24 mm). The hammer mills caudal, Qk=2, is not directly in-
fluenced by particle size and production, but hammer velocity,
inlet position, breaker gap, infeed granulometry, screen size,
and others have minimum influences on this parameter. To
simplify the model, a constant and independent production
were considered.

The numerical experiments were performed on a Windows
7 PC with an Intelr CoreTM i7-6800K CPU@3.4GHz and
16GB RAM. The GA and code for the simulation model were
written in MATLAB©.
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Table 2. Best results of the instances: cost

No PS0 t/h Φin/Φout mm/mm Cost MAC
Primary Feeder (k = 1) Hammer Mills (k = 2) Secondary Feeder (k = 3) Crusher (k = 4)
n Cost MAC n Cost MAC n Cost MAC n Cost MAC

1 25 125,5/1 211 1 32 1 76,1 1 32 1 42,5

2 25 81,2/10 211 1 32 1 76,1 1 32 1 42,5

3 50 125,5/1 245 1 32 1 94,6 1 32 1 42,5

4 50 81,2/10 244 1 32 1 94,6 1 32 1 42,5

5 100 125,5/1 375 1 39 1 145 1 39 1 70,3

6 100 81,2/10 374 1 39 1 145 1 39 1 70,3

7 150 125,5/1 576 1 45 2 130 1 45 1 93,8

8 150 81,2/10 573 1 45 2 130 1 45 1 73,3

9 200 125,5/1 760 2 39 2 145 2 39 2 70,3

10 200 81,2/10 758 2 39 2 145 2 39 2 70,3

11 250 125,5/1 990 2 45 3 145 2 45 2 73,3

12 250 81,2/10 987 2 45 3 145 2 45 2 73,3

13 300 125,5/1 1 048 3 39 3 145 2 45 2 73,3

14 300 81,2/10 1 044 3 39 3 145 2 45 2 73,3

15 400 125,5/1 1 418 3 45 4 145 3 45 3 73,3

16 400 81,2/10 1 413 3 45 4 145 3 45 3 73,3

Source: Authors

Table 3. Best results of the instances: configuration

No
Primary Feeder (k = 1) Hammer Mills (k = 2) Secondary Feeder (k = 3) Crusher (k = 4)
Q m3/h Cap m3 Q m3/h Cap m3 PM m3 Q m3/h Cap m3 Cap m3 Φ4 mm

1 10-40 1,34 22 1,4 1 10-40 1,34 0,41 24

2 10-40 1,34 22 1,4 1 10-40 1,34 0,41 24

3 10-40 1,34 32 1,85 1 10-40 1,34 0,41 48

4 10-40 1,34 32 1,85 1 10-40 1,34 0,41 48

5 50-80 3,94 63 2,16 1 50-80 3,94 0,87 48

6 50-80 3,94 63 2,16 1 50-80 3,94 0,87 48

7 70-100 6,12 50 1,87 1 70-100 6,12 6,18 48

8 70-100 6,12 50 1,87 1 70-100 6,12 4,37 60

9 50-80 3,94 63 2,16 1,1 50-80 3,94 0,87 48

10 50-80 3,94 63 2,16 1,1 50-80 3,94 0,87 48

11 70-100 6,12 63 2,16 1,1 70-100 6,12 4,37 48

12 70-100 6,12 63 2,16 1,1 70-100 6,12 4,37 48

13 50-80 3,94 63 2,16 1,1 70-100 6,12 4,37 60

14 50-80 3,94 63 2,16 1,1 70-100 6,12 4,37 60

15 70-100 6,12 63 2,16 1,1 70-100 6,12 4,37 60

16 70-100 6,12 63 2,16 1,1 70-100 6,12 4,37 60

Source: Authors

To simulate each solution, simulation time was set to 50
h with a 5 h warm-up period; the computational time was
around 38 s per solution. The average computing time to
make the prescribed iterations prescribed was 6,7 h, and the
algorithm evaluated approximately 630 solutions. Each test
instance was solved 8 times, and the best results are listed in
Tables 2 and 3.

Table 2 shows the best result’s configuration and cost. The
first three columns define the numeration and settings of the
experiment. Column 4 refers to the cost (MAC) of the best
solution found among the eight solutions obtained. Columns
5 and 6 refer to the primary feeder stage (k = 1), listing the

number of machines and unitary cost of the equipment (MAC).
The rest of the columns contain similar information for the
hammer mills (k = 2), secondary feeder (k = 3), and crusher
(k = 4) stages.

Table 3 displays the number of machines, flow rate, and
capacity of the best solutions for all stages. The results suggest
that the installation cost is strongly related to production,
and the cost of all stages rise as PS0 increases. When
scenarios with the same productions are compared, it is
made evident that the value of the particle size reduction
is not relevant. Hence, the algorithm proposes identical
configurations (number and type of machine and hopper) for
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each level of extruder production, even when the particle
size reduction changes, except in the case of crushers (PS0 =
150 t/h). The conveyors cause small differences (note that
installation cost decreases, as expected, but only 0,5% of the
maximum); as clay is more compact, conveyors are narrower
and cheaper.

Analyzing the configuration of each stage, the algorithm pro-
poses high production HMs and medium-low production
crushers. On the other hand, hoppers of all stages and exper-
iments are as small as possible, to ensure equipment height
is as short as possible, which allows for shorter and cheaper
conveyors to be used. Finally, note that size reduction in
the first crushing stage, IN - k = 4, is the least possible.
Moreover, k = 4 takes medium to high values, which are
independent of the initial and final granulometry. In this way,
the crusher processes as much material as possible, although
the crushing is not so severe.

Figure 5 shows, for each production level, the individual cost
(MAC) of every stage including conveyors, calculated through
Equation 2 and disaggregated by stages. As expected, the
cost of all blocks increases as production rises.

Figure 5. Cost of every stage.
Source: Authors

Figure 6 displays the cost relative to the global cost for
each problem (%), and a particular emphasis is given to the
relative cost of hammer mills. On the other hand, conveyors
account for 20-25% of installation costs, although this cost
is not considered during product design, given that they are
considered to be an auxiliary system.

Figure 7 shows cost relative to PS0. Relative cost is very
high for small PS0 values because of oversized equipment; at
higher productions, the relative cost does not change so much,
and these small differences are due to the discretization of
equipment parameters (capacity, flow, and cost).

Algorithm vs. industry
The solutions provided by the GA are similar to those adopted
in ceramic industries, but some interesting alternatives appear
in the design of facilities.

Figure 6. Cost relative of every stage.
Source: Authors

Figure 7. Cost [AC/t] VS Production [t/h].
Source: Authors

Normally, hoppers are placed as high as possible, except
at the hammer mills stage. This decision is usually made
because of doubts that the line is not balanced and properly
dimensioned. This results in conveyor belts that are much
longer and need a larger area for the comminution zone, thus
increasing the cost of hoppers and especially belts, which can
represent 40% of the installation investment. Additionally,
this over-dimensioning also causes an increase in energy
consumption.

Finally, it is worth noting that this work has been approxi-
mated in the most realistic way possible, using commercial
equipment with sizes and prices related to the relevant in-
dustry. For large production cases, the capacities of hammer
mills are insufficient, and a higher capacity model needs to
be developed.

Conclusions
In this paper, we parameterized and characterized the com-
minution process of ceramics, where the dry grinding process
was carried out with two machines: crusher and hammer mill.
We proposed a simulation-optimization-procedure-based GA
to obtain an economical solution to the problem of equipment
selection. In this study, we considered the cost of all the
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installation equipment and the ratio between the actual and
demanded production at the extruder during the considered
period of time.

To assess the feasibility of the solution, it was necessary to
develop a simulation model that, via time discretisation, cal-
culated the obtained production and material granulometry,
as well as the service level. Because of the high computation
times needed to evaluate production, it was necessary to
consider different strategies in the GA, including local im-
provement to select an optimal solution in a shorter time.
Finally, the proposed method has been tested with a variety
of real-world problems faced by the ceramic industry, eval-
uating how the cost of the plant and the type of equipment
is distributed in each block or stage. Such calculations can
be done for a wide range of combinations of machines and
hoppers, with respect to both number and sizes.

Regarding the obtained results, it should be noted that the
installation cost is strongly related to production, but not to
the particle size reduction. We would also like to highlight
the need for hoppers of all stages and experiments to be as
small as possible, in order to ensure that the equipment is as
short as possible, and, therefore, allows for the use of shorter
and cheaper conveyors.

The capacity of the system presented in this article to design
comminution plants has been proven. Finding the best possi-
ble solution that fits with the needs of the client presents pos-
sibilities of new ways of working that would allow companies
to overcome the bias that an expert may have when designing
new plants for the structural ceramic industry. Future work
should incorporate more complex grinding processes and
energy consumption into this method.
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